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ABSTRACT 19	
  

Most of the modelling of body dynamics in sports assumes that every segment is 20	
  

‘rigid’ and moves 'as a whole', although we know that uncontrolled wobbling masses 21	
  

exist and their motion should be minimized, both in engineering and biology. The 22	
  

visceral mass movement within the trunk segment potentially interferes with 23	
  

respiration and motion acts as locomotion or jumping. The aim of this paper is to 24	
  

refine and expand a previously published methodology to estimate that relative 25	
  

motion by testing its ability to detect the reduced vertical viscera excursion within the 26	
  

trunk. In fact, a respiratory-assisted jumping strategy is expected to limit viscera 27	
  

motion stiffening the abdominal content of the bouncing body. Six subjects were 28	
  

analysed, by using both inverse and direct dynamics, during repeated vertical jumps 29	
  

performed before and after a specific respiratory training period. The viscera 30	
  

excursion, which showed consistent intra-individual time courses, decreased by about 31	
  

30% when the subjects had familiarized with the trunk-stiffening manoeuvre. We 32	
  

conclude that: 1) the present methodology proved to detect subtle visceral mass 33	
  

movement within the trunk during repetitive motor acts and, particularly, 2) a newly 34	
  

proposed respiratory manoeuvre/training devoted to stiff the trunk segment can 35	
  

reduce its vertical displacement.  36	
  

 37	
  
 38	
  
 39	
  
  40	
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1. INTRODUCTION 41	
  

In biomechanical studies of human and animal motion and locomotion, the body is 42	
  

often simplified as composed by a number of rigid segments. From the location of 43	
  

those segments in 3D space, many important variables such as the body centre of 44	
  

mass (BCoM), the related internal and external mechanical work (Willems, Cavagna, 45	
  

& Heglund, 1995) are calculated to infer the characteristic dynamics of movement (A. 46	
  

E. Minetti, Cisotti, & Mian, 2011; Saibene & Minetti, 2003). Also, rotational 47	
  

parameters as joint net moments and segments inertial characteristics are based on the 48	
  

same “rigid body model”. Unfortunately, such assumption can lead to experimental 49	
  

inaccuracies (Gao & Zheng, 2008; Leardini, Chiari, Della Croce, & Cappozzo, 2005). 50	
  

For this reason specific wobbling mass models have been proposed (Gruber, Ruder, 51	
  

Denoth, & Schneider, 1998; Yue & Mester, 2002) to improve and to refine 52	
  

experimental results especially during impacts (Gunther, Sholukha, Kessler, Wank, & 53	
  

Blickhan, 2003; M. T. G. Pain & Challis, 2004), in the attempt to enhance the 54	
  

description of the complex mechanical behaviour of the human body by including the 55	
  

contribution of soft parts. This approach allows quantification of the soft tissue 56	
  

deformation and displacement as a consequence of the impact forces transmission 57	
  

along the body (Challis & Pain, 2008; Wakeling & Nigg, 2001) during walking 58	
  

(Chen, Mukul, & Chou, 2011), running (Boyer & Nigg, 2007) and jumping (Gittoes, 59	
  

Brewin, & Kerwin, 2006; Mills, Scurr, & Wood, 2011). Soft tissue and viscera 60	
  

motion can also affect the external work of level and gradient walking (DeVita, 61	
  

Helseth, & Hortobagyi, 2007; Zelik & Kuo, 2010) and of running economy and 62	
  

stability (Daley & Usherwood, 2010). It as even be proposed that a suitable muscle-63	
  

tuned control of that collateral effect could minimize the overall energy dissipation 64	
  

(Friesenbichler, Stirling, Federolf, & Nigg, 2011). 65	
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Thus, soft tissue and viscera movement has to be considered as a non-negligible 66	
  

factor in modelling optimization strategies and in experimental methodology, also in 67	
  

relation to the potential mechanical interaction with the rest of the body. For example, 68	
  

several authors have just pointed out the role of the visceral mass movement (within 69	
  

the trunk) in the locomotor-respiratory coupling during trotting and galloping in 70	
  

quadrupeds (Alexander, 1993; Bramble & Carrier, 1983; Simons, 1999). A similar 71	
  

condition occurs in humans, where some locomotor-respiratory coupling in running 72	
  

(McDermott, Van Emmerik, & Hamill, 2003) and walking (Rassler & Kohl, 1996) 73	
  

reflects the influence on the diaphragm function of the transient axial acceleration of 74	
  

abdominal viscera (Brown, Lee, & Loring, 2004; Loring, Lee, & Butler, 2001; Wilson 75	
  

& Liu, 1994). A very simple experiment illustrates this point: whoever tries to breath 76	
  

out-of-phase with respect to the spontaneous pattern during repeatedly jumping in 77	
  

place feels a great discomfort in achieving such a goal, mainly because respiratory 78	
  

muscles have to fight against the volume changes imposed by the jump-induced 79	
  

vertical accelerations of the visceral piston within its container. 80	
  

In addition to the coupling between a cyclic activity as locomotion and respiration, 81	
  

there are other movements where the visceral mass displacement can play a role. In 82	
  

sport activities as volleyball, basketball or athletics, where jumping efficacy or 83	
  

horizontal-to-vertical velocity conversion are crucial (Yu & Hay, 1996), it is 84	
  

conceivable that controlling the wobbling mass could potentially avoid discomfort 85	
  

and energy dissipation associated to adverse oscillations, by also lowering workload 86	
  

perception (Bonsignore, Morici, Abate, Romano, & Bonsignore, 1998) or enhancing 87	
  

the jump performance. In this respect training techniques have been suggested to 88	
  

reduce the amplitude of that movement (Caufriez, 2005; Kapandji, 1977; Lumb, 89	
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2005) or even to obtain a beneficial influence on BCoM trajectory during the motion 90	
  

cycle. 91	
  

A few years ago, a methodology using both 3D motion capture and platform 92	
  

dynamometry was proposed to infer the movement of the visceral mass during cyclic 93	
  

motor acts (A. Minetti & Belli, 1994). In short, by comparing the movement of the 94	
  

container (i.e. the rigid, multi-segment body) assessed by motion analysis, to the 95	
  

displacement of the ‘true’ BCoM, evaluated by double integration of the net vertical 96	
  

ground reaction force, it was possible to quantify the relative motion of the visceral 97	
  

mass within the trunk. 98	
  

The aim of this paper was to apply that method to test whether a novel jumping 99	
  

technique, based on stiffening both chest and abdominal walls by means of a 100	
  

particular respiratory manoeuvre, was associated to the expected reduction in the 101	
  

visceral mass vertical displacement within the trunk. That would represent the first 102	
  

experimental evidence that the effects of a voluntary pattern of respiratory muscles 103	
  

activation during jumping can be accurately measured with a non-invasive approach. 104	
  

 105	
  

2. MATERIALS AND METHODS 106	
  

2.1 EXPERIMENTAL PROTOCOL  107	
  

Six subjects (age 23.3 ± 2.5, trunk length 0.570 ± 0.110 m, weight 659.4 ± 53.0 N) 108	
  

were selected to jump in two different sessions on a force platform (model 9281C, 109	
  

Kistler, CH) measuring the vertical GRF synchronized with a six-camera motion 110	
  

capture system (Vicon MX, Oxford Metrics, UK). All the subjects were students from 111	
  

the Sport Science Faculty (University of Milan), chosen for their motor/jumping skill. 112	
  

The institutional ethics committee had approved all the methods and procedures, and 113	
  

subjects gave their informed consent prior to the experiments. 114	
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The platform signal was sampled at 1200 Hz, while the optoelectronic system 115	
  

captured frames at 400 Hz. The human body was modelled as a series of 14 linked, 116	
  

rigid body segments: 18 reflective markers (radius = 14 mm) were placed bilaterally 117	
  

on anatomical landmarks (Figure 1), nine on each side of the body (Mian, Thom, 118	
  

Ardigò, Narici, & Minetti, 2006), while 4 'technical-markers' were placed on the 119	
  

estimated centre of mass position of pectoral muscles, and right and left abdomen 120	
  

surface. Segment mass fraction and proximal distance of the centre of mass were 121	
  

taken from Dempster (Dempster, Gabel, & Felts, 1959).  122	
  

The experiment consisted of two sessions, which were made up of 5 trials containing 123	
  

15 consecutive jumps each, and spaced out by an adequate recovery period between 124	
  

trials. During the first session, the subjects jumped barefoot, with the hand on their 125	
  

hips, without any advice, to facilitate a natural jump execution. The second 126	
  

experimental session took place according to the same protocol after a training period 127	
  

of one month in which the subjects followed a specific learning progression devoted 128	
  

to jump in the “controlled” way (see below). Before the second session, the specific 129	
  

respiration technique and muscle contraction skills were tested on every subject: 130	
  

airflow was measured with a heated Fleisch pneumotachograph (HS Electronics, 131	
  

March-Hugstetten, Germany) connected to a facial mask and a differential pressure 132	
  

transducer (Validyne MP45, Northridge, CA). The activity of rectus and obliquus 133	
  

abdominis muscles was recorded via surface EMG (model ICP511, Grass 134	
  

Technologies, US), and the rectified EMG signal was filtered by 2th order low-pass 135	
  

Butterworth filter with cut-off frequency of 6 Hz (Clancy, Morin, & Merletti, 2002). 136	
  

Both the signals were sampled at 1200 Hz by a 16-bit analog to-digital converter, and 137	
  

stored on a desk computer. Volume changes (V) were obtained by numerical 138	
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integration of the digitized airflow signal, after calibration of the measuring apparatus 139	
  

by means of a graded cylinder and a metronome. 140	
  

 141	
  

2.2 ‘CONTROLLED’ JUMPING TECHNIQUE 142	
  

The training technique suggested in this study was designed according to the idea that 143	
  

by predominantly using ‘low’ diaphragmatic respiration, the visceral mass could be 144	
  

increasingly compacted towards the pelvis (Calais-Germain, 2005). With the spine in 145	
  

the physiological upright posture, a proper contraction activity of the abdominal 146	
  

wall/pelvic floor muscles avoids the forward displacement of the compressed viscera, 147	
  

improves the stiffness of the abdominal belt and, consequently, of the whole body 148	
  

structure (Le Boulch, 1973). This is achievable through a limited pelvis anteversion 149	
  

position, the preparatory low diaphragmatic inspiration (Figure 2a), and the 150	
  

simultaneous dorsum-lumbar filling caused by an intra-abdominal pressure increase, 151	
  

which is amplified by the forced expiration during the impact phases (Caufriez, 2005; 152	
  

Kapandji, 1977). Further details about the jumping/breathing technique and training 153	
  

can be obtained from co-authors LO and GA. In Figure 2b the EMG activity of rectus 154	
  

and obliquus abdominis muscles, together with the expired volume, are shown during 155	
  

normal and 'controlled' jumps. 156	
  

 157	
  

2.3 MECHANICAL MODEL 158	
  

The method presented by Minetti and Belli is based on a model made up of a 159	
  

container with mass M, incorporating a hidden mass m (the visceral content), which 160	
  

oscillates periodically in the vertical or horizontal direction. In line with the original 161	
  

paper, we considered just vertical motion but included an 'external' wobbling mass 162	
  



 8 

(me), representing mainly pectoral muscles and abdominal wall, as part of the 163	
  

container (see Figure 3). The new equation of motion is: 164	
  

   (1) 165	
  

which results from the system of equations: 166	
  

   (2)  167	
  

 168	
  

where Fv is the vertical component of GRF, fv and fe are vertical forces (unknown) 169	
  

exerted by the internal and 'external' masses, and y1, y2 and y3 are distances from 170	
  

ground level of the container, visceral mass and external mass. 171	
  

In literature, the magnitude of the internal visceral mass ‘m’ is estimated to be 16% of 172	
  

body mass (Martin, Janssens, Caboor, Clarys, & Marfell-Jones, 2003), while the 173	
  

external wobbling mass ‘me’ is evaluated to be 4% of body mass (Burkhart, Arthurs, 174	
  

& Andrews, 2008). 175	
  

 176	
  

2.4 DATA PROCESSING 177	
  

A bespoke written software (LABVIEW 8.6, National Instrument, US) was developed 178	
  

to calculate the visceral mass vertical displacement, as shown in the equation (3),  179	
  

 180	
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 181	
  

 (3) 182	
  

where “T” is the movement period and “t” the progressive time. 183	
  

This method and its algorithm were validated by loading in our program the kinetic 184	
  

data obtained from a simulation software (Visual Nastran 4D, MSC Software) of a 185	
  

known mechanical model (oscillating cylinder containing a sphere linked to the 186	
  

ceiling by a spring).  187	
  

The developed software automatically recognized and isolate every jump (jump cycle 188	
  

= time between two subsequent BCoM peaks), double integrated (trapezoidal rule) the 189	
  

net GRF, and downsampled displacement data from 1200 Hz to 400 Hz to match the 190	
  

sampling rate of the motion capture system. GRF signal was shifted backward to 191	
  

cover a time gap (=2.Δt/2=Δt) due to double integration, to synchronize these data 192	
  

with kinematic acquisition. Force signal and kinematic data were filtered forward and 193	
  

backward by a 3rd order zero-lag low-pass Butterworth filter with cut-off frequency of 194	
  

30 Hz (Bisseling & Hof, 2006). The frequency of the input signal (GRF), fGRF, was 195	
  

used to compare the dynamics of subjects’ jumps (Boyer & Nigg, 2007) and its value 196	
  

was estimated by using the input peak value of the Fv, and the average loading rate 197	
  

between the 20% and 80% of the impact phase (Gv,ave), as: 198	
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 199	
  

3. RESULTS 200	
  

The biomechanical model chosen in this work allows an accurate BCoM estimation in 201	
  

locomotion (Halvorsen, Eriksson, Gullstrand, Tinmark, & Nilsson, 2009), and its 202	
  

adoption in jumping shows an error comparable to the literature. Indeed, two 203	
  

validation indices were estimated during the flight phase of the jumps: AV1 (m/s2) 204	
  

index represents an estimation of the gravity constant acceleration (g), expected to be 205	
  

9.81 m/s2, while AV2 (m) index is defined as the root mean square error among the 206	
  

model estimated and matched ballistic centre of mass trajectory (Rabuffetti & Baroni, 207	
  

1999). Their overall mean values and s.d. are respectively AV1 (m/s2) = -9.836 ±	
 208	
  

0.027, AV2 (m) = 0.003 ±	
 0.002.  209	
  

In Table 1 the results of all the experiments are shown. The visceral mass (VMD), 210	
  

pectoral and abdomen external mass displacements (EMD) are represented as relative 211	
  

to the BCoM. The VMD, for all the subjects, measured during normal jumps (0.069 ± 212	
  

0.020 m), is significantly higher (p < 0.05, paired t-test), than in controlled jumps 213	
  

(0.053 ± 0.018 m). The average time courses of normal and controlled VMD are 214	
  

shown in Figure 4, while the mean individual curves of partecipants are displayed in 215	
  

Figure 5.  216	
  

For all the subjects, VMD shows a different pattern with respect to the container 217	
  

displacement both in normal and in controlled jumps (Figure 4), with a detectable 218	
  

phase shift between the curves.  A paired t-test shows no significant difference of time 219	
  

shift, both during the aerial (normal 50.6 ± 10.4 ms – controlled 49.3 ± 9.4 ms) and 220	
  

landing (normal 51.2 ± 14.4 ms - controlled 49.8 ± 8.8 ms) phases, confirming a 221	
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constant phase shift in both jumping techniques. A local maximum in visceral mass 222	
  

displacement  (𝑠 𝑡 = 0) is detectable at about 40-45% of jump period (time between 223	
  

two subsequent BCoM peaks) (Figure 4) and could be classified as a typical artefact 224	
  

of the foot impact on the force platform (Bisseling & Hof, 2006). The pectoral and 225	
  

abdominal EMD values show no significant difference in the two jumping techniques 226	
  

(paired t-test), but the pectoral EMD is significantly larger (p<0.05, paired t-test) than 227	
  

the abdomen EMD in both techniques (Figure 6). 228	
  

Pectoral and abdomen EMD show a different pattern with respect to BCoM 229	
  

oscillation and VMD. Finally, a non-significant difference of fGRF, jumping frequency 230	
  

(fjump), BCoM vertical excursion and contact time (tc) between the techniques (Table 231	
  

1), for all the subjects, reveals a comparable dynamic and kinematic of normal and 232	
  

controlled jumps.  233	
  

 234	
  

4. DISCUSSION 235	
  

The aim of this investigation was to test the effect of a combined respiratory/jumping 236	
  

strategy, properly designed for compacting viscera in the abdominal cavity, in 237	
  

limiting the vertical viscera motion during vertical jumps. Applying a previously 238	
  

developed method (A. Minetti & Belli, 1994), by concurrently using inverse and 239	
  

direct dynamics, we revealed that such a strategy reduced the vertical excursion up to 240	
  

30%, with potential increases of the overall stiffness of the human trunk/body.  241	
  

The VMD mean value measured was comparable with the literature: few quantitative 242	
  

analyses were conducted mostly anatomically (Beillas, Lafon, & Smith, 2009) or in 243	
  

slow-dynamic condition (Hostettler, Nicolau, Remond, Marescaux, & Soler, 2010), 244	
  

where vertical viscera motion was found to range between 0.03 m and 0.07 m.  Only 245	
  

Minetti & Belli reported a value related to submaximal repeated jumps (0.08 m), 246	
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while Boussuges and collaborators (Boussuges, Gole, & Blanc, 2009) set the limit of 247	
  

vertical displacement on maximal diaphragm motion (0.070 ± 0.011 m). 248	
  

Regarding to the ‘controlled’ technique execution, experimental evidences of higher 249	
  

abdominal muscle activation and comparable expiration volume (Figure 2) proved 250	
  

that a voluntary diaphragm activation can be inferred: the volume of expired air 251	
  

during the controlled jump sequence was small and comparable with the normal jump, 252	
  

despite of a higher activation of expiratory muscles (obliquus and rectus abdominis), 253	
  

implying that the diaphragm applied an opposite force to contrast the rising viscera. In 254	
  

terms of interaction between respiration and movement, our results show that muscles 255	
  

not directly involved in jumping could affect body dynamics, and stress their potential 256	
  

effect on motor acts where locomotor/respiratory coupling-ratios can occur. 257	
  

In the literature several authors have already speculated about frequency and phase 258	
  

coupling between respiratory and locomotory rhythms as affected by training 259	
  

(Bernasconi & Kohl, 1993) or workload (Rassler & Kohl, 1996), but no one provided 260	
  

evidences of voluntary control of internal body dynamics through specific respiration 261	
  

techniques, synchronously performed with body CoM oscillations. Only McDermott 262	
  

(McDermott, et al., 2003), by investigating the relationship between 263	
  

locomotor/respiratory coupling and training level, found that expert runners were 264	
  

particularly skilled in synching their coupling during speed changes. Therefore, from 265	
  

the energetic point of view, these interactions should be controlled to avoid energy 266	
  

losses resulting in some extra-mechanical work done by muscles, and the time delay 267	
  

calculated between BCoM and VMD curves in this investigation, reinforces this 268	
  

hypothesis. In fact, the ‘economy’ of bouncing locomotion, such as running or 269	
  

skipping, could be influenced and the mechanical external work calculated from 270	
  

kinematically measured CoM displacement could be refined by adding viscera 271	
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contribution (Daley & Usherwood, 2010). While this is supposed to be a small 272	
  

adjustment in normal subjects, any deviation from a mesomorphic body such as obese 273	
  

patients with relevant internal and external wobbling masses would involve a more 274	
  

substantial correction of the inverse dynamics approach. In this way the proposed 275	
  

respiratory strategy could give potential benefits in terms of movement performance 276	
  

and the non-invasive method described could be easily adopted. 277	
  

In terms of data processing the previous method (Minetti & Belli, 1994) has been 278	
  

refined: kinematic sampling frequency has been quadrupled (400 Hz) and chosen as a 279	
  

submultiple of the dynamometric signal to facilitate synchronization, the signals were 280	
  

accurately aligned (double integration time gap), and the mathematical model was 281	
  

validated with physics laboratory simulation software. Besides, the method still 282	
  

suffered of inaccuracies due to: 1) the rigid body model assumption (Cappozzo, Della 283	
  

Croce, Leardini, & Chiari, 2005; Chiari, Della Croce, Leardini, & Cappozzo, 2005) 284	
  

originating troublesome theoretical interpretations of the results: the discrepancy 285	
  

between the BCoM estimates from direct and inverse dynamics is considered as an 286	
  

indirect evidence of viscera motion, but this could be partially the results of 287	
  

experimental inaccuracies, 2) the “skin marker artefact” (Cappozzo, Catani, Leardini, 288	
  

Benedetti, & Croce, 1996), which particularly affects movements with considerable 289	
  

joint rotation as sit-to-stand (Kuo, et al., 2011) or locomotion (Akbarshahi, et al., 290	
  

2010) rather than vertical jumps with the arms blocked on the trunk, 3) the “soft tissue 291	
  

motion artefact” (Gruber, et al., 1998; Leardini, et al., 2005), which can be assessed 292	
  

by accelerometers (Kitazaki & Griffin, 1995) or by adding extra markers for the 293	
  

oscillating body parts, at the cost of a more complex biomechanical model. The 4 294	
  

'technical' markers introduced here, positioned on the estimated centre of mass of the 295	
  

most visible and bulky 'external' wobbling masses (pectorals and abdominal muscles), 296	
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allowed their movement to contribute to refine VMD estimation. This simplified 297	
  

approach does not completely compensate for the rigid body assumption inaccuracies 298	
  

and cannot separate viscera from limbs soft tissues contribution (Gunther, et al., 299	
  

2003), but it constitutes an acceptable trade-off between ideal VMD estimation and 300	
  

practical feasibility.  301	
  

A further variable affecting VMD and EMD measure is the muscle tuning during 302	
  

jumping: the ‘controlled jump’ is comparable with a tuned landing thanks to an higher 303	
  

pectoral and abdominal muscles activation and could decrease the absolute and 304	
  

relative acceleration of the soft tissue compartments (Boyer & Nigg, 2006). Even 305	
  

though a further frequency analysis of external masses acceleration signal (not 306	
  

measured in this work) could reveal soft tissues vibrational changes between the 307	
  

techniques, pectoral and abdominal EMD are not significantly different (Table 1), and 308	
  

their patterns are similar in normal and controlled jumps (Figure 6). This is probably 309	
  

due to similar pectoral-muscle activation in both techniques, and to a peculiar muscle 310	
  

tuning effect on abdominal soft tissue: actually its vibration could be less influenced 311	
  

by muscle contraction than other soft tissues (upper/lower limbs) because of its 312	
  

anatomical characteristics and local physical constrains.  313	
  

To date, soft tissues influences has already been investigated in locomotion (DeVita, 314	
  

et al., 2007; Zelik & Kuo, 2010) and in jump landing (Gittoes, et al., 2006; M. T. Pain 315	
  

& Challis, 2006), though its role still needs to be ultimately assessed. In this work, 316	
  

even if there are several limitations, we compared two refined estimations of the most 317	
  

influent soft tissue (viscera) motion in a simple motor task, repeatedly executed in the 318	
  

same experimental condition. Indeed, subjects executed comparable jumps 319	
  

considering the jumping frequency (fjump), contact time (tc), frequency of input force 320	
  

(fGRF) and the performance (body CoM vertical excursion). These evidences help to 321	
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minimize systematic and random errors, showing a de-noised measure of viscera 322	
  

vertical excursion.  323	
  

In conclusion, the combination of the inverse/direct dynamics method to measure 324	
  

viscera motion and a novel respiration assisted jumping technique reveals, for the first 325	
  

time, that the vertical displacement of the abdominal wobbling mass can be 326	
  

modulated also in dynamic condition. Moreover, it has been demonstrated that the 327	
  

accuracy of this refined method is adequate to detect, with a non-invasive approach, 328	
  

the effects of internal forces on the kinematic of the visceral mass and could be 329	
  

adopted to evaluate those their impact in sport biomechanics and locomotion 330	
  

energetics. The results and the proposed jumping strategy could then constitute a pre-331	
  

requisite for further studies assessing the potential performance enhancement in a 332	
  

variety of motor acts. 333	
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Figure 1: Human body modelled with 22 reflective markers and 14 segments: head 486	
  

(1), trunk (2), abdomen (4), right upper arm (5), left upper arms (6), right fore arm 487	
  

(7), left fore arm (8), right thigh (9), left thigh (10), right shank (11), left thigh (12), 488	
  

right foot (13), left foot (14), and pectoral muscles (3). 489	
  

Figure 2: (a) Mechanism used to generate an intra-abdominal pressure that compacts 490	
  

the visceral mass: the subject after a combined deep diaphragmatic inspiration and 491	
  

contraction of the abdominal “press” increases the intra-abdominal pressure also 492	
  

executing progressive and short exhalations. The black arrows indicate: (1) The 493	
  

lowering of the diaphragm that pushes on the viscera during inspiration (downward-494	
  

pointing white arrow); (2) The musculature of the abdominal “press”, which 495	
  

contraction contributes to the elevation of intra-abdominal pressure (upward-pointing 496	
  

white arrows). (b) On the left the overall mean (normalized in respect of the maximal 497	
  

contraction value) and s.d of all the subjects, of rectus and obliquus abdominis muscle 498	
  

activation, in normal (light-grey) and controlled (dark-grey) jump are shown. The 499	
  

rectus and obliquus muscle activation is significantly higher in controlled jumps (* = 500	
  

p < 0.01). On the right the overall mean and s.d., of the expired volume (V) during a 501	
  

jump are shown. The expired volume is not significantly different between the 502	
  

techniques. 503	
  

Figure 3: Model used for the estimation of visceral mass displacement: M is the 504	
  

container mass, m the internal visceral mass, and me is the external mass, while y1, 505	
  

y2 and y3 are distances from ground level and s=y2-y1. The whole system oscillates 506	
  

vertically and exerts a vertical ground reaction force Fv, while internal and external 507	
  

mass exerts a force fv and fe respectively on the container. 508	
  

Figure 4: The overall mean curve of VMD (visceral mass displacement) in normal 509	
  

(grey solid line) and controlled (grey dashed line) jumps, and overall mean curve 510	
  

(controlled and normal) of body CoM (black solid line) are shown. All the curves are 511	
  

time-normalized with single jump duration (0-100%). 512	
  

Figure 5: The mean of all the trials curves (5 trial of at least 15 jumps for every 513	
  

subject), presented with black bold line, and their variability (s.d. of all the trials 514	
  

curves), presented with light grey lines, are shown for both techniques (normal and 515	
  

controlled) for each subject (S1, S2, S3, S4, S5, S6). The curves are time-normalized 516	
  

with single jump duration. 517	
  

Figure 6: The overall mean curve of pEMD (pectoral external mass displacement) in 518	
  

normal (black solid line) and controlled (black dashed line) jumps, the overall mean 519	
  



 22 

curve of aEMD (abdominal external mass displacement) in normal (grey solid line) 520	
  

and controlled (grey dashed line) jumps, and the overall mean curve (controlled and 521	
  

normal) of body CoM (black dotted line). All the curves are time-normalized with 522	
  

single jump duration (0-100%). The pEMD and aEMD, for all the subjects, are not 523	
  

significantly different in the two techniques, but the pEMD is significantly higher (p < 524	
  

0.05) than aEMD both in normal and in controlled jumps. 525	
  

Table 1: The mean and s.d. values of (1) visceral mass displacement (VMD), (2) body 526	
  

CoM displacement (CoM), (3) pectorals (overall mean of right and left) external mas 527	
  

displacement (pEMD), (4) abdomen (overall mean of right and left) external mass 528	
  

displacement (EMD), (5) estimated input frequency (fGRF), (6) jumping frequency 529	
  

(fjump) and (7) contact time (tc) in “normal” and “controlled” jumps are presented for 530	
  

every subject.  531	
  



 

JUMP 

type 
Subject N  

VMD 

(m) 

CoM 

(m) 

pEMD 

(m) 

aEMD 

(m) 

fGRF 

(Hz) 

fjump 

(Hz) 

tc 

(s) 

Normal S1 76 
Mean 

SD 
0.073 
0.015 

0.209 

0.019 

0.030 

0.008 

0.016 

0.007 

7.13 

0.69 

2.40 

0.02 

0.106 

0.003 

 

 

 

 

 

 

S2 70 
Mean 

SD 
0.089 
0.005 

0.347 

0.049 

0.042 

0.009 

0.026 

0.008 

6.79 

0.51 

1.66 

0.07 

0.114 

0.003 

S3 85 
Mean 

SD 
0.059 
0.005 

0.168 

0.007 

0.031 

0.010 

0.010 

0.006 

8.42 

0.30 

1.96 

0.13 

0.101 

0.003 

S4 85 
Mean 

SD 
0.056 
0.008 

0.216 

0.026 

0.029 

0.008 

0.018 

0.008 

7.67 

0.53 

2.09 

0.06 

0.109 

0.006 

S5 71 
Mean 

SD 
0.102 
0.005 

0.311 

0.013 

0.040 

0.008 

0.024 

0.009 

7.21 

0.33 

1.82 

0.03 

0.098 

0.001 

S6 90 
Mean 

SD 
0.051 
0.006 

0.137 

0.008 

0.049 

0.010 

0.041 

0.010 

6.76 

0.67 

2.65 

0.10 

0.067 

0.002 

All 477 
Mean 

SD 

0.069 

0.020 

0.219 

0.075 

0.037 

0.009 

0.023 

0.011 

7.35 

0.79 

2.09 

0.34 

0.099 

0.015 

Controlled S1 80 
Mean 

SD 

0.051 

0.008 

0.161 

0.011 

 0.028 

 0.009 

0.012 

0.005 

7.95 

0.46 

2.37 

0.03 

0.100 

0.003 

 

 

 

 

 

 

S2 72 
Mean 

SD 

0.078 

0.007 

0.321 

0.029 

0.026 

0.008 

0.026 

0.008 

6.88 

0.41 

1.81 

0.03 

0.104 

0.002 

S3 92 
Mean 

SD 

0.049 

0.006 

0.171 

0.010 

0.021 

0.009 

0.012 

0.009 

8.28 

0.53 

2.28 

0.29 

0.101 

0.002 

S4 86 
Mean 

SD 

0.046 

0.009 

0.242 

0.036 

0.031 

0.010 

0.013 

0.009 

7.59 

0.56 

2.36 

0.03 

0.096 

0.001 

S5 69 
Mean 

SD 

0.076 

0.010 

0.306 

0.013 

0.040 

0.011 

0.019 

0.008 

7.02 

0.25 

1.80 

0.02 

0.103 

0.004 

S6 93 
Mean 

SD 

0.030 

0.004 

0.155 

0.011 

0.046 

0.010 

0.038 

0.010 

6.78 

0.68 

2.74 

0.03 

0.069 

0.001 

All 492 
Mean 

SD 

0.053 

0.018 

0.217 

0.069 

0.032 

0.009 

0.020 

0.010 

7.46 

0.77 

2.21 

0.35 

0.097 

0.012 
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