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ABSTRACT 

There is great interest in small aircraft known as Micro Air Vehicles and mini Unmanned Air 

Vehicles due to the wide range of possible applications. This article reviews recent work that 

aims to exploit the flexibility of the wing structure in order to increase lift and thrust, and 

delay stall. Wing flexibility has often been considered to be unwanted for large conventional 

aircraft and measures are taken to limit the deformation. In contrast, very small aircraft flying 

at low speeds are not necessarily subject to the same limitation. This approach is only 

applicable to small aircraft because the frequencies of the wing structure and fluid flow 

instabilities are close to each other. Consequently, small amplitude and high-frequency 

motions will be considered. 

 

We first start with rigid airfoils and wings in forced plunging motion, which mimics the 

bending oscillations. The main advantage of this approach is the freedom to vary the 

frequency within a wide range. Two mechanisms of high-lift production on the oscillating 

rigid airfoils are discussed. In the first one, leading-edge vortex dynamics and different 

modes of vortex topology play an important role on the time-averaged lift and thrust at post-

stall angles of attack. Existence of optimal frequencies and amplitudes are demonstrated, and 

their relation to other phenomena is discussed. In the second mechanism of high-lift, trailing-

edge vortex dynamics leads to bifurcated/asymmetric flows at pre-stall angles of attack. 

Deflected wakes can lead to time-averaged lift coefficients higher than those for the first 

mechanism. Some aspects of lift enhancement can be sensitive to the airfoil shape. For three-

dimensional finite wings, lift enhancement due to the leading-edge vortices and existence of 

optimal frequencies are similar to the two-dimensional case. Vortex dynamics of the leading-

edge vortex and tip vortex is discussed in detail. Leading-edge sweep is shown to be 

beneficial in the reattachment of the separated flows over oscillating wings. Oscillating 

flexible wings can provide much higher lift coefficient than the rigid ones. Amplitude and 
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phase variation in the spanwise direction result in much stronger leading-edge and tip 

vortices. Self-excited vibrations of flexible wings, including membrane wings, can excite 

shear layer instabilities, an thus delay stall and increase lift. Finally, thrust enhancement or 

drag reduction can be achieved by employing chordwise and spanwise flexibility. The effects 

of wing flexibility on the vortices and thrust/drag are discussed in relation to the 

characteristics of wing deformation. 
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NOMENCLATURE 

a amplitude of plunging motion 

A peak-to-peak amplitude, 2a 

b span 

c  chord length 

Cd time-averaged drag coefficient 

Cl time-averaged lift coefficient of airfoil 

lĈ  time-averaged modified lift coefficient 

Cl0 time-averaged lift coefficient of stationary airfoil/wing 

CL time-averaged lift coefficient of wing 

CT time-averaged thrust coefficient of airfoil/wing  

d  distance between vortices; depth 

E modulus of elasticity 

f  frequency 

h dimensionless plunging amplitude, a/c 

I second moment of area 

kG Garrick reduced frequency, πfc/U∞ 

LTED length of trailing-edge plate 

Q Q-criterion 

Re Reynolds number 

s  instantaneous displacement of plunging airfoil 

S wing reference area 

Src Strouhal number based on chord length, fc/U∞ 

SrA Strouhal number based on amplitude, fA/U∞ 

sAR semi-aspect ratio 

t time; thickness 

T period 

u streamwise velocity 

U∞ free stream velocity 

Upl maximum plunge velocity, 2πfa 

v cross-stream velocity 

V magnitude of velocity in the measurement plane 

x streamwise or chordwise distance 
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y cross-stream distance  

z spanwise distance 

α angle of attack 

δ flap angle 

φ roll angle 

λ dimensionless aeroelastic parameter 

θ pitch angle; phase angle 

ρ density 

ω vorticity 

Γ circulation 

Λ sweep angle 
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1. Introduction 

Recent advances in micro-technology have created an opportunity to mount miniature 

surveillance equipment on small (wing span less than 15 cm) flying aircraft known as Micro 

Air Vehicles (MAVs). Such micro-technology includes tiny CCD cameras, infra-red sensors, 

and computer-chip sized hazard detectors. Micro-flying robots could be suitable for 

reconnaissance and surveillance, as well as numerous other applications such as coastal 

surveillance, crop monitoring, telecommunications, news broadcasting, remote sensing and 

mineral exploration. MAVs have similar dimensions to birds and insects, and similar 

Reynolds numbers. Mini Unmanned Air Vehicles (UAVs) are slightly larger, with 

correspondingly larger Reynolds numbers. 

 

As the length scale of small aircraft is small and flight speed is low, the Reynolds number is 

low, typically Re = 10
3
−10

5
. At these low Reynolds numbers, separated and vortical flows are 

dominant, making lift and thrust generation challenging due to the strong viscous effects as 

discussed in recent review articles [1-4]. Because of the poor lift generation in cruise flight, it 

will be necessary for fixed-wing MAVs to fly at relatively high angles of attack, close to stall 

conditions. In addition, it may be necessary to fly in the poststall regime during vertical gusts. 

Hence, the delay of stall is necessary for stable MAV flight. High angle of attack flows with 

large separated regions are also typical for flapping-wing MAVs. Leading-edge vortices are 

known to enhance lift in unsteady aerodynamics. Periodic excitation of the flow to generate 

leading-edge vortices for fixed-wing MAVs is therefore a sensible approach. 

 

Consequently, active flow control will be necessary. This can be achieved by means of 

unsteady blowing, suction, moving surfaces, and plasma actuators. However, these 

conventional flow control techniques such as blowing are not necessarily practical at these 

small scales, and often, the space available is insufficient to place actuators or blowing 

chambers. In addition, weight, volume and power consumption of the potential actuation 

systems need to be considered. For example, plasma actuators, when the power supply is 

considered, may not be practical at these small scales. In this review article, we focus on the 

periodic excitation of separated flows by means of wing oscillations. Fluid-structure 

interactions can be exploited to control the separated flows, and thus increase lift and delay 

stall. Small aircraft are inherently light weight and flexible, hence vibrations of the wings can 

be used to excite the separated flows. 
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1.1.  Frequencies of fluid instabilities and wing structure 

Extensive research on active flow control of separated flows around airfoils and wings has 

shown that partial or full reattachment is possible when the inherent instabilities in the 

separated flow are excited [5]. Depending on the airfoil shape and excitation characteristics, 

at least three different instabilities may be important for effective excitation: 1) initial shear 

layer instability or its subharmonics, although this appears to be more effective for delta 

wings [6]; 2) instability of the separation bubble [7]; and 3) wake instability [8,9]. Flow 

control research on separated flows suggests that the optimal Strouhal number of unsteady 

excitation is on the order of unity, fc/U∞ = O(1). Typically, the frequencies of the instability 

of the separation bubble and wake instability are on this order of magnitude. An alternative 

control strategy relying on much higher frequencies was discussed by Glezer et al. [10]. 

 

Figure 1 shows the qualitative variation of the frequency of the fluid instabilities 

(corresponding to fc/U∞ = O(1)) as a function of wing span. As the wing span increases from 

very small (MAVs) to large (civil transport aircraft), the frequency of flow instabilities does 

not vary much once variations in the wing chord length and flight speed are taken into 

account. Also shown on Figure 1 is the qualitative variation of the natural frequency of the 

wing structure. It decreases substantially with increasing wing span. For a typical civil 

transport, the structural frequency may be on the order of few Hertz, while typically this 

quantity is on the order of 10
2
 Hertz for micro air vehicles. As illustrated in Figure 1, 

structural frequencies and fluid instability frequencies are therefore close to each other for 

small aircraft. This presents an opportunity to exploit wing vibrations for flow control 

purposes. For small aircraft, small-amplitude wing vibrations could potentially excite 

characteristic frequencies of the fluid instabilities. 

 

While one tries to suppress the vibrations for large aircraft because of fatigue and passenger 

comfort issues, this requirement is not necessary for small aircraft (MAVs), because they 

have limited (much shorter) life time and no passengers. Thus, exploiting the flexibility of the 

wing structure to excite the fluid for flow control becomes a possibility at low Reynolds 

numbers. In practical applications, this technique can be achieved by the torsional (pitching) 

and bending (plunging) vibrations of flexible wings by means of piezoelectric actuators 

and/or elastic mounting of rigid wings. For example, if a torsional spring used for mounting 

is tuned correctly, airfoil/wing oscillations are easier to produce. External excitation at 
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resonant structural frequencies for less power input or self-excited wing vibrations for zero 

power input can also be considered.  

 

1.2.  Small-amplitude high-frequency oscillations 

As the main objective is to exploit the fluid-structure interactions for flow control, naturally 

small-amplitude and high-frequency wing oscillations are relevant. Here we will discuss the 

range of dimensionless parameters and compare with the biological flows where pitching and 

plunging motions are observed [11-13]. The first parameter is the Strouhal number based on 

the chord length,  

       ∞= UcfSrc /     (1) 

which can be considered as the ratio of two time scales (convective time unit and the period 

of the motion). Since it is related to the convection of the leading-edge vortices, this 

parameter is important in determining the unsteady lift. In biological flows, one observes 

large amplitude motion (amplitude on the order of chord length, a/c = O(1)) at low 

frequencies (Strouhal number based on the chord length, Src = fc/U∞ = O(10
−1

)). However, in 

our case, we have small amplitude motion (a/c = O(10
−1

)) at high frequency (Strouhal 

number, Src = fc/U∞ = O(1)). Hence, the kinematics is very different from the biological 

flows.  

 

The second parameter is more relevant to the thrust generation. The history of the subject is 

given in the review article by Platzer et al. [14]. It has been shown that the most important 

parameter for thrust generation is the Strouhal number based on the amplitude, which is 

defined as: 

      
∞= UAfSrA / ,   (2) 

where A is the peak-to-peak amplitude of the trailing-edge.   This parameter can also be 

considered as normalized plunge velocity. It is also related to the maximum effective angle of 

attack αeff, max ,through:  
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where Upl  is the maximum plunge velocity. Interestingly, Strouhal number based on the 

amplitude, SrA = fA/U∞, which is a measure of the change in the effective angle of attack due 

to the unsteady motion, is similar in nature and our case. 
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Even though the flows that we are interested in are very different from biologically inspired 

flows, we note that the flexibility of the wings in insects and birds has been documented 

[15,16]. There is a belief among biologists that wing flexibility improves the aerodynamics 

[17,18]. Therefore, even though the kinematics of the biological flows and flows of our 

interest are very different, we share the same goal, which is performance improvement by 

means of flexibility.  

 

The outline of this article is as follows: we first start with rigid airfoils in forced plunging 

motion. As the frequency of the plunging motion is varied, we identify and discuss various 

modes of vortex topology and two different mechanisms of high-lift production. Then, finite 

rigid wings in oscillatory motion are discussed. Next, vortex dynamics and lift production are 

reviewed for oscillating flexible wings, followed by the self-excited vibrations of flexible 

wings and membrane wings. Finally, thrust enhancement or drag reduction using chordwise 

and spanwise flexibility are discussed. 

 

2. Lift enhancement of oscillating rigid airfoils 

2.1. Two mechanisms of high-lift  

Figure 2 illustrates two high-lift mechanisms for an airfoil oscillating with small amplitude: 

a) leading-edge vortices for post-stall angles of attack; b) deflected trailing-edge vortices for 

pre-stall angles of attack. In the first mechanism, the flow is fully separated at the leading-

edge for the stationary airfoil, and therefore part of the suction is lost. For the oscillating 

airfoil, the LEV is produced during the downstroke and once formed it is convected over the 

upper surface creating a low-pressure wave as it passes. Extremely small amplitude 

oscillations of a SD7003 airfoil at a post-stall incidence have been shown to increase the 

time-averaged lift [19]. Furthermore, small amplitude airfoil oscillations for a NACA0012 

airfoil [20] and a flat plate airfoil [21] at a post-stall incidence have also been studied. 

Various experimental methods including particle image velocimetry (PIV) measurements and 

force measurements were combined with high-fidelity simulations. These findings 

highlighted the delay of stall and lift enhancement on oscillating airfoils, and also identified 

an interesting phenomenon due to a strong interaction between the airfoil and vortex. In this 

new mode of vortex topology, a leading-edge vortex is generated during the downward 

motion of the airfoil and then impinges on the upward moving airfoil, resulting in rapid loss 

of its coherency. As a result in this flow regime no coherent vortices are convected 
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downstream over the suction surface of the airfoil, which has a considerable effect on the 

aerodynamic forces.  

 

In the second mechanism shown in Figure 2, asymmetric wake flow can be observed at even 

zero angle of attack if the Strouhal number is sufficiently high. This asymmetric flow 

generates the time-averaged lift. For the zero mean angle of attack, various studies of 

plunging airfoils [22-26] and pitching airfoils [27-29] showed that asymmetric wake flows 

are possible at high Strouhal numbers. Emblemsvag et al. [27] was the first to suggest that, at 

high frequencies, the vortices tend to shed in pairs (vortex dipoles) and this triggers the 

deflected wakes. Hence, the formation of dipoles is important as the distance between the 

vortices decrease and strength of the vortices increase with increasing frequency. A 

symmetry breaking criterion, based on a simple model of a dipole and its self-induced 

velocity, was suggested by Godoy-Diana et al. [29]. The model was developed based on the 

measured strength of the vortices and the phase velocity of the vortex street for zero mean 

angle of attack. Cleaver et al. [30] showed that deflected flows are possible up to the stall 

angle, resulting in very high time-averaged lift coefficients. The details of these two high-lift 

mechanisms are discussed below. 

 

2.2. Leading-edge vortices 

Figure 3 shows the variation of the time-averaged lift coefficient as a function of Strouhal 

number based on the chord length for a NACA 0012 airfoil at a post-stall angle of attack of 

15 degrees at a Reynolds number of 10,000 for different amplitudes [20]. It is seen that 

significant lift enhancement is possible, which increases with increasing amplitude until a 

critical high frequency is reached. The sudden drop in the lift for larger amplitudes will be 

discussed below. Up to Src ≈ 0.5, the increase in the time-averaged lift is monotonic, and, in 

fact, it has been shown that the lift increase is approximately proportional to the Strouhal 

number based on the amplitude [20]. At around Src ≈ 0.5, there is a local maximum, which is 

visible for almost all amplitudes. For the largest amplitude a/c = 0.20, the lift coefficient is 

also given for Re = 20,000 for the same airfoil in Figure 3. The same peak has been found, 

revealing no effect of Reynolds number. In Figure 3, the second peak around Src ≈ 1.0 and 

the third peak around Src ≈ 2.0 are also visible. We note that a peak was observed at a 

Strouhal number of Src ≈ 0.4 in the direct numerical simulations of Andro and Jacquin [31] 

for a plunging NACA 0012 airfoil at Re = 1,000. In their case, the peak was attributed to an 
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optimal interaction of the leading-edge vortices with the airfoil. We shall return to the 

physical mechanisms behind these peaks later on.  

 

Figure 4(a) presents the streamlines and the magnitude of the total velocity vector for the 

stationary NACA 0012 airfoil at a post-stall angle of attack of 15 degrees for Re = 10,000. 

The large region of separation becomes much smaller when the airfoil is plunged periodically 

with small amplitude as shown in Figure 4(b). With increasing Strouhal number, the flow 

becomes more attached, leading to increased lift as well as reduced drag in agreement with 

the direct force measurements shown in Figure 3. In fact, at high Strouhal numbers, a time-

averaged jet is formed downstream of the trailing-edge, which indicates thrust generation. 

 

Figure 5 shows the vorticity in the phase-averaged flow field at the top and bottom of the 

plunging motion for different Strouhal numbers. For the Strouhal numbers less than 2.5 

shown in the figure, the main feature is the generation of leading-edge vortices during the 

downward motion and their subsequent convection downstream. Other features such as 

generation of secondary vortex of opposite sign and vortex interactions and merging in the 

wake are less important. Consequently we call this type of flow: mode-1, where the LEV is 

basically convected. Figure 5(e) shows a mode-2 flow field. Here the LEV is formed during 

the downward motion and loses its coherency entirely during the upward motion due to the 

impingement with the airfoil. This form of flow field (no convected LEV) does not arise 

abruptly; Figure 5(d) shows a mixed mode. A time history of a mode-2 vortex flow is 

presented more clearly in Figure 6 for a larger plunge amplitude (a/c = 0.10). The dramatic 

vortex-airfoil interaction and loss of vortex coherency are visible during the upward motion 

of the airfoil. 

 

Figure 7 shows the boundary between the mode-1 and mode-2 in the amplitude-Strouhal 

number plane. The boundary is illustrated as a shaded region, where the flow field is of 

mixed mode (there is a discernible convected LEV, but it is very weak). Different vortex 

topologies in mode-1 and mode-2 flow fields affect the time-averaged forces significantly. It 

is seen that the boundary region matches zero time-averaged drag as determined by direct 

force measurements. In mode-1 region there is drag, while mode-2 region generates thrust. 

Also, there is usually high-lift in mode-1, but low-lift in mode-2. In Figure 7, lines of 

constant maximum effective angle of attack are shown, which can also be considered as the 

lines of constant plunge velocity (or Strouhal number based on the amplitude), as discussed 
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with Equations (2) and (3) earlier.  Since the mode-switch band occurs in the approximate 

range of αeff,max = 48° to αeff,max = 68°, or alternatively SrA = 0.20 to SrA = 0.43, one can 

conclude that the mode-switch does not bear a strong correlation with either constant 

effective angle of attack or constant Strouhal number based on amplitude. So in a similar 

manner to the observations of Young and Lai [32] for drag, neutral and thrust wakes, wake 

structure regions do not follow lines of constant Strouhal number based on amplitude. 

 

It is interesting to consider the time-averaged lift in the amplitude-Strouhal number plane, 

and relate this to the mode-1 and mode-2 flows. As the frequency (Strouhal number based on 

the chord length) or amplitude is increased, the plunge velocity (or “excitation” velocity) is 

also increased. Therefore, excitation level is not constant when either the frequency or 

amplitude is varied. In order to take this into account, we define a modified lift coefficient 

based on the vector sum of the free stream velocity and maximum plunge velocity: 
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Figure 8 shows a contour plot of the modified lift normalized by the lift coefficient of the 

stationary airfoil, as a function of amplitude and Strouhal number based on the chord length. 

The most apparent feature of Figure 8 is the existence of three regions of optimal excitation 

with their Strouhal number ranges centered around Src = 0.5, 1.0, and 2.0. It is interesting that 

the three regions are located on a constant plunge velocity of Upl /U∞ = 0.5 shown with a 

dashed line in Figure 8. Hence, the optimum plunge velocity is approximately half the free 

stream velocity. The band shown with the two solid lines is the same region that separates 

mode-1 and mode-2 flow fields as discussed earlier. Hence, all three optimal operating 

conditions have a mode-1 flow field, confirming that convected leading-edge vortices provide 

the most efficient conditions for maximizing the time-averaged lift. Hence the mode-2 flow 

field is associated with a loss of lift.  

 

Returning to the frequency range of the optimal excitation conditions shown in Figure 8, 

there is a close relation to the natural shedding frequency measured in the wake [20]. The 

measurements suggest that the optimal frequencies are related to the fundamental, 

subharmonic and the first harmonic of the natural shedding frequency. This is agreement with 

earlier observations of the vortex lock-in phenomenon in the wakes of the stalled airfoils 

[8,9]. One expects that when oscillated at the natural shedding frequency, its harmonics or 
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subharmonics, the wake becomes more ordered and synchronized, with an increased 

spanwise correlation of the flow, in a similar manner to vortex lock-in of oscillating cylinders 

[33]. This was confirmed for the periodically plunging airfoil at a post-stall incidence [20]. 

 

Finally, we return to the sudden drop of the time-averaged lift for larger amplitudes in Figure 

3. It is seen in Figure 9 that, at high Strouhal numbers, a lower-surface leading-edge vortex 

forms. This is best illustrated in Figure 9(d) for the largest Strouhal number. The lower-

surface vortex strengthens rapidly with increasing Strouhal number, and becomes nearly 

equal to the circulation of the upper-surface vortex [20]. As the low pressure region induced 

by the lower-surface vortex counteracts the lift, we observe a decrease in the lift. It is 

interesting that the time-averaged lift coefficient returns to the level of a stationary airfoil.  

 

2.3. Bifurcated/asymmetric flows 

For zero mean angle of attack at high Strouhal numbers, the symmetry may be broken by 

deflected jets. Figure 10 shows the transition towards symmetry breaking with increasing 

Strouhal number. Thus there is the possibility of asymmetric flow fields and non-zero lift 

even at zero angle of attack. As this phenomenon is related to the formation of vortex dipoles, 

it is believed that the trailing edge vortices alone are responsible for deflected jets and any 

criteria should be derived from their properties. This is supported by the results of Jones et al. 

[22], who simulated deflected jets with an inviscid unsteady panel code, where no leading-

edge vortex exists because separation is not modelled. We will show later on that there may 

be an effect of the leading-edge vortex in determining the stability of certain cases. It was 

found that the direction of the deflection (upwards or downwards) is determined by the sign 

of the starting vortex when the airfoil starts to move up or down [22]. For non-zero mean 

angles of attack, it also depends on the angle of attack [30], indicating that starting vortex as 

well as the bound vortex play a role. Usually a stable deflected flow field is established 

within a couple of plunge cycles.  

 

Figure 11 shows the time-averaged lift coefficient [30] for various angles of attack in the 

range 0° to 20° for a/c = 0.15. For angles of attack less than or equal to the stall angle (10° in 

this case), at high Strouhal numbers, significant bifurcations are observed in the time-

averaged lift coefficient resulting in two lift coefficient branches. The upper branch is 

associated with an upwards deflected jet, and the lower branch is associated with a 

downwards deflected jet. These branches are stable and highly repeatable, and are achieved 
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by increasing or decreasing the frequency in the experiments. Increasing frequency (solid 

line) refers to starting from stationary and increasing the frequency very slowly (while 

waiting for the flow to reach a stable asymptotic state after each change in frequency); 

decreasing frequency (dashed line) refers to impulsively starting at the maximum frequency 

and decreasing the frequency very slowly. The upper branch is termed mode A and the lower 

branch is termed mode B. It is seen that, when there are two branches, the lift coefficient for 

mode A can be very high, in fact higher than those due to the leading-edge vortices discussed 

previously. The lift coefficient is the same for increasing and decreasing frequency for 

Strouhal numbers less than the bifurcation point. For angles of attack larger than the stall 

angle, there are no longer distinct branches and the lift for both increasing and decreasing 

frequency matches.  

 

Shown in Figure 12 is time-averaged velocity for typical pre-bifurcation, mode A and mode 

B flow fields at zero angle of attack. The pre-bifurcation flow field in Figure 12(a) shows a 

jet aligned horizontally, whereas Figure 12 (b) and (c) reveal deflected jets. For mode A, the 

time-averaged jet is deflected upwards and there is a high-velocity region over the upper 

surface, while for mode B the inverse is true. The time-averaged lift data shown in Figure 11 

and the time-averaged velocity in Figure 12 reveal that the lift direction is the same as the 

direction of the vertical component of the deflected jet, i.e., mode A is associated woth 

positive lift and mode B with negative lift. This is consistent with the simulations performed 

at much lower Reynolds numbers [26,27]. This relationship between the direction of the lift 

and deflected jet is contrary to what one would intuitively expect. In a simple control volume 

analysis applied to the measurement domain shown in Figure 12(c), Cleaver et al. [30] 

demonstrated that momentum flux terms are small compared to the measured lift, and 

therefore concluded that the time-averaged lift is dominated by the pressure difference 

resultant from the velocity difference over the upper and lower surfaces. 

 

Figure 13 reveals the details of the vortex dipole formation. For mode A, a clockwise trailing-

edge vortex (TEV) forms during the upward motion and loiters near the airfoil during the 

downward motion during which the counter-clockwise TEV forms. Due to the relative 

positions of the vortices, the resulting dipole has a self-induced velocity in the upwards 

direction, thereby creating an upwards deflected jet. For mode B, similar events occur but 

mirrored in the x-axis and phase-shifted by T/2. Due to the asymmetry of the flow near the 

trailing-edge, asymmetry is also created near the leading-edge. Mode A has a stronger upper-
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surface LEV, which also explains the higher time-averaged velocity above the upper surface. 

For mode B, the inverse is true: stronger lower-surface LEV causes the higher time-averaged 

velocity over the lower surface. 

 

For non-zero angles of attack, Figure 14 reveals that similar dual flows exist, which is 

expected based on the upper and lower branches of the time-averaged lift shown in Figure 11. 

Phase-averaged vorticity contours for mode A (left column) and mode B (right column) are 

qualitatively similar for α = 0°, 5°, and 10°. There a slight increase in the distance between 

the vortices of the dipole with increasing angle of attack for mode A, while this effect appears 

to be very small for mode B. For other oscillation amplitudes, except for small values a/c ≤ 

0.05, bifurcation of the lift and the main features of the flow fields are similar, although 

bifurcation occurs at different Strouhal numbers based on the chord length. For small 

amplitudes (a/c ≤ 0.05), bifurcation was not observed within the range of Strouhal numbers 

tested (Src ≤ 3.0). This is shown in Figure 15 in the amplitude-Strouhal number plane. 

Theoretically, bifurcation may be possible for very small amplitudes at very high Strouhal 

numbers, which are not reached in the experiments. The effect of geometric angle of attack 

on the boundary of the single/dual flow fields appears to be small. It is also seen that this 

boundary takes place in the thrust producing region.  

 

As the bifurcation occurs at different Strouhal numbers based on the chord length for 

different amplitudes a/c, Strouhal number based on amplitude and effective angle of attack 

due to the plunging motion can be considered as alternative criteria. Figure 16 shows the 

variation of the maximum and minimum effective angles of attack as a function of Strouhal 

number based on the amplitude. The bifurcation points for different oscillation amplitudes are 

shown on the diagram. It is seen that there is some correlation: the onset of bifurcation fall 

within the range SrA = 0.45 ± 0.07 and αeff, max = 60° ± 9°. However, these criteria cannot 

explain why there is no bifurcation at larger angle of attack and also for small oscillation 

amplitudes. In a similar manner to Godoy-Diana et al. [29] better correlations and insight can 

be derived from the measurements of the trailing-edge vortices. Cleaver et al. [30] found that, 

as the difference in the absolute value of the circulation of the clockwise and counter-

clockwise vortices increases there is stronger trend towards a downwards deflected flow. This 

difference in circulation grows with increasing angle of attack. Thus, at a post-stall angle of 

attack α = 15°, stronger counter-clockwise vortex and weaker clockwise vortex cause the 
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flow to be heavily biased towards a downwards deflected jet, and this is therefore the only 

mode that exists. Similarity of this single mode of the post-stall incidence to the mode B of 

the pre-stall incidences is shown in Figure 17. Given the very strong similarity, it is 

appropriate to classify this single flow field as a mode B. As asymmetry was identified as a 

key mechanism, a new parameter is suggested based on the angular velocity of a vortex pair 

[34]: 
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where d is the distance between the vortices. This is made dimensionless as: 
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This represents a non-dimensional TEV asymmetry parameter. The results of Clever et al. 

[30] suggest this parameter determines whether the time-averaged jet is deflected upwards or 

downwards. 

 

A second parameter, which has been found to be important, is a strength parameter, derived 

from the average of the circulations of the TEVs. Figure 18 shows the data points in the plane 

of the asymmetry parameter versus this normalized circulation parameter. The horizontal line 

separates the single and dual flow modes. A vertical line separates mode A and mode B. If 

the circulation parameter is less than a critical value (for small amplitudes and frequencies), 

there is only one flow field. For larger values of circulation parameter, dual flows exist. If the 

asymmetry parameter is less than a critical value, mode A is generated. For larger values of 

the asymmetry parameter, only mode B is produced.  At large angles of attack, the symmetry 

parameter is large even in the pre-bifurcation range. Indeed for α = 15°, all of the data points 

are on the mode B side, making a mode B flow field the only possible outcome. Therefore 

mode B is selected as shown in Figure 18 for α = 15°. 

 

In Figure 19, the circulation parameter is defined based on the plunge velocity instead. It is 

seen that there is a clear boundary between the single and dual modes with minimal scatter of 

the data. The critical value of circulation normalized by plunge velocity is Γ /UP c = 1.85. The 

circulation normalized by the plunge velocity, Γ/Up c= Γ/(2πfac), can be also interpreted as 

the inverse of a modified Strouhal number based on the dipole velocity Γ/a, the frequency 

and chord length. 
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2.4. Effect of airfoil shape 

It was found that the airfoil shape has some effect on the two high-lift mechanisms (leading-

edge vortices and asymmetric flows). For a post-stall angle of attack of 15 degrees, Figure 20 

compares the time-averaged lift and drag coefficients for a NACA 0012 airfoil and a thin flat 

plate as a function of Strouhal number at different oscillation amplitudes [21]. For fixed-wing 

aircraft, thin airfoils are generally preferable at low Reynolds numbers [35]. It is seen in 

Figure 20 that there are strong similarities for the time-averaged lift [21]. The peaks in the lift 

and the Strouhal numbers at which these peaks occur are similar. This is consistent with 

earlier explanations of the origin of the peaks, namely, resonance with the wake instabilities. 

The wakes of stationary airfoils at post-stall angles of attack are likely to be similar as the 

flow separation takes place at the leading-edge. Comparable lift is produced for the flat plate 

up to a Strouhal number of unity, but after this, the lift decreases. There is an interesting 

difference for the time-averaged drag. While the thrust generation occurs for the NACA 0012 

airfoil with increasing Strouhal number and amplitude, thrust is never produced for the flat 

plate. 

 

These features can be understood by the comparison of the time-averaged velocity (Figure 

21) and phase-averaged vorticity (Figure 22) for different Strouhal numbers. For a small 

amplitude a/c = 0.025, it is seen in Figure 21 that the time-averaged flows look similar for the 

two airfoils for Strouhal numbers up to Src = 1.0. With increasing Strouhal number beyond 

this value, flow separation region becomes larger for the flat plate while separation almost 

disappears for the NACA 0012 airfoil. This trend is also visible in the phase-averaged 

vorticity fields shown in Figure 22. Particularly for Src ≥ 2.0, the leading-edge vortices are 

convected almost parallel to the free stream and much further away from the airfoil surface. 

This causes decreased lift and increased drag, and explains why thrust is never achieved. 

 

For a larger amplitude of a/c = 0.15, a new phenomenon is observed as shown in Figure 23. 

In this figure, the vorticity fields are in a counter-clockwise loop starting at the top of the 

motion in the top left corner, moving down through the left column to the bottom of the 

motion in the bottom right, and then up through the right column back to the start. At t/T = 0 

there is a clear, strong counter-clockwise lower surface LEV. This interacts with the 

boundary-layer to form clockwise vorticity. During the initial stages of the downward motion 
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(t/T = 0 to 2/12) this clockwise vorticity forms a vortex that pinches off by the point of 

maximum effective angle of attack (t/T = 3/12). This clockwise vortex pairs with the counter-

clockwise to create a vortex dipole that convects away from the leading-edge in an upstream 

direction (t/T = 2/12 to 7/12). During this “vortex ejection” both vortices rapidly dissipate. 

This dissipation in the phase-averaged flow is an indication of the vortices becoming highly 

three-dimensional. This flow results in low lift and high drag. In contrast, this phenomenon 

was never observed for the NACA 0012 airfoil, and there is no sign of interaction between 

the upper- and lower-surface LEVs. 

 

The second high-lift mechanism (asymmetric/bifurcated flows) was also investigated for the 

flat plate airfoil [21]. For zero angle of attack at high Strouhal numbers, the flat plate 

experiences deflected jets that are prone to periodic oscillations in direction, resulting in 

oscillation of the lift coefficient with a period on the order of 100 cycles. This is shown in 

Figure 24. Crosswise coordinates of the clockwise and counter-clockwise TEVs are shown in 

Figure 24(a) for the same phase (when the airfoil is at the bottom of motion) in each cycle. 

These phase-locked measurements show that the location of the vortices varies periodically. 

The circulation of these vortices also varies for the same phase in each cycle. The period of 

the oscillations is two orders of magnitude larger than the plunging period. It is interesting 

that this type of unstable jets was previously observed for rigid and flexible airfoils 

oscillating in still fluid [24] with a very similar oscillation period of around 100T. As a result 

of these periodic switches in the direction of the jet, the lift force fluctuates. Figure 24(d) 

shows the variation of period-averaged lift coefficient, which reveals oscillations that are 

approximately sinusoidal with an amplitude of Cl ≈ 5. 

 

For the flat plate, one can observe similar deflected vortex dipoles to those of the NACA 

0012 airfoil during the peak deflection angles of the periodic oscillations. This is shown in 

Figure 25 for mode A, where the TEV dipoles appear very similar, even though this is a 

stable flow for the NACA 0012 airfoil and unstable for the flat plate. We note that the 

location and strength of the LEV appear different. Therefore we suggest that this jet 

switching is caused by the LEV. 

 

3. Lift enhancement of oscillating rigid finite wings 

3.1. Coupling with wake instabilities 
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Calderon et al. [36-38] demonstrated that resonance with the wake instabilities also exists for 

low-aspect-ratio wings. Figure 26 presents a comparison of the time-averaged lift coefficients 

of the two-dimensional airfoil and the (semi-aspect ratio) sAR = 2 rectangular wing with 

NACA0012 cross-section. Both wings are subject to an oscillating amplitude of a/c = 0.15 

and a geometric angle of attack of α = 20°. Overall the optimal frequencies are quite similar 

between the two wings with peaks observed at Src ≈ 0.5, Src ≈ 0.9 and Src ≈ 1.5 for the low 

aspect ratio case. The peaks that we observe for the low aspect ratio wing, illustrate that the 

phenomenon is not confined to quasi-two-dimensional flows. Force measurements were also 

carried out at a different Reynolds number of Re = 20,000, illustrating similar lift 

performance. Considering, similar Strouhal numbers require different forcing frequencies, 

due to the change in freestream velocity, the existence of similarly located peaks reinforce 

that this as a fluid dynamic phenomenon. As previously mentioned, the lock-in phenomenon 

with the sub-harmonic and harmonic of the natural vortex shedding frequency, in the case of 

a two-dimensional NACA0012 airfoil, provides an explanation for the existence of peaks in 

lift. Similar measurements of the wake vortex shedding frequency have been performed and 

summarized in Figure 27. It is seen that, for the angle of attack of α = 20° (corresponding to 

Figure 26), we observe a vortex shedding frequency of Stc ≈ 0.54, which is significantly 

closer to the first peak in lift. Even at very low Reynolds numbers (Re = 300-500), vortex 

shedding from low-aspect-ratio wings has been reported [39]. In fact, it was shown that 

periodic excitation at a frequency slightly less than the natural frequency of vortex shedding 

can lead to enhanced lift [40].  

 

Measurements of wake vortex shedding frequency for other angles of attack are also shown 

in Figure 27. A comparison has also been made with the vortex shedding frequencies 

reported by Rojratsirikul et al. [41], indicated by the shaded region, which includes various 

aspect ratios (AR = 1 - 10, and also 2D airfoils) and Reynolds numbers in the range of 10,000 

to 120,000. This is superimposed by a dashed line of constant Strouhal number Srd ≈ 0.17, as 

proposed by Rojratsirikul et al. [41], for which the projected height is used, instead of the 

chord length, as the characteristic length. The wake measurements for the sAR = 2 wing 

reveal a good fit with the literature. Superimposed within the same graph are the locations of 

the first and second peaks in the time-averaged lift for various angles of attack. It is seen that 

the first peak for α = 20°, is very close to the natural vortex shedding frequency in the wake.  

However, for α = 10°, the data seem to suggest that the first peak could be the sub-harmonic 

of the natural vortex shedding frequency.  The interpretation is even more difficult for α = 
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15°, for which the first peak of the lift is between the fundamental and the subharmonic of 

vortex shedding. It is apparent that the peaks in lift are on the same order as the frequencies 

of the wake instabilities of the stationary wing.  However, the first peak remains remarkably 

unchanged for all three incidences, while the fundamental frequency of the wake instability 

and the second peak varies.  The same is observed in the case of a flat plate wing with the 

same aspect ratio. This brings the question whether or not any other phenomenon might be 

contributing to the selection of the optimal frequency.  This is discussed below for both the 

NACA 0012 and flat plate cross-sections. 

 

Velocity magnitude and streamlines in the mid-span plane are shown in Figure 28 for the sAR 

= 2 wing with the NACA 0012 cross-section. Two phases in the cycle, corresponding to the 

halfway point and bottom of the downstroke, are shown at different operating Strouhal 

numbers. The two phases here give a good indication of the progression of the LEVs and 

TEVs at the early stages of their formation. Here Src = 0.45 corresponds to the frequency at 

which the first peak in lift is observed (see Figure 26). With increasing frequency the leading 

edge vortex becomes more compact. In relation to the peaks that we observe in the time-

averaged lift measurements, Src ≈ 0.6 corresponds to a local trough and Src ≈ 0.9 corresponds 

to the second peak. There is an apparent interaction between leading edge vortex and trailing 

edge-vortex for Src = 0.6. In essence, the Strouhal number determines when the LEV reaches 

the trailing edge of the wing, yielding frequencies that synchronize the passing of the LEV 

with the formation of the TEV. Such appears to be the case at Src = 0.6 and in the process, the 

LEV forms a dipole with the TEV. Due to the positioning and orientation of these two 

vortices, their induced velocity is directed upstream. At Src = 0.9 the wing appears to recover 

somewhat, due to the delay of the leading edge vortex in reaching the trailing edge of the 

wing, significantly reducing the width of the wake. Consequently, the interaction between the 

leading edge and trailing edge vortices appears to contribute to the selection of optimal 

frequencies for lift. 

 

Figure 29 shows iso-surfaces of constant velocity magnitude and vorticity magnitude in 

volumetric measurements over the sAR = 2 flat plate wing. The three frequencies here are 

very close to peaks and troughs observed in the time-averaged lift measurements. Similarities 

can be observed with respect to the size and location of the leading and trailing edge vortices, 

at the midspan of the wing, when comparing the 2D and 3D measurements. At Src = 0.4, 

vortex dipoles are absent along the span, however, at Src=0.6 a vortex dipole is observed at a 
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further location inboard of the midspan, and evidently absent closer to the tip beyond the 

leading edge vortex. For Src = 0.8, there seems to be very little difference in streamline 

pattern inboard of the midspan location. Iso-surfaces of velocity magnitude illustrate that in 

the case of Src=0.6, a stronger interaction between the LEV and TEV is nonetheless observed 

close to the midspan of the wing.  

 

3.2. Main features of the vortical flows  

A comparison of the computed and experimental results [42,43] for the sAR = 1 rectangular 

wing plunging at Src = 0.65 is shown in Figure 30. The flow is reflected about the wing 

centerline (z = 0) with the assumption of lateral symmetry.  (Note that the calibration process 

near the end plate resulted in a small region with no data). The three-dimensional phased-

averaged flow structure is represented using the iso-surface of the Q-criterion (Qc/U∞ = 20).  

Overall good agreement is observed between experiments and computations in terms of the 

main flow features. As the wing plunges downward (Figure 30b-e), a leading-edge vortex is 

formed due to the increasing effective angle of attack.  This vortex is fairly coherent in the 

spanwise direction and is pinned at the front corners of the plate. The formation and 

strengthening of the tip vortices is also observed during the downstroke motion. The tip 

vortices join with the trailing-edge vortex (containing vorticity generated on the bottom plate 

surface) to form a vortex loop extending from one wing front corner to the opposing edge. 

These features are consistent with the vortical structures observed over finite wings 

previously [39,44-50]. 

 

In Figure 30, spanwise undulations of the leading-edge vortex are observed near the end of 

the downstroke (Figure 30f,g). The leading-edge vortex evolves into an “arch-type” structure 

similar to that found by Visbal [51]. The legs of the arch-vortex move downstream and 

towards the wing centerline. During the upstroke, the tip vortices appear to breakdown and 

the trailing-edge vortex is shed into the wake. For this relatively moderate-amplitude high-

frequency heaving motion, the arch-vortex remains over the wing well into the next plunging 

cycle. For instance, in Figure 30d, the arch vortex is still located near the mid-chord and does 

not reach the trailing edge until the initiation of the subsequent upstroke (Figure 30h). 

 

Figure 31 compares the evolution of the leading-edge vortex at Src = 0.8 for various wing 

planforms. The effect on the elliptical wing with b/c = 2 is interesting, the leading edge 

vortex undergoes a remarkable transformation, developing a distinct undulation (see phase c). 
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This strong undulation encountered on the elliptical wing also occurs for the rectangular wing 

at some other Strouhal numbers [42,43]. These examples demonstrate that the three-

dimensional vortical structures are quite complex. Calderon et al investigated how the 

spanwise undulations develop during the plunging motion by presenting the vortex core 

locations, using the Q-criterion as a core identification tool. Figure 32 reveals the progression 

of the undulation for both the elliptical and rectangular wing at Src = 0.75. Twelve phases in 

the cycle were used to observe the progression of the undulation with time. Apparently, the 

undulation exists quite early on in the cycle. Initially close to the tip of the wing, but as the 

cycle progresses, the undulation both amplifies and travels inboard. It is interesting to note 

that the undulation appears far more prominent for the rectangular wing. Its overall shape is 

also highly sensitive to Strouhal number. 

 

Figure 33 shows the vortical structures at higher Strouhal numbers of Src = 1.0-1.35 for flat-

plate wings. The higher Strouhal numbers appear to dampen any strong undulations across 

the span of the wings. We observe instead that the LEV anchor point remains quite close to 

the tip, and moves further away from the surface further inboard of the wing. The 

considerable vertical movement is consistent with a reduction in lift performance at the 

higher Strouhal numbers. A sudden dissipation of the leading edge vortex is observed near 

the root with increasing Strouhal number. (This is similar to the flat-plate airfoil case shown 

in Figure 23 and discussed in more detail). It is apparent that the breakdown of the leading 

edge vortex is dependent on the spanwise position. Whilst, the leading edge vortex is pinned 

to the surface of the wing, it remains largely coherent closer to the tip, but loses coherency 

inboard.  

 

Finally, we point out the formation of unusual vortex rings for flows with high Strouhal 

number. Both upper surface and lower surface tip vortices are generated at high Strouhal 

numbers due to the higher effective angles of attack. Figure 34 show that these tip vortices 

form a vortex ring. Although the iso-surfaces represent a constant Q-criterion value, colour 

maps have been superimposed to illustrate any variation in the streamwise component of 

vorticity,  ωx. In this way tip vortices formed during the downstroke and upstroke can be 

differentiated. In Figure 34, it is evident that the vortex ring consists of an interaction 

between lower and upper surface tip vortices. The comparison at various Strouhal numbers 

suggests that the phenomenon is associated with high Strouhal numbers. This vortex ring 

induces velocity in the spanwise (and outboard) direction. It should be noted that in the 
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previous work on pitching wings at high Strouhal number, wake vortices have been observed 

to undergo spanwise compression [47,48], for which tip vortices have an induced velocity 

directed towards the symmetry plane of the wing. The tip vortices described here seem to 

differ significantly from these studies.  

 

Another consequence of the tip vortices is that bifurcated/asymmetric wakes discussed in the 

two-dimensional case (Section 2.3) have not been observed for finite wings for the same 

conditions (Strouhal number and amplitude) [52]. In fact, there is no evidence that such 

asymmetric wakes exist for finite wings. This may be due to the fact that tip vortices shed 

during the upward and downward motion, and form vortex loops. The position of the tip 

vortices with respect to the wing (either above or below the wing) appears to enforce a 

boundary condition that prevents vortex loops from moving below or above the wing.  

 

3.3. Effect of leading-edge sweep 

For a wing with zero sweep angle, and at a high angle of attack in the post-stall region, there 

is only partial or intermittent (periodic) reattachment, when the wing oscillates. Complete 

flow reattachment is not possible due to the lack of spanwise removal of vorticity for zero 

sweep angle. There is evidence that moderate sweep angles are beneficial in achieving 

complete and steady reattachment. Potential of lift enhancement due to the flow reattachment 

by means of small-amplitude wing oscillations has been explored in various studies for 

nonslender delta wings [53-55]. Nonslender delta wings (sweep angle Λ ≤ 55°) have different 

flow topology at high angles of attack [56] compared to the slender delta wings (Λ ≥ 65°). 

The primary attachment line occurs on the wing surface outboard of the symmetry plane, 

even when vortex breakdown is near the apex, for the nonslender delta wings. Hence there is 

potential to manipulate the reattachment of the flow by means of wing oscillations [6]. Figure 

35 shows the dye flow visualization for a stationary and oscillating (small amplitude rolling 

motion) delta wing with a sweep angle of Λ = 50° at an angle of attack of α = 25°. It is seen 

that completely separated flow for the stationary wing becomes reattached on the wing 

surface with increasing Strouhal number. 

 

This effect is better illustrated in a cross-flow plane using laser fluorescence flow 

visualization as shown in Figure 36. The difference between the stationary and oscillating 

wing appears small for pre-stall incidences, however, flow reattachment is remarkable in the 
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post-stall angles of attack. The dashed line in the pictures shows the symmetry plane of the 

wing. The time-averaged velocity field in a cross-flow plane is shown in Figure 37 for an 

angle of attack of α = 25°. It is noted that this substantial effect has been achieved for small 

amplitude (1°) of rolling motion. Both pitch and roll oscillations are effective in the control 

and reattachment of the separated flow [55]. Experiments with various simple and cropped 

delta wings show that the reattachment process is similar for all nonslender wings. However, 

there appears to be a lower limit of sweep angle (Λ = 20°), below which the beneficial effect 

of leading-edge sweep diminishes. 

 

It is also noted in Figure 35 that the leading-edge vortices re-form at high Strouhal numbers, 

with axial flow and subsequent breakdown. While there is only reattachment at low Strouhal 

numbers, such as Src = 0.3, axial flow develops in the core of the vortices, and then breaks 

down further downstream at high Strouhal numbers. Wing oscillations therefore produce two 

separate effects: first is the reattachment at low Strouhal numbers. Second is the vortex re-

formation at high Strouhal numbers. Observations of reattachment and vortex re-formation 

for various nonslender wings suggest that there is an optimal range of frequencies, Src = 1 to 

2. This range of Strouhal numbers compares well with the dominant frequencies in the 

spectra of velocity fluctuations of the shear layer instabilities over the wings in the post-stall 

region.  

 

 

4. Lift enhancement of oscillating flexible wings 

Cleaver et al. [57,58] investigated the aerodynamics and fluid-structure interactions of 

flexible rectangular wings with aspect ratios of sAR = 1.5 and 3, which are clamped at the 

root and subjected to a harmonic plunging motion. As flow control and lift enhancement were 

the main objectives, post-stall angles of attack and small amplitude excitation at root were 

considered. For simplicity, wings with flat-plate cross-section were considered. An example 

is shown in Figure 38 for three wings with different flexibility at an angle of attack of 15°. It 

is seen that, up to Src ≈ 0.8, the time-averaged lift coefficients are the same for all wings. 

However, with increasing Strouhal number, the lift curves start to diverge. For the “highly 

flexible” wing, there is substantial lift enhancement compared to the rigid wing, which seems 

to increase with increasing Strouhal number. It appears that there is no optimal Strouhal 

number. For this wing, the natural frequency of the first bending mode was measured as Src = 
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1.5 in still fluid in the absence of free-stream flow. At the natural frequency, the lift 

coefficient of this wing is more than the double of that of the rigid wing. Therefore, detailed 

measurements of the wing deformation and phase-averaged flow were made at this Strouhal 

number, Src = 1.5, which is also in the realistic range for micro air vehicle applications as 

shown in Figure 1. 

 

The deformation of this wing is mostly in the bending mode with negligible twist. As the 

spanwise flexibility is dominant, the deformation of the wing tip is important to characterize 

the fluid-structure interaction. Figure 39 shows the variation of the amplitude ratio and phase 

angle of the wing tip as a function of Strouhal number. The tip amplitude increases with 

increasing frequency, revealing a local maximum around Src ≈ 1.3. The phase angle (with 

respect to the root) increases with increasing frequency. At the natural frequency (Src = 1.5), 

the tip amplitude is 1.84 times the value at the root, and the phase angle is around 90°. (This 

phase lag is similar to that found for maximum lift for a flexible plate tilted to horizontal and 

plunging at zero free-stream velocity [59]. These characteristics of the fluid-structure 

interaction are similar to those of a system with damping. The wing shape during the 

plunging cycle is represented in Figure 40. The mid-chord position is plotted as a function of 

the spanwise direction at different phases in the cycle. The solid lines are for the root moving 

downwards and dashed lines are for the root moving upwards. When moving down the wing 

tends to be deformed upwards, and when moving up the wing tends to be deformed 

downwards. This indicates that the tip motion lags behind the root motion. 

 

Figure 41 and 42 show the volumetric velocity measurements for the rigid and “highly 

flexible” wing at this Strouhal number. Iso-surfaces of the phase-averaged vorticity 

magnitude overlaid with spanwise vorticity reveal that the rigid wing experiences a LEV 

dipole formation (similar to the case of the flat-plate airfoil in Figure 23), whilst the flexible 

wing experiences a stronger convected LEV and tip vortex. While the LEV dipole for the 

rigid wing dissipates very quickly and does not contribute much to the lift, the much stronger 

LEV and tip vortex explain the significantly higher lift. Hence, the flexibility inhibits LEV 

dipole formation, resulting in a stronger convected LEV and stronger tip vortex, which also 

contributes to the lift for low aspect ratio wings. 
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The above mentioned studies are concerned with flow control using aeroelastic effects and 

are limited to small-amplitude high-frequency motions as discussed in the introduction. 

However, it is interesting to consider the effect of flexibility on lift in biologically inspired 

flows for which the kinematics is very different (much larger amplitudes and smaller 

frequencies). It appears that the effect of flexibility depends on the kinematics as well as the 

main direction of the flexibility (chordwise versus spanwise flexibility or a combination), and 

possibly on the density ratio. For an insect hovering motion, Zhao et al. [60,61] had 

essentially chordwise flexibility, and observed a reduction in the lift compared to the rigid 

wing. This can be easily understood by the negative camber produced by the chordwise 

flexibility. On the contrary, Nakata and Liu [62] observed an increase in the lift for a 

hovering hawkmoth, when a realistic structural model was used, which combined chordwise 

and spanwise flexibility. In this case, three-dimensional LEV was found to be enhanced on 

the flexible wing. For a very different kinematics similar to a bird flapping, Hu et al. [63] 

observed that the flexibility generally decreased the lift, even though a combination of the 

chordwise and spanwise flexibility was used, confirming the importance of the wing 

kinematics as well. A tilted flexible wing plunging at zero free stream at a low Reynolds 

number (based on the plunge velocity) of Re = 100 suggests enhanced lift and the maximum 

is found near the natural frequency of the wing [59]. This is in contrast with the lack of an 

optimal Strouhal number that maximizes the lift in the experiments of Cleaver et al. [57]. 

 

5. Lift enhancement of self-excited flexible wings 

5.1. Nonslender delta wings 

Previous sections considered active flow control approaches for which external energy is 

required to oscillate the rigid or flexible wings in order to achieve lift enhancement. In this 

section, we consider self-excited wing vibrations as a passive flow control approach. One of 

the examples in this category is flexible nonslender delta wings [64]. Figure 43 show that 

substantial lift enhancement is possible for thin flexible delta wings compared to the rigid 

ones. It is seen that this lift enhancement is observed for nonslender wings only. This passive 

flow control method achieves lift enhancement in the post-stall region and delays the stall. It 

was shown that time-averaged deformation does not contribute to the lift enhancement. Self-

excited vibrations in the anti-symmetric mode are essential for creating lift enhancement. It is 

therefore only observed for the full wing, and not for a half-model. Figure 44 shows the 

dominant frequency of the wing vibrations in the anti-symmetric mode as a function of sweep 
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angle. The inset shows a typical mode shape, which is the second anti-symmetric mode. The 

Strouhal number of the dominant frequency of structural vibration was on the order of unity, 

which also corresponds to the frequency of the shear layer instabilities.  

 

Vibration of the wing increases the energy of the vortices shed into the shear layer, which 

allows the transfer of momentum from the freestream, resulting in reattachment. This is 

shown in Figure 45 with the help of the near-surface time-averaged streamlines for the rigid 

and flexible wings. It is seen that flow reattachment downstream of the apex occurs for the 

flexible wing. There is no axial flow forming within the reattached region, which is similar to 

a three-dimensional conical separation bubble in the time-averaged sense. 

  

5.2. Membrane wings 

Membrane wings are preferred due to their inherent lightweight and ability to change shape 

for MAV applications [2]. This article is not intended to be an extensive review of the 

literature associated with membrane wings. In terms of the fluid-structure interactions and the 

main theme of this paper, we do not focus on the well-known ability of changing shape and 

camber of membrane wings [65]. Instead, we focus on the unsteady aspects of the fluid-

structure interaction and the effect on aerodynamic forces. Flow-induced vibrations of 

membrane airfoils [66,67] and low-aspect ratio wings [41,68] were investigated in recent 

studies. Amplitude and mode of the vibrations of the membrane depends on the relative 

location and the intensity of the unsteadiness created by the separated shear layer, indicating 

a strong coupling of the unsteady flow with the membrane oscillations. This is demonstrated 

in Figure 46, where the time-history of the locations of the shear layer and membrane are 

shown. Coupling of the membrane oscillations and separated shear layer is demonstrated with 

a high degree of correlation between the membrane displacement and location of the shear 

layer. However, this coupling may also increase the lift force fluctuations [69]. 

 

There is also evidence of coupling of the membrane oscillations with the vortex shedding for 

post-stall incidences. It is suggested that membrane vibrations occur at the natural 

frequencies close to the harmonics of the wake instabilities [41]. Figure 47 shows flow 

visualization and Reynolds stress measurements for post-stall incidences for a rigid (but 

cambered) airfoil and flexible membrane airfoil. The roll-up of large vortices and smaller 

wake for the flexible membrane suggest that flexibility might decrease drag. Delay of the 

stall and lift enhancement for membrane wings are well known. Some of these benefits 
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originate from the unsteady fluid-structure interactions. Hence this is a potential flexibility-

based passive flow control method. 

 

There is evidence that similar benefits exist for low-aspect ratio wings. Figure 48 shows a 

MAV with a membrane wing [70], which exhibits lift enhancement relative to a rigid one. 

This lift enhancement is observed in the post-stall region, increasing the maximum lift and 

delaying the stall. Separated flows over low aspect ratio wings are common and contribute to 

the lift substantially. Wing flexibility and self-excited membrane vibrations may therefore 

have a significant effect by influencing the separated flow and tip vortices, similar to leading-

edge vortices over nonslender delta wings. 

 

6. Thrust enhancement of flexible wings 

6.1. Chordwise flexibility 

Numerical models have indicated higher propulsive efficiencies for flexible airfoils [71,72], 

although the computational complexity of the situation often requires the assumption of either 

inviscid flow [73,74] or of a pre-defined flexing motion [75,76]. Recent studies have 

presented coupled viscous fluid-structure computations [77-80].  Experimentally, there are 

findings of higher thrust at zero freestream velocity [81,82], and of higher efficiency at non-

zero Reynolds numbers [83,84]. Thiria and Godoy-Diana [85] tested a self-propelled flapping 

wing with chordwise flexibility, mounted on a rotating arm. They reported enhanced thrust 

with flexibility. These studies of chordwise flexibility have been inspired by the structure of 

insect wings. It is well known that insect wings are not rigid, but have intricate variations in 

their stiffness [15]. Flexibility appears to be more important in the chordwise direction.  

Typically, chordwise flexural stiffness is 1-2 orders of magnitude smaller than spanwise 

flexural stiffness [86].  Also, insect wings have relatively stiff leading-edges, which was 

modelled with the shape shown in Figure 49 in the experiments of Heathcote and Gursul 

[81,84].  This shape is made of a rigid small airfoil at the leading-edge and a long flexible flat 

plate. The rigid leading-edge was subjected to pure periodic heaving motion.  The stiffness of 

the flexible section could be varied by using plates of different thickness.   

 

The most important dimensionless number in characterizing the effect of flexibility is the 

bending stiffness coefficient: 
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where (EI)x is the flexural stiffness in the chordwise direction and S is the wing surface area. 

This dimsnionless number is similar to the “effective stiffness” used by Kang et al. [80]. A 

different definition, E/ρbgc, has also been used by Zhu [87], where ρb is the foil density.  

However this parameter does not relate the aeroelastic forces to the fluid forces.  Hence, 

comparison of thrust and efficiency as a function of this parameter is not as meaningful in 

describing the fluid-structure interaction.  The values of (EI)x are given as a function of the 

chord length for various insects by Combes and Daniel [86].  As a typical value, we estimate 

the bending stiffness coefficient λx for Bombus and Manduca, by using the values of (EI)x 

and typical wing surface and forward flight speed [88] as λx ≈ 2 and λx ≈ 0.9, respectively. In 

the experiments of Heathcote and Gursul [84], this parameter was varied between 0.07 and 

260. 

 

The primary result of the chordwise flexibility is the generation of a pitch angle denoted as θ 

in Figure 49. Hence, due to the chordwise flexibility, a single-degree-of-freedom heaving 

motion generates a two-degrees-of-freedom motion of the combined heaving and pitching.  

An example of displacement-time plot for Re = 9,000, t/c = 0.56x10
-3

 (plate thickness-to-

chord ratio), and SrA= 0.34 is shown in Figure 49. The displacement of the leading and 

trailing edges, and of the difference between them, sLE-sTE , are plotted as functions of time. It 

is seen that the trailing-edge trails the leading-edge in phase, whereas sLE-sTE is seen to lead 

the leading-edge.  The difference sLE-sTE is related to the pitch angle.  Pitch amplitude, pitch 

phase angle and trailing-edge amplitude are all important parameters that affect the shedding 

of leading-edge and trailing-edge vortices.  

 

Figure 50 shows the variation of the circulation of the trailing-edge vortices and vortex lateral 

spacing of the reverse Karman vortex street that forms in the thrust producing wakes. These 

quantities are shown as a function of plunge amplitude for three airfoils with varying 

flexibilities. It is seen that the strength of the vortices is the smallest for the very flexible 

plate. The normalized circulation of the flexible plate is equal to or larger than the circulation 

of the rigid airfoil. Except for the smallest value of plunge amplitude tested, the lateral 

spacing differs with flexibility.  It is seen that the width of the reverse Karman street is largest 



29 

 

for the flexible plate. The combination of stronger vortices and wider jet implies enhanced 

thrust for the flexible case [81,84]. 

 

Figure 51 shows the vorticity field for a rigid, flexible, and very flexible airfoil for Re = 

18,000.  The leading-edge of the airfoil is moving upwards through the origin at this instant 

and the instantaneous shape of the airfoils is also shown for each case.  Clockwise vorticity is 

shown white, counter-clockwise vorticity black.  The highest thrust coefficient occurs for the 

airfoil of intermediate stiffness (middle row). It is seen that the vortices from the intermediate 

airfoil are stronger, and spaced further apart in the lateral direction than those from the stiffest 

airfoil. Although a large distance in the lateral direction separates the vortices from the least 

stiff airfoil, their strength is considerably lower than for either of the other two airfoils.  

Hence, for an airfoil with chordwise flexibility, amplitude and phase of the trailing-edge play 

a major role in determining the strength and spacing of the vortices.  Measured circulation of 

the shed vortices and lateral spacing between them (width of the induced jet) strongly depend 

on the airfoil flexibility. Direct force measurements confirm that there is an optimum airfoil 

stiffness for a given heaving frequency and amplitude [81].  Hence, this offers a possibility 

for vortex control with passive flexibility. 

 

The complete data set is represented as contour plots in Figure 52 for thrust coefficient and 

propulsive efficiency. Contours of thrust coefficient are drawn on a Pitch Phase Angle – 

Strouhal Number plane. The white curve indicates the optimum pitch phase angle (in terms of 

thrust) for a given Strouhal number.  The optimum pitch phase angle is observed to decrease 

as the Strouhal number increases.  Thrust peaks at pitch phase angles similar to those for rigid 

airfoils in coupled heave and pitch [84].  The corresponding plot for propulsive efficiency 

exhibits a peak in efficiency at a Strouhal number of SrA = 0.29. It is noted that this lies 

within the range of Strouhal numbers of 0.2 < SrA < 0.4 found in nature [89].  The optimum 

pitch phase angle is seen to be 100°±4°, consistent with the values found in studies of rigid 

airfoils in coupled heave and pitch, and those found in nature. It is noted that the angles found 

to optimize the thrust coefficient, both in the literature and in the present study, are higher 

than those found to maximize the efficiency. This is consistent with the previous observations 

that it is not generally possible to achieve maximum thrust and efficiency simultaneously. 
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6.2. Drag reduction 

Thrust generation by oscillating airfoils can be used for drag reduction. In particular, this can 

be achieved either actively by means of forced motion or passively through wave motion near 

a free surface. Bioinspired applications [90] as well as applications to low-speed vessels [91] 

are some of the possibilities. The passive scenario is the more interesting possibility because 

it requires no work input, and any hydrofoil passing through waves will experience the effect 

[92]. In essence, as the craft passes through waves, it will be subject to an oscillatory 

freestream due to both the oscillatory flow within the waves and also the motion of the vessel 

reacting to the waves. 

 

The passive scenario was modeled as a plunging foil near free surface computationally [93] 

and experimentally [94]. The drag reduction of a NACA 0012 foil plunging near a free 

surface was investigated as a function of depth from the surface and oscillation amplitude 

[94]. Phase-averaged vorticity during the plunging cycle is shown and compared for two 

depths in Figure 53. Free-surface waves, vorticity generation within the wave, and interaction 

with the foil vortices (this is visible in the phases (a) and (d)) are some of the main 

characteristics. It was also shown that there is significant wave formation at critical Strouhal 

numbers resulting in higher drag, and a substantial effect on leading-edge vortex formation. 

For depths greater than two chords, the free-surface has a negligible effect. 

 

The possibility of enhancing the drag reduction by means of small flexible plates attached to 

the trailing-edge was investigated by Cleaver et al. [95]. This configuration is shown in the 

inset of Figure 54. It was shown that the drag reduction depends on the length of the flexible 

plate, oscillation amplitude and the aeroelastic parameter. Simultaneous measurements of the 

deformation and the drag reduction revealed a relationship between the drag reduction, the 

aeroelastic parameter λ, and the amplitude of the flap angle δ, as shown in Figure 54. Here λ 

is defined as: 
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where LTED and t are the length and thickness of the flexible plate attached to the main wing. 
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Parts (a) and (b) show the results for two different lengths LTED = 0.2c and LTED = 0.3c, and 

the data of Heathcote et al. [84] (LTED = 0.66c) is also shown in part (c) for comparison. As 

expected, excessively flexible plates (small λ) result in decreasing drag reduction. It is 

interesting that maximum drag reduction highlights an optimal flap angle amplitude of 

around 10°-15°, and optimal flexibility on the order of unity, λopt = O(1). The magnitude of 

the drag reduction increases with increasing plate length. 

 

6.3. Spanwise flexibility 

Liu and Bose [96] studied the effect of spanwise flexibility on the flukes of an immature fin 

whale, using inviscid calculations. The phase of the flexing motion relative to the heave was 

found to be a key parameter in determining the thrust and efficiency characteristics of the fin.  

For insect wings the spanwise flexural stiffness is much larger than that the chordwise 

flexural stiffness, hence spanwise flexibility might not appear to be as important.  However, 

the length scale (wing span) is also larger than the chord length; hence the deformation in the 

spanwise direction is expected to be significant.  Effect of spanwise flexibility on the 

aerodynamics of heaving wings was recently investigated experimentally [97].  A schematic 

of the experimental setup is shown in Figure 55. Computational studies of these experiments 

were carried out by Chimakurthi et al. [78], Gordnier et al. [98], Shyy et al. [79] and Kang et 

al. [80]. A rectangular wing was subjected to pure periodic heaving motion near the root.  

Three wings (Inflexible, Flexible and Highly Flexible) with various spanwise flexural 

stiffness were tested.  

 

The proper dimensionless number to characterize the effect of spanwise flexibility is the 

bending stiffness coefficient: 
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where (EI)y is the flexural stiffness in the spanwise direction and b is the wing span.  The 

values of (EI)y are given as a function of the wing span for various insects by Combes and 

Daniel [86].  As a typical value, we estimate the bending stiffness coefficient λy for Bombus 

and Manduca, by using the values of (EI)y and typical wing surface and forward flight speed 

(Shyy et al., 2008) as λy ≈ 3.0 and λy ≈ 3.6, respectively.  It is interesting that the bending 

stiffness coefficients in the spanwise and chordwise directions are not very different in 
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magnitude even though the flexural stiffness is 1-2 orders of magnitude different.  In the 

experiments of Heathcote et al. [97], this parameter varied between 4.8 and 130 as a function 

of flexural stiffness and free stream velocity. 

 

The tip displacements of the three wings are plotted over a period of two cycles in Figure 55 

for Re = 30,000 and kG = πfc/U∞ = 1.82.  The wing tip curves lie to the right of the root 

displacement curve, indicating a phase lag. The plot illustrates the steep increase in tip 

amplitude moving from the Inflexible to the Flexible wing, with only a small increase in tip 

phase lag.  Hence, a degree of spanwise flexibility increases the effective amplitude of the 

heaving motion in each spanwise section.  This was found to be beneficial as long as the 

phase delay is not large.  Figure 56 shows the variation of the thrust coefficient as a function 

of dimensionless frequency, which indicates substantial enhancement for the flexible wing at 

high frequencies.  In this case, a moderately stronger trailing-edge vortex system was 

observed due to the increase in the effective heave amplitude [97]. These results offer the 

possibility of flow control with structural tuning for micro air vehicles. 

 

Introducing a far greater degree of spanwise flexibility, however, was found to be 

detrimental.  As it is also seen from Figure 55, there is a large tip phase lag for the Highly 

Flexible wing.  This large phase delay between the tip and root causes them to move in 

opposite directions for a significant portion of the cycle. This resulted in vorticity of opposite 

sign being shed simultaneously from the root and tip.  Figure 57 shows the vorticity patterns 

when the root is moving downwards through the origin. Figure 57(a) illustrates that while the 

tips of the Inflexible and Flexible wings move in the same direction as the root at this point in 

time, the tip of the Highly Flexible wing moves in the opposite direction. The effect on the 

flow field is shown in Figure 57(b).  Vorticity fields at six planes along the span are shown 

for each of the three wings.  To minimize the degree of overlap of the vorticity fields, the z 

axis is scaled differently to the x and y axes.  For the Highly Flexible wing (shown at the 

bottom) it is seen that the sense of vorticity shed at the root is opposite to that shed near the 

tip. 

 

Kang et al. [80] generalized the effects of spanwise and chordwise flexibility. It was 

suggested that a relationship between the thrust and maximum relative wing-tip deformation 

exists. It is also suggested that the maximum thrust is observed when flapping near the 
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resonance and the maximum efficiency is reached when flapping at about half of the natural 

frequency (this ratio is in the range of 0.33 to 0.6 in various studies according to [80]). On the 

other hand, Thiria and Godoy-Diana [85] suggest that a simple resonance cannot explain the 

observed behavior.    

 

7. Conclusions 

This review article details recent progress in the field of fluid-structure interactions as a 

means of low Reynolds number flow control. It describes a wide range of possible flow 

control methodologies, several of which show promise.   

 

For rigid airfoils plunging with small-amplitude, two mechanisms of lift enhancement have 

been identified: deflected jets and convected LEVs. Stable deflected jets form at high 

Strouhal numbers for pre-stall angles of attack. Deflected jets are caused by pairing of the 

clockwise and counter-clockwise TEVs to form dipoles. These dipoles are asymmetric in 

position and strength, and therefore self-advect at an angle to the freestream creating 

asymmetry in the flow field. This asymmetry can create very large lift coefficients, up to Cl ≈ 

6, even for zero degrees angle of attack. Deflected jets do not form at low Strouhal numbers 

due to insufficient vortex strength, nor at larger incidences due to overwhelming bias for a 

particular direction. Convected LEVs have been shown to be an effective means of lift 

enhancement for post-stall angles of attack. At low Strouhal numbers upper-surface LEVs 

form during the downward motion of the airfoil and then convect over the upper surface 

creating a low pressure region. As these LEVs are created by the plunging motion, the 

increase in lift coefficient is approximately proportional to the plunge velocity. This form of 

flow control is particularly effective when the plunge frequency equals the natural shedding 

frequency, its harmonics or subharmonics, and continues until high Strouhal numbers when a 

new mode of LEV behaviour is observed. In this new mode the LEV still forms during the 

downward motion, but remains over the leading-edge and is therefore destroyed through 

impingement with the upward moving airfoil. Even though this new mode is associated with 

low lift it does correlate very well with the switch from drag to thrust. Both of these 

mechanisms are strongly influenced by the choice of airfoil shape. For a flat plate airfoil, 

instead of stable deflected jets, the deflected jets periodically switch direction resulting in 

periodic changes in the direction of lift with a large period. Instead of convected LEVs, LEV 

dipoles form for Strouhal numbers greater than unity. These LEV dipoles propagate upstream 

and away from the airfoil surface resulting in very low lift. 
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For finite wings oscillating at post-stall incidence, similar lift-enhancing convected LEVs are 

observed, however the flow field is more complicated. The LEV anchors towards the tip on 

the wing’s upper surface. The tip vortex acts to drive this anchor point inboard towards the 

root creating an undulation in the LEV. This effect is most pronounced for the elliptical 

planform. The degree of lift-enhancement is diminished by decreasing aspect ratio. For 

certain cases interaction between the upper-surface and lower-surface tip vortex can result in 

tip vortex rings which expand in the spanwise direction. In addition, the tip vortex also 

prevents the formation of high-lift deflected jets previously observed for airfoils at pre-stall 

incidences. For nonslender delta wings small-amplitude roll and pitch oscillations can 

improve performance significantly. At low Strouhal numbers flow reattachment is observed; 

at higher Strouhal numbers vortex reformation is observed. The optimum is observed in the 

Strouhal number range: Src ≈ 1 – 2, which compares well with the dominant frequencies of 

the shear layer instability.  

 

For oscillating flexible wings appropriate spanwise flexibility can significantly enhance lift 

performance. For a Strouhal number of Src = 1.5, a semi-aspect ratio three flexible wing has a 

lift coefficient more than twice its rigid counterpart. This improvement is associated with 

significant spanwise deformation of the wing such that the tip lags the root by 90⁰ but with an 

amplitude 1.84 times larger. In terms of the flow field, the rigid wing exhibits weka vortical 

structures near the leading-edge, which are essentially the three-dimensional version of the 

LEV dipole observed for flat plate airfoils. Conversely the flexible wing exhibits a strong 

convected LEV and high lift.  

 

In these previous cases the root was actively plunged in forced oscillations and therefore 

requires power input. It is also possible to use fluid-structure interactions to passively 

enhance lift. For nonslender delta wings, self-excited anti-symmetric wing vibrations can 

significantly enhance lift in the post-stall region. The vibrations increase the energy of the 

vortices shed into the shear layer, which allows the transfer of momentum from the 

freestream, resulting in reattachment. Similarly membrane wings exhibit self-excited 

oscillations which can enhance lift in the post-stall region. Coupling between vortex shedding 

and the shear layer with membrane oscillations have been clearly demonstrated. It is believed 

that these may affect the separated flow and tip vortices in a similar manner to leading-edge 

vortices over nonslender delta wings. 
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Fluid-structure interaction can also be exploited for drag reduction / thrust enhancement. For 

plunging airfoils, appropriate chordwise flexibility can increase both thrust and efficiency. 

The most effective flexibilities are for elastic parameters on the order of unity. It is suggested 

that appropriate flexibility increases the spacing and circulation of the vortices in the reverse-

Karman vortex street, whereas excessive flexibility induces separation which diminishes 

TEV circulation. The maximum increase in the time-averaged thrust through flexibility can 

be well in excess of 100%. Similarly spanwise flexibility can improve thrust performance 

although the effect is not as pronounced. The spanwise deformation amplifies the root motion 

but with a slight phase lag. Due to this larger amplitude the trailing-edge vortices, and 

therefore the reverse-Karman vortex street, are moderately stronger, leading to increased 

thrust. A typical improvement is approximately 50% more than the rigid case. 
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Figure 1: Schematic variation of natural frequency of flow instabilities and wing structure 

as a function of wing span. Optimal Strouhal number of the flow instabilities is on the 

order of unity. The Strouhal number is defined based on the chord length and free stream 

velocity. Schematic variation of the frequency of flow instabilities is shown after the 

variations of wing chord and flight speed with wing span are taken into account. 
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Figure 2: High-lift mechanisms for an airfoil oscillating with small-amplitude: a) LEV for 

post-stall angles of attack, and b) deflected jets for pre-stall angles of attack. 
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Figure 3: Time-averaged lift coefficient for a NACA 0012 airfoil for α = 15°, Re = 10,000 

and different amplitudes. 
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Figure 4: Magnitude of time-averaged velocity for a/c = 0.050: a) stationary; b) Src = 0.5; c) 

Src = 1.0; d) Src = 1.5; e) Src = 2.0; f) Src = 2.5 and g) Src = 3.0. NACA 0012 airfoil for α = 

15°, Re = 10,000. 
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Figure 5: Phase-averaged vorticity at top (left) and bottom (right) 

of airfoil displacement for a/c = 0.050: a) Src = 1.0; b) Src = 1.5; 

c) Src = 2.0; d) Src = 2.5; e) Src = 3.0. a) through c) demonstrate 

mode-1, e) demonstrates mode-2, and d) demonstrates a mixed 

mode. Note the different scale for e). NACA 0012 airfoil for α = 

15°, Re = 10,000. 
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Figure 6: Phase-averaged vorticity, ωc/U∞, for both the upper and 

lower surface of a mode-2 flow field: a/c = 0.10 and Src = 1.75. 

Position in the cycle denoted by the diagram. NACA 0012 airfoil 

for α = 15°, Re = 10,000. 
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Figure 7: Mode diagram derived from phase-averaged flow fields measured by PIV. The 

mode-switch boundary is represented by the shaded area. NACA 0012 airfoil for α = 15°, 

Re = 10,000. 
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Figure 8:  Contour plot of modified lift coefficient normalized by the value for a stationary 

airfoil. Solid lines represent the mode-switch boundary from Figure 7. Dashed line 
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c) 

a) 
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d) 

Figure 9:  Normalized vorticity at top (left) and bottom (right) of motion with a/c = 0.15, for: a) 

SrA = 0.15 (Src = 0.50), b) SrA = 0.30 (Src = 1.00), c) SrA = 0.375 (Src = 1.25), d) SrA = 0.525 (Src = 

1.75). NACA 0012 airfoil for α = 15°, Re = 10,000. 
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Figure 10: Wake patterns with increasing Strouhal number. 

 



53 

 

  

Figure 11: Time-averaged lift coefficient for a/c = 0.15 and all angles of attack considered. 

Solid line represents increasing frequency, dashed line represents decreasing frequency with 

a starting position for α = 0° of hi = ±a, and for α > 0° hi = 0 (airfoil moving upwards). 

NACA 0012 airfoil, Re = 10,000. 
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Figure 12: Time-averaged velocity magnitude for a/c = 0.15, α = 0°, and: a) Stc = 1.500 - pre-

bifurcation, b) Stc = 2.025 – mode A, and c) Stc = 2.025 – mode B. For c) arrows show 

momentum flux component in the vertical direction for the boundaries of the control volume. 

NACA 0012 airfoil, Re = 10,000. 
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Figure 13: Phase-averaged vorticity contour plots for the same 

cases as in Figure 12. The points in the cycle are shown on the 

diagram. 
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MODE A MODE B 

Figure 14: Phase-averaged vorticity contour plots comparing the mode A flow field (left) at 

the bottom of the motion, and mode B flow field (right) at the top of the motion for a/c = 

0.15, Stc = 2.025 and: a) α = 0°, b) α = 5°, and c) α = 10°. NACA 0012 airfoil, Re = 10,000. 
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Figure 15: Boundary between drag / thrust producing and single / dual flow field for: α = 0° 

(square), α = 5° (triangle), and α = 10° (circle). Lines are power law curve fits. NACA 0012 

airfoil, Re = 10,000. 
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Figure 16: Effective angle of attack as a function of Strouhal number based on amplitude. 

Solid line: αeff,max, dashed line: αeff,min. Symbols denote the point of bifurcation as determined 

from the force measurements. NACA 0012 airfoil, Re = 10,000. 
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a) 

b) 

c) 

Figure 17: Vorticity contours showing the similarity of flow fields across different angles of 

attack for a/c = 0.150, Stc = 2.025 and: a) α = 5° - mode B, b) α = 10° - mode B, and c) α = 

15°. NACA 0012 airfoil, Re = 10,000. 
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Figure 18: Normalized circulation as a function of asymmetry parameter. NACA 0012 airfoil, 

Re = 10,000. 
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Figure 19: Circulation normalized by plunge velocity as a function of asymmetry parameter. 

NACA 0012 airfoil, Re = 10,000. 

 



62 

 

  

a) 

b) 

Figure 20: a) Time-averaged lift coefficient, and b) drag coefficient plotted against Strouhal 

number based on chord for the NACA 0012 airfoil (left column) and the flat plate (right column) 

at α = 15°.  Re = 10,000. 
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f) 

Figure 21: Time-averaged velocity magnitude for the NACA 0012 airfoil (left column) and flat 

plate (right column) for a/c = 0.025 and α = 15° at Strouhal numbers of: a) Src = 0, b) Src = 0.25, 

c) Src = 0.50, d) Src = 0.75, e) Src = 1.00, f) Src = 1.25, g) Src = 1.50, h) Src = 1.75, i) Src = 2.00, j) 

Src = 2.25, k) Src = 2.50, l) Src = 2.75, and m) Src = 3.00 . Re = 10,000. Continued on next page. 
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Figure 21 Continued 
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Figure 22: Phase-averaged vorticity contour plots at the top of the motion for the NACA 0012 

airfoil (left column) and flat plate (right column) for a/c = 0.025 and α = 15° at Strouhal numbers 

of: a) Src = 1.00, b) Src = 1.50, c) Src = 2.00, d) Src = 2.50, and e) Src = 3.00. Re = 10,000.  
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Figure 23: Phase-averaged vorticity contour plots for the 2D flat plate at twelve phases in the 

cycle for α = 15°, a/c = 0.15 and Src = 2.00. Re = 10,000.  
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Figure 24: a) Instantaneous cross-stream position of trailing-edge vortex as measured in phase-

locked measurements at h = -a, b) Instantaneous normalized circulation as measured in phase-

locked measurements at h = -a, c) Inset identifying clockwise and counter-clockwise vortex for 

two extreme cases, d) Period-averaged lift coefficient. Flat plate airfoil, a/c = 0.15, Src = 2.025, α 

= 0°, Re = 10,000.  
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Figure 25: Comparison of phase-averaged mode A flow fields for the NACA 0012 airfoil and flat 

plate airfoil. a/c = 0.15, Src = 2.025, α = 0°, Re = 10,000.  
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Figure 26: Time-averaged lift measurements of a plunging NACA0012 profile airfoil and sAR=2 

rectangular wing. a/c  = 0.15, α = 20º. 
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Figure 27: Comparison between the frequency at which lift peaks occur for the oscillating wing 

and the natural shedding frequency of the stationary wing. sAR = 2, a/c = 0.15. 
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Figure 28: Velocity magnitude and streamlines at the mid-span plane for the NACA0012 sAR=2 

wing taken at two phases for various Strouhal numbers, Re = 20,000, α = 20º,  a/c = 0.15. 
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Figure 29: Isometric views of iso-surfaces defined by constant velocity magnitude (|U|/U∞ = 0.15, 

0.3 and 0.45) and vorticity magnitude (|ω*| = 7, 15 and 25), superimposed by streamlines at three 

separate spanwise locations. Measurements are presented for the phase when the wing is at the 

botton of the motion. sAR=2 wing with flat plate cross-section, Re = 20,000, α = 20º,  a/c = 0.15. 
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Figure 30: A twelve-phase comparison between CFD and experimental results, for the sAR = 1 

rectangular wing (with flat-plate cross-section) at Src = 0.65, showing Qc/U∞ = 20. Re = 20,000, α 

= 20º, a/c = 0.15. 
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Figure 31: A comparison between different wing planforms at Src = 0.8. Iso-surfaces represent 

constant vorticity magnitude, |ω*| =7, 15 and 25 and colour maps represent spanwise vorticity. Re 

= 20,000, α = 20º, a/c = 0.15. 
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a)

b)

Figure 32: Vortex core tracking for a) rectangular and b) elliptical wings, at Src = 0.75, viewed 

from different angles. The wing corresponds to its location at the bottom of the cycle. Re = 

20,000, α = 20º, a/c = 0.15. 
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Figure 33: Isometric views of the vortices that surround the sAR = 2 flat-plate rectangular wing at 

four phases in the cycle for various frequencies, operating at Re = 20,000.  Iso-surfaces represent 

constant vorticity magnitude, |ω*| = 7, 15 and 25. α = 20º,  a/c = 0.15. 
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Figure 34: A side view of the Q-criterion iso-surfaces surrounding the sAR = 1 rectangular wing at 

t* = 0.75 for various frequencies: a) Src = 0.4, b) Src = 0.6, c) Src = 0.8, d) Src = 1.0, e) Src = 1.2 

and f) Src = 1.35.  Iso-surfaces represent constant Q-Criterion, Qc/U∞ = 15, 30 and 45 and colour 

maps represent streamwise vorticity. Re = 20,000, α = 20º, a/c = 0.15. 
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Figure 35: Flow visualization for a stationary and small-amplitude (∆φ = 5°) rolling wing.  α = 

25º, Λ = 50º. 
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α = 15° 

α = 20° 

α = 25° 

Stationary wing Oscillating wing 

Figure 36: Laser fluorescence flow visualization for stationary (Sr = 0) and oscillating wings (Sr = 

1.0, ∆φ = 1°), Λ = 50°.  
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Figure 37: Time-averaged velocity field in a cross-flow plane at x/c = 0.5 for (a) stationary (Sr = 0) 

and (b) oscillating wing (Sr = 1.5, ∆φ = 1°).  Λ = 50º, α = 25°. 
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Figure 38: Time-averaged lift coefficient as a function of Strouhal number. The wing natural 

frequency was measured as Src ≈ 2.2 for the flexible wing and Src ≈ 1.5 for the highly flexible wing. 

sAR = 3, Re = 10,000, α = 15º, a/c = 0.15. 
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Figure 39: Tip amplitude ratio (solid line) and tip phase lag (dashed line) against Strouhal number. 

The wing natural frequency was measured as Src ≈ 1.5.  sAR = 3, Re = 10,000, α = 15º, a/c = 0.15. 
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Figure 40: Midchord position of the highly flexible wing normalized by the root amplitude for ten 

selected instants oscillating at Src = 1.50. Solid line is for the root moving downwards; dashed line 

is for the root moving upwards. sAR = 3, Re = 10,000, α = 15º, a/c = 0.15. 
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Figure 41: Isosurfaces of phase-averaged vorticity magnitude (ωc/U∞ = 8, 16, and 24) overlaid with 

spanwise vorticity for the rigid wing oscillating with Src = 1.50. sAR = 3, Re = 10,000, α = 15º, a/c 

= 0.15. 
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Figure 42: Isosurfaces of phase-averaged vorticity magnitude (ωc/U∞ = 12, 18, and 24) overlaid with 

spanwise vorticity for the highly flexible wing oscillating with Src = 1.50. sAR = 3, Re = 10,000, α = 

15º, a/c = 0.15. 

 



86 

 

  

C
_
M
_
a
_
p
_
e
_
x

α

C
L

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Flexible

Rigid

Λ = 45°

α

C
L

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Flexible

Rigid

Λ = 40°

C
_
M
_
a
_
p
_
e
_
x

α

C
L

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Flexible

Rigid

Λ = 50°

C
_
M
_
a
_
p
_
e
_
x

α

C
L

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Flexible

Rigid

Λ = 60°

C
_
M
_
a
_
p
_
e
_
x

α

C
L

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Flexible

Rigid

Λ = 55°

Figure 43: Variation of time-averaged lift coefficient with incidence for flexible delta wings with 

varying sweep angle. 
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Figure 44: Comparison of Strouhal number of second anti-symmetric mode predicted by the finite 

element model with measured dominant frequency of wing vibrations. Inset to the right shows an 

example of the mode shape for a sweep angle of 50 degrees. 
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Figure 45: Near-surface time-averaged streamlines at α = 27° for rigid wing and flexible wing, Λ = 

50°. 
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Figure 46: Time history of the locations of the shear layer and membrane as measured at 0.75c (the 

inset shows the definition of these quantities); U∞=5 m/s, α = 13º. Flow is from right to left. 
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  Flexible Rigid 

Figure 47: Smoke flow visualization at different incidences for flexible and rigid membrane (top); 

magnitude of the Reynolds stress for flexible and rigid membranes. Flow is from right to left. U∞=5 

m/s. 
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Figure 48: MAV with membrane wing (top); lift coefficient versus angle of attack (bottom) [Lian et 

al. 2003, Progress in Aerospace Sciences]. 
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Figure 49: Schematic of the flexible airfoil heaving periodically in the vertical direction (top); 

leading-edge displacement, trailing-edge displacement, and deformation as a function of time; Re = 

9,000, Sr = 0.34 (bottom). 
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Figure 50: Variation of normalized circulation and lateral vortex spacing as a function of plunge 

amplitude; zero free stream velocity, Reynolds number based on plunge velocity is Re = 16,200. 
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Figure 51: Phase-averaged vorticity fields for three airfoils; Re=18,000, Sr=0.26; t/c=4.23x10
-3

 (top); 

t/c=1.13x10
-3

 (middle); t/c=0.56x10
-3

 (bottom). The thrust coefficient is greatest for the intermediate 

flexibility. 
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Figure 52: Contours of thrust coefficient and propulsive efficiency, in the Strouhal Number – Pitch 

Phase Angle plane. Black dots indicate experimental data points. The complete set of data is plotted 

(all stiffnesses, frequencies and Reynolds numbers). The solid white line indicates the peak thrust 

coefficient for a given Strouhal number. 
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Figure 53: Phase-averaged vorticity contour plots for a/c = 0.20, and Src = 0.30. Left column is d/c = 

0.50 and right column is d/c = 2.25. a top, b middle (down), c bottom, and d middle (up) of the 

motion. 
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Figure 54: Inset shows schematic of the foil with flexible plate at the trailing-edge. Contour plots of 

performance improvement due to flexibility as a function of elastic parameter and flap angle 

amplitude for a) LTED = 0.2c, b) LTED = 0.3c and b) LTED = 2c/3 from Heathcote et al. 
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Figure 55: Schematic of the spanwise flexible wing heaving periodically (top); tip displacements for 

rigid, flexible and highly flexible wings as a function of time, Re = 30,000, kG=1.82 (bottom). 
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Figure 56: Thrust coefficient as a function of Garrick frequency, Re = 30,000. 
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Figure 57: (a) Scale drawing of the Inflexible, Flexible, and Highly Flexible wings; (b) 

Corresponding vorticity fields downstream of the trailing edge; Re = 30,000, kG=1.82, t/T=1/4. 

Dimensionless vorticity contours plotted are -35, -25, -15, -5, 5, 15, 25, 35. 

 


