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Abstract 

 

The spinning cloth disc reactor (SCDR) is an innovative enzymatic reaction intensification 

technology. The SCDR uses centrifugal forces to allow the spread of thin film across the 

spinning disc which has a cloth with immobilized enzyme. Research has shown this geometry 

promotes accelerated reactions due to high mass transfer rates and rapid mixing. In this study, 

the flow regimes in the SCDR were characterized by means of residence time distribution 

(RTD) analysis and visual study tracking dye staining.  

RTD analysis showed that the flow pattern on the spinning disc with/without cloth became 

closer to plug flow with an increase of spinning speed and flow rate. With the cloth, the 

equivalent number of tanks-in-series was at least 2 times lower than that without cloth at 

different spinning speeds and flow rates, indicating the flow is better mixed, in contrast to the 

typical plug flow found for conventional spinning disc reactor. Two flow regimes were 

observed in the visual study with the dye spreading within the spinning cloth: radial finger-

like flow and concentric flow. At low spinning speeds and high flow rates, the flow was in 

the form of a few random and uneven radial streams, with the zone between these streams 

free of dye. At higher spinning speeds and lower flow rates, this uneven radial flow was 

replaced by an even concentric flow. Using tributyrin hydrolysis as a model reaction, a SCDR 

reactor mathematical model based on perfectly mixed model was developed to simulate the 

variation in SCDR conversion with spinning speed and flow rate, and the model fitted well 

with the experimental data. The overall results indicate the SCDR is neither a conventional 

spinning disc reactor nor a rotating packed bed, but a separate class of spinning disc-type 

reactor for process intensification. This new reactor class is called ‘spinning mesh disc 

reactors’ (SMDRs), enabling any type of mesh (not just cloths) with an unbound top surface 

on a spinning disc to be included. 
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1. Introduction 

Process intensification is considered as a promising development path for the chemical 

process industry, aiming to improve production efficiency, lower cost, enhance safety and 

reduce environmental pollution [1]. The spinning disc reactor (SDR) is one such process 

intensification technology, which consists of a rotating disc with a jet of liquid impinging 

onto the center of top surface of the disc. The centrifugal force of the spinning disc forces this 

liquid to form a thin and highly sheared film on top of the rotating surface, leading to rapid 

mixing and short residence times. Research has shown that the heat and mass transfer in such 

devices can be significantly enhanced by the fluid dynamics within these films [2-4]. The 

SDR has been applied in a wide range of chemical reactions such as polymerization [5], 

nanoparticle preparation [6-9], photocatalysis [10, 11], and transesterification in biodiesel 

synthesis [12]. The rotating packed bed (RPB) reactor, as a novel multi-phase contactor, is 

another reactor type which also uses centrifugal acceleration as driving forces to intensify 

mass transfer rate [13, 14]. In the RPB, the liquid sprays on the inside of the packed bed and 

spreads outwards by the centrifugal force. The gas is introduced from the outside and flows 

inward (counter-currently) to the liquid. The RPB has been reported to use in distillation [15], 

nanofibers and nanospheres preparation [16, 17], photocatalysts preparation [18], adsorption 

[19-21] and catalytic reactions [22].  

Recently, the SDR concept has for the first time been introduced to immobilized enzymatic 

reactions as a novel rotating reactor system: the spinning cloth disc reactor (SCDR). Previous 

work has proven the feasibility of the SCDR in tributyrin emulsion hydrolysis, and its high 

efficiency in terms of reaction rates, conversion and stability was highlighted in comparison 
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to the conventional batch stirred tank reactor (BSTR) [23]. Based on the principles of the 

SDR, the SCDR also uses centrifugal forces to allow the spread of a thin film across a 

spinning horizontal disc; however this disc has a cloth (with thickness of 1.5 mm) with 

immobilized enzyme resting on top of it. The SCDR therefore produces a flow of thin film 

both on top of, as well as through the cloth, thus providing more effective surfaces for 

reaction. The cloth is critical to increasing the potential of immobilized enzymes in a variety 

of reactions, since it should produce accelerated reaction rates due to high mass transfer rates 

and rapid mixing on top of and within the cloth, with the cloth potentially helping protect the 

attached enzymes from excessive hydrodynamic forces, as well as providing an additional 

structure that can promote mixing and turbulence at the appropriate spinning speeds and flow 

rates. Therefore, the SCDR has characteristics of both the SDR and RPB: the cloth spins on 

the disc and is fed liquid like an SDR, but the liquid flow is interrupted by the cloth mesh, 

giving the flow on the disc characteristics that may be more like that in a RPB. Consequently 

both systems will be used in the analysis of the SCDR in this work. 

The most popular techniques adopted in characterizing the flow regimes in the SDR and the 

RPB are visual quantification studies (through taking images with a conventional camera or a 

high speed camera) and residence time distribution (RTD) techniques. 

For the SDR, it has been reported that several flow regimes can form on the spinning disc: 

smooth waves, concentric waves, spiral, irregular waves and film break up, which change 

with the spinning speeds, flow rates and physical property of liquid [24, 25]. Boiarkina et al. 

[4, 10] observed the boundaries of different water waves with a high speed camera at 

spinning speeds of 50- 400 rpm and flow rates of 5-35 mL s
-1

. Mohammadi et al. [26] found 

that the RTD in SDR became narrower as the increase of spinning speeds and flow rates, 

implying the flow behavior became closer to ideal plug flow.  
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For the RPB, liquid is usually assumed to flow as thin films on the packing surface for the 

simplicity of modeling purpose. However, visual observations have indicated that liquid is 

travelling through the packing in uneven rivulets and droplets rather than film flow, which 

causes a maldistribution of liquid and hence decreases the overall efficiency of the reactor [27, 

28]. 

The flow properties on a spinning disc have been studied with both RTD and visual 

techniques [10, 26], however, the introduction of the cloth will affect the flow properties, and 

the reported results of flow regimes in the SDR therefore may not be applicable to the SCDR. 

Consequently, the flow regimes in the SCDR need to be characterized to get a more in-depth 

understanding of flow characteristics and patterns to allow for better process control as well 

as reactor modeling and design. As such, the aim of this research is to characterize the flow 

regimes in the SCDR by means of RTD analysis and visual studies with dye, for a range of 

spinning speeds and flow rates. These results will be compared to the SDR and the RPB, and 

used to further model the reaction rate and conversion in the SCDR with respect to spinning 

speeds and flow rates using tributyrin hydrolysis as a model reaction and immobilized lipase 

on woolen cloth as the biocatalyst.   

2. Materials and methods 

2.1. Materials 

Unbleached organic woolen cloth (color: natural cream, thickness: 1.5 mm) was purchased 

from Treliske (Otago, New Zealand). Amano lipase derived from Pseudomonas fluorescens, 

polyethyleneimine (PEI), tributyrin (98 %), tritonX-100, coomassie brilliant blue G 250, 

sodium bicarbonate and sodium carbonate were obtained from Sigma-Aldrich (New Zealand). 

Glutaraldehyde (GA) 25 % (w/v), sodium dihydrogen phosphate, disodium hydrogen 

phosphate, hydrochloric acid and potassium chloride were purchased from Unilab (ECP, New 
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Zealand). Hydrogen peroxide 30 % (v/v) was obtained from Scharlau (Thermofisher, New 

Zealand). Bovine serum albumin was obtained from Gibcobrl (Life Technologies, New 

Zealand). The water color dyes (Reeves, UK) were obtained from a local market. All 

solutions were prepared using deionized water (produced from Milli-Q Gradient A10 made 

by Millipore). 

2.2. Preparation of immobilized lipase on woolen cloth 

The main immobilization procedure has been described in detail by Feng et al. [29]. The 

woolen cloth was cut into circular pieces with a diameter of 250 mm, weighing 16 g. First, 

the woolen cloth was pretreated with a solution of 30 mL L
-1

 hydrogen peroxide (30 %) and 2 

g L
-1

 sodium silicate at pH 9 (0.1 M Na2CO3, NaHCO3 buffer) at 55 °C for 70 min. The 

bleached woolen cloth was then dipped in 500 mL 2 % PEI solution at pH 8 (adjusted with 

hydrochloric acid) for 2 h at room temperature and rinsed with deionized water. The cloth 

was thereafter soaked in 1 L 2 mg mL
-1

 lipase solution (0.1 M phosphate buffer, pH 6) for 24 

h, followed by immersion in 500 mL 0.5 % (w/v) GA solution (0.1 M Na2HPO4, NaH2PO4 

buffer, pH 6) for 10 min to achieve crosslinking. The cloth was finally washed with deionized 

water until no free enzyme was detected in the washed solution. The enzyme loading was 

46.8 mg per dry gram of cloth determined by measuring the protein content of the enzyme 

solution with the Bradford method before and after immobilization [30]. The enzyme activity 

was 178.3 U per dry gram of woolen cloth determined by using the tributyrin emulsion 

hydrolysis method previously described by the authors [29].  

2.3. Equipment 

The SCDR mainly consists of a liquid feeding system, an overhead stirrer connected to a disc, 

a vessel for catching, containing and funneling liquid from the disc, and a reactant solution 

storage vessel, as shown in Fig. 1a. The cloth supporting spinning surface in this SCDR was a 
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Perspex disc with 250 mm in diameter, driven by a variable speed motor (Glas-Gol, US). The 

woolen cloth with immobilized lipase was rested (with no means of fastening) on the disc as 

shown in Fig. 1b. This spinning disc was enclosed in a steel funnel-shaped chamber 300 mm 

in diameter and 210 mm deep, which collected the liquid as it spun off the disc and channeled 

it to the storage vessel. Further details can be found in our previous publication [23]. 

The tributyrin emulsion was prepared by adding tributyrin and triton X-100 to the desired 

volume of phosphate buffer (0.1 M, pH 7) with a final concentration of 10 g L
-1

 and 3.5 g L
-1

, 

respectively. The mixture was then emulsified with a motor homogenizer (IKA T25 digital, 

Japan) at 12,000 rpm for 5 min. The reaction was performed at 45 °C for 4 h. During the 

hydrolysis, sodium hydroxide was added into the reactant vessel with a pH stat to keep a 

constant pH and the data was collected continuously with a PC via the Tiamo 1.3 program 

(Metrohm, Switzerland). Reaction conversion was correlated to moles of sodium hydroxide 

consumed by the reaction according to Eq. 1: 

(%) 100
moles of free butyric acids

Conversion
moles of original esters in tributyrin

 

     

2.4 RTD study 

A schematic diagram of the equipment set-up for the RTD study is shown in Fig. 1a. The 

cloths with immobilized lipase prepared as described in Section 2.2 were used for RTD study. 

The experiment was carried out at 20 °C. A solution of 0.5 M KCl was used as a tracer and 

deionized water was used as a test fluid. The tracer conductivity and concentration showed a 

good linear relationship for a concentration range between 0.005 and 0.5 M. The RTD could 

therefore be directly related to the conductivity of the tracer. A conductivity probe (Mettler 

Toledo, Switzerland) was placed in a small vessel (height of 37 mm, volume of 17 mL, and 

liquid holdup volume of 13.5 mL with conductivity probe in it) which collected the outlet 

(1) 
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solution continuously and the data was logged to a PC every second with LabX direct 

software (Mettler Toledo, Switzerland).  

Firstly, the deionized water was fed to the reactor at the desired spinning speed and flow rate 

until the reading of the conductivity meter in the outlet was stabilized and close to that of 

deionized water. Then, 1 mL of KCl was injected quickly to the center of the spinning disc 

with a syringe. The change in concentration in the outlet was measured as a function of time.  

The analysis method used has been taken from literature [26, 31]. For the pulse injection of 

the tracer, the distribution density function of the residence time E (t) can be calculated from 

Eq. 2 and it describes in a quantitative manner how much time different fluid elements have 

spent in the reactor. 
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The mean residence time can be obtained as follows: 
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The variance of RTD, σt
2
, stands for the discrete level. A lower σt

2 
means a narrow 

distribution and it can be obtained from Eq. 4:                   
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The dimensionless forms of t, σt
2
, E (t) can obtained from Eq. 5 to 7                   

t

t
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The number of tanks-in-series (N) is widely used to indicate if a flow is close to plug flow or 

not. The dimensionless distribution density function E (θ) can be obtained as follows: 

 
1( )

1 !

N
N NN

E e
N

   


 

N can be calculated as follows: 

2

1
N




 

As can be seen from Eq. 9, N is reversely related to the dimensionless form of the variance 

σθ
2
, so N should be as be as high as possible to give an ideal plug flow (N>50 is usually 

considered as small deviation from plug flow) [26, 31]. 

2.5 Visual study 

A combination of dye and conductivity RTD analysis was employed to investigate the flow 

characteristics on/within the spinning cloth with immobilized enzymes. The equipment setup 

is the same as that for RTD analysis (Fig. 1a), just the feed was changed from deionized 

water to dye solution. The cloths with immobilized lipase prepared as described in Section 

2.2 were used for visual study. The conductivity measurement was carried out as described in 

Section 2.4. A green water color was selected as the tracer due to its good solubility in water. 

The dye solution was made by dissolving the water color in 0.25 M KCl solution. For each 

run, deionized water was fed to the spinning cloth at the desired spinning speed and flow rate 

until the cloth was saturated and the conductivity reading was stable. The feed was then 

(7) 

(8) 

(9) 
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switched to the dye solution. As soon as the dye came out at the center of the cloth, imaging 

was launched, and images were taken every second until the cloth was completely covered 

with the dye. In the meantime, the corresponding conductivity data was continuously 

recorded as in Section 2.4. 

2.6 Reactor modeling in tributyrin hydrolysis 

Tributyrin emulsion hydrolysis in the SCDR was chosen as a model reaction to establish the 

mathematical equation of reaction conversion in the SCDR at various spinning speeds and 

flow rates. The experimental data of tributyrin hydrolysis in the SCDR can be found in the 

previous study [23]. Results in this study will show that there are several different flow 

regimes in the SCDR, which change with spinning speed and flow rate. In addition, as will be 

shown in the RTD analysis, under most cases the flow in the SCDR is far from plug flow 

(N<50). Therefore, the conventional plug flow modeling used in SDR analysis could not be 

used (i.e. the integral of reaction in small pieces of circles over the entire cloth). However, as 

the liquid volume on the disc is very small in comparison to the total reactant volume and 

good mixing in the reactant tank is achieved (as shown by the RTD analysis), well mixed 

reactor (and perfect mixing) is a good approximation for the reactor model [32]. Therefore 

the mass balance for the entire system is given in eq. 10:                

r

t

VdC
r

dt V
                                                                                                                

Where Vr is the liquid volume in the reactor (m
3
), Vt is the total liquid volume in the system 

(m
3
), r' is the global reaction rate and C is the substrate concentration.   

The flow on a spinning disc is usually assumed to be a series of fully developed laminar films, 

and this theory is widely used in modeling both the SDR and the RPB [4, 13, 14, 33]. 

Considering the similarity between the SCDR and the RPB/SDR, the film flow theory was 

(10) 
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hence used here to model the SCDR. The film thickness within the cloth can be calculated 

with the following equation [4, 13, 14, 33]:                      

1/3

2 2

3

2

Q
h

r



 

 
  
 

                                                                                                     

Where Q is the volumetric flow rate (m
3
 s

-1
); υ is the kinematic viscosity (m

2
 s

-1
); ω is the 

spinning speed (rad s
-1

).  

Therefore the liquid volume on the disc can be obtained by integration of the above equation:                    

1/3
2

4/3

2

81

16
r

Q
V R





 
  
 

                                                                                            

It has been shown that, in the case of immobilized enzyme, the global reaction rate may be 

represented by a simple rate equation using apparent parameters and the interfacial 

concentration [34-36]. The mass balance of the substrate on the surface is then given by:         

 L ik a C C r                                                                                                               

Where kLa is the global mass transfer coefficient (s
-1

), C is the substrate concentration in the 

bulk solution (mol m
-3

), and Ci is the substrate concentration at the interface (mol m
-3

). 

The kinetics of tributyrin hydrolysis complies well with the Ping Pong Bi Bi mechanism [23, 

37]:                  

 
 

max

0

/

1 /

m i

i i

v K C
r

C C K

 

 
 

                                                                                                    

It should be noted that the kinetic constants vmax', Km' and Ki' are apparent lumped ping pong 

kinetic constants, and their expressions can be found in a previous publication [23]. C0 is the 

(11) 

(12) 

(13) 

(14) 
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initial concentration of glyceride.                                                                                               

Combining Eq.13 and 14 gives                       
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Then Ci can be denoted as follows:      
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Combining Eq. 10, 12 and 16 gives 
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In order to get the substrate concentration at a given time from Eq. 17, the values of the 

parameters kLa, vmax'/Km' and Ki' were evaluated by using the inherent ode45 of MATLAB 

(MathWorks, Natick) from the previous experimental data at various spinning speeds and 

flow rates in the SCDR [23].  

(15) 

(16) 

(17) 
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3. Results and discussion 

3.1 RTD with pulse injection 

To characterize the flow pattern on the spinning disc with/without cloth, RTD with pulse 

injection was investigated at various spinning speeds and flow rates. Fig. 2 shows the 

normalized RTD curve on the spinning disc with/without cloth. Generally, a very narrow 

RTD curve means that the flow pattern is close to ideal plug flow, and in contrast, a very 

broad RTD curve represents a large deviation from plug flow, where dispersion becomes 

more prominent [31]. As can be seen from Fig. 2, both with and without the cloth, with an 

increase of the spinning speed and flow rate, the RTD curve peaks became sharper and more 

narrow, which means that the flow pattern on the spinning disc with/without cloth becomes 

more close to ideal plug flow and thus the effect of dispersion on the radial flow direction is 

less significant. This is consistent with the results on the spinning disc observed by 

Mohammadi et al. [26], where they explained that a uniform velocity profile in the direction 

perpendicular to the flow direction and negligible dispersion in the direction of flow can be 

achieved at higher spinning speeds and flow rates, thus resulting in a near plug flow behavior. 

After placing the cloth on the disc, the RTD curve became more symmetric, especially at 

higher spinning speeds, indicating that a more even mixing on/within the cloth was achieved 

compared to that without cloth. Previous studies have reported that the waves on the spinning 

disc changed from smooth to spiral and unstructured with an increase of the spinning speed 

[10, 24], so an unstructured wave might be a reason for the more asymmetric RTD curve for 

the disc without cloth. In addition, longer tails (representing a wider range of residence times) 

were observed in comparison to that without the cloth (the tail was more obvious at low 

spinning speeds and flow rates), for example, the tail in Fig. 2a (without cloth) ended as the 

normalized residence time θ increased to 2.5, but the tail in Fig. 2b (with cloth) still existed 
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even for θ= 3. The longer tails at lower spinning speeds observed for the disc with the cloth 

may indicate that insufficient centrifugal forces were present to overcome the hydrodynamic 

resistance presented by the cloth and its constituent fibers, producing a greater range of fluid 

pathways the fluid is forced to follow (such as along the fibers and through some of the 

pathways of least resistance). At higher spinning speeds, these resistances are overcome 

enabling the fluid to bypass these pathways and take a more direct route (narrowing the 

residence time distribution and removing the observed tails in the distribution). In addition, 

long tails have been found to be an indication of laminar flow or stagnation areas [38-40]. 

This may also indicate that the existence of cloth could alleviate the turbulence on the disc, 

making the laminar flow better developed. However, the tail decreased with an increase of 

the spinning speed and the flow rate, and the RTD curve became more symmetric with an 

increase of flow rate. The effect of the cloth on tails are similar to that from Mohammadi et al. 

[26], where tails were observed on a grooved spinning disc (in comparison to a smooth disc), 

however they attributed this to the accumulation of liquid in the grooves. They also observed 

a decrease of tail with an increase of spinning speed and flow rate.  

 Fig. 3 shows the mean residence time versus spinning speed of disc with and without cloth. 

It can be seen that after adding the cloth onto the disc, the mean residence time nearly 

doubled, which would allow more contact time between the immobilized enzyme and 

substrate on/within the cloth. In addition, as expected, the mean residence time decreased 

with the increase of spinning speed and flow rate in both cases. It should be noted that the 

residence time here is larger than that previously reported for any SDR, which is usually a 

few seconds [41]. This is because the residence time measured here includes not only the 

period from the inlet to the edge of the disc but also the extra period from the edge of the disc 

to the final outlet. However, this extra time was the same throughout all the experiments 

(estimated to be around 7 s). As the main purpose of this RTD study here was to characterize 
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the effect of spinning speed and flow rate on the flow pattern on the spinning cloth, the 

measuring error mentioned above was insignificant. To obtain more accurate residence time 

on the disc, the reactor would need to be redesigned to accommodate a conductivity probe at 

the edge of the disc, as well as a liquid holdup there to allow a conductivity probe to operate. 

As we did not want to redesign the reactor (as we are characterizing flow in a reactor which 

already has reaction data available [23], this was considered infeasible.  

A large number of tanks-in-series (N) means that the flow pattern is close to plug flow (N>50 

is usually considered as a small deviation from plug flow) [26, 31]. As can be seen from Fig. 

4, N
 
increased with an increase of spinning speed and flow rate, for example, as the spinning 

speed and flow rate increased from 50 rpm, 2 mL s
-1

 to 500 rpm, 8 mL s
-1

, N increased from 2 

to 10 for the disc with cloth and increased from 5 to 23 for the disc without cloth, indicating 

the flow was getting close to plug flow. This is consistent with the result from Fig 2. At a 

spinning speed of 50 rpm, due to smaller centrifugal forces, the mixing efficiency on the disc 

with/without cloth was low and the aforementioned hydrodynamic resistances created by the 

cloth are not sufficiently overcome, hence the residence time was longer. At this condition, 

the dispersion of the tracer became more pronounced, resulting in a larger deviation from the 

plug flow; therefore a smaller N
 
(4 for the disc without cloth) was obtained even at the higher 

flow rate of 8 mL s
-1

. It can be concluded that at such low spinning speeds, the spinning 

speed is more dominant in determining the flow pattern. In comparison, as the spinning speed 

increased to 150 rpm, N increased significantly (almost by twice). This behavior implied a 

significant improvement in mixing, since the centrifugal forces gained impact (e.g. 

overcoming the aforementioned hydrodynamic resistances). After this, the flow rate was a 

more critical factor in determining the flow pattern and the mixing. In addition, N for the disc 

without cloth was at least twice higher than that with cloth, again indicating that the cloth will 

cause more significant dispersion and hence larger deviation from plug flow, which is in 
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good agreement with the RTD curves in Fig. 2. Under similar spinning speeds and flow rates, 

the N found here was comparable to that from Mohammadi et al. [26], where it was estimated 

to be approximately 26-42 at a spinning speed of 300-1200 rpm and flow rate of 10 mL s
-1

, 

indicating the RTD result here is not out of ordinary. 

3.2 Flow characteristics with imaging analysis 

The RTD analysis indicates that the SCDR had a larger deviation from plug flow compared 

to the SDR, and that the flow pattern of both reactors were getting close to plug flow with an 

increase of spinning speed and flow rate. However, very little information can be derived in 

terms of the flow characteristics that determine this RTD. Therefore, a visual observation of 

flow regimes in the SCDR was undertaken in combination with a RTD analysis. The results 

from the visual analysis will be presented first. 

3.2.1 Bulk flow characteristics 

 As can be seen from Fig. 5, the momentum of the injected liquid allowed it to quickly 

penetrate through the whole cloth. Close to the injection area, the liquid was accelerated to 

the disc spinning speed by the interaction with the cloth. The tangential forces from spinning 

disc were able to generate a relatively uniform distribution of liquid, which can be observed 

at all investigated spinning speeds and flow rates. However, beyond this initial fluid speed up 

area at the disc center, two different flow regimes were observed within the cloth which vary 

with disc spinning speed and flow rate. At a low spinning speed of 100 rpm (Fig. 5a-d), the 

dye spread unevenly, transporting across the cloth via a small number of radial streams, with 

the liquid front in each moving at different speeds (dictated by the hydrodynamic resistance 

encountered and volume of liquid in the particular radial stream). The shapes of these radial 

streams look like fingers, so they are named “radial finger-like streams” throughout the 

manuscript to be more easily understood. With an increase of flow rate (Fig. 5a-d), more 
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radial finger-like streams were formed. When the spinning speed increased to 250 rpm (Fig. 

5e-h), the spreading patterns changed with the flow rate. For example, for the flow rate of 2 

mL s
-1

 (Fig. 5e) the dye spread concentrically and evenly, but when the flow rate increased to 

3.5 mL s
-1

 (Fig. 5f), a transition state was observed: a combination of concentric and radial 

finger-like spreading. When flow rate further increased to 5 mL s
-1 

(Fig. 5g) and above (Fig. 

5h), the spreading completely changed back to radial finger-like streams. For the highest 

spinning speed of 400 rpm, the transition state changed from flow rate of 3.5 mL s
-1

 to 5 mL 

s
-1

. For the flow rate of 3.5 mL s
-1

 (Fig. 5j), it had completely transferred from the transition 

state to concentric flow. For the flow rate of 5 mL s
-1

 (Fig. 5k), the flow type was a 

combination of concentric and radial flow (transition state), and more radial finger-like 

streams can be observed compared to that at the lower spinning speed of 250 rpm (Fig. 5k 

and Fig. 5f). Images showing the development of different flow types over time are also 

provided in the Supplementary Material.   

Therefore, for bulk flow, two different flow regimes types in the spinning cloth can be 

summarized: (1) radial finger-like flow and (2) concentric flow. For type 1 flow, the liquid 

flows with a few random and uneven radial finger-like streams on the spinning cloth, with the 

zones between streams free of dye. In addition, the numbers of the streams can be adjusted by 

the feed flow rate: the higher the flow rate, the more streams on the cloth. For type 2, the 

liquid flows with even concentric streams on the spinning cloth. 

The distribution of flow regimes with different spinning speeds and flow rates are shown in 

Fig. 6. The spinning speed determines the flow regime at lower spinning speeds (100 rpm), 

and type 1 flow (radial finger-like flow) was observed at all flow rates. With an increase of 

spinning speed, the flow rate becomes the dominant factor determining if the flow regime in 

the spinning cloth was type 1 or 2: the flow rates below 5 mL s
-1

 produced type 2 flow 

(concentric flow), and the flow rates tested above this switched the flow back to type 1 (at the 
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spinning speeds tested above 100 rpm). In addition, the transition state between type 1 and 

type 2 could also be observed at 250 rpm and 3.5 mL s
-1

, 400 rpm and 5 mL s
-1

.  

The results found here are also comparable to those observed previously by Burns et al. [27, 

28] in the RPB, indicating that the SCDR has some flow characteristics similar to this 

technology. They found that the main flow was in the form of radial rivulets at low rotational 

speeds between 300-600 rpm with flow rate of 10.5 L min
-1

. With an increase in rotational 

speed, the level of maldistribution via these radial rivulets was decreased. This is similar to 

the results here, where radial streams were observed with spinning speed below 100 rpm, and 

transferred to concentric flow as with the increase of spinning speed with a clear transition 

state. 

The two different flow types can be explained by considering the two dimensional flow 

on/within the cloth, which was first proposed for spinning disc by Wood and Watts [42].  The 

two-dimensional flow which incorporates inertial and viscous influences existed over a 

spinning disc. In SCDR, the main forces working on the fluid are centrifugal force, viscous 

force and inertia force. The centrifugal force is always the driving force. The viscous force 

(drag by the viscosity of fluid) and inertial force (caused by the natural liquid flow paths 

changes within the cloth) are resistances and influenced by spinning speeds and flow rates, so 

they may take turn to dominate the resistance under different conditions [43, 44]. At low 

spinning speed and high flow rate, the main resistance is from the viscous drag force, and the 

inertial force is unimportant (dissipation by the flow paths changes within cloth), so the liquid 

within the cloth is not likely to change flow paths frequently and presents a few radial finger-

like streams, which was observed as type 1 flow. At high spinning speed and low flow rate, 

the main resistance is from the inertial force, and the viscous force is unimportant. Therefore 

most energy is consumed by the liquid flow paths changes within the cloth, the tangential 

flow prevails more than the radial flow, resulting in the type 2 flow. However, at medium 
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spinning speeds and flow rates, both viscous forces and inertia forces are significant and 

result in the coexistence of radial flow and tangential flow, which was observed as the 

transition area.  

3.2.2 Surface flow - droplets on cloth  

Besides the bulk flow described above, under all investigated range of spinning speeds and 

flow rates, a small part of the liquid also existed in the form of droplets on the surface of the 

spinning cloth, which moved in a spiral pattern, as shown in Fig. 7 (the white points on the 

cloth). This type of surface flow is more similar to a conventional SDR than a RPB. The 

volume of the droplets observed is much lower than the liquid volume being fed to the reactor 

indicating that this is not a major flow path under the spinning speeds and flow rates studied. 

In addition, the number of droplets was found to increase with decreasing of spinning speed 

and increasing of flow rate, which may be due to the higher liquid holdup in the cloth at low 

spinning speeds and high flow rates.  

3.2.3 Correlating RTD with the visual analysis  

By comparison of RTD to imaging analysis at the different spinning speeds and flow rates, it 

appears (unexpectedly) that there is no significant correlation between flow type and RTD. 

This is exemplified by the fact that in the RTD analysis, N increased and the flow was close 

to plug flow for both radial flow and concentric flow with increases of the spinning speeds 

and flow rates. RTD is mainly determined by the mixing of fluid in the cloth, so the fact that 

the flow type difference does not significantly correlate to changes in the RTD may indicate 

the two flow types can achieve a similar extent of mixing within the cloth. 

To confirm this, in conjunction with the dye study, the corresponding conductivity was also 

measured at the outlet to compliment the dye result, as shown in Fig. 8. In these experiments, 
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the conductivity in the outlet increased until it eventually stabilized. The increasing region 

can be related to the period of dye spreading across and through the cloth. With an increase of 

flow rate, the slope of the increasing region increased, indicating that the flow pattern is 

closer to plug flow. In theory, at the same flow rate, the residence time of the tracer should be 

shorter at higher spinning speed. However, as can be seen from Fig. 8a and Fig. 8d, the tracer 

concentration at the lowest spinning speed (100 rpm) at the outlet was higher than that of 

high spinning speed (250 and 400 rpm), and this can be attributed to the uneven radial flow 

on the spinning cloth: even at low spinning speed, some tracer may reach the edge of the 

cloth very fast in the form of the radial flow. This is in good agreement with the image results 

and indicates that RTD studies are affected by mixing and other phenomena that is not 

necessarily reflected by the bulk fluid movement in the cloth (as seen in the visual analysis).  

3.3 Implications to reaction conversion, reactor/kinetic modeling and reactor 

classification of the SCDR 

3.3.1 Flow regime vs. Reaction conversion  

The correlation between spinning speed and flow rate with tributyrin hydrolysis conversion 

and flow regime in the SCDR within 1 h is shown in Fig. 6. The conversion increased with an 

increase of spinning speed and flow rate within the investigated range. It should be noted that 

a distinct increase in conversion was observed when the spinning speed increased from 250 

rpm to 400 rpm and the flow rate increased from 2 mL s
-1

 to 5 mL s
-1

. This might be related 

to the transition of flow regimes from concentric flow to radial flow. Other than this, the flow 

regimes do not appear to have a significant relationship to changes in the reaction conversion. 

This is similar with a previous study, where the wave regimes on the spinning disc were 

found to have no influence on the reaction kinetics [10]. Note that the highest reaction 

conversion was obtained in type 1 (radial finger-like) flow at the higher spinning speeds and 
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higher flow rates. A higher conversion would necessitate that a greater cloth volume to be 

wetted by the reactant and a greater amount of contact (with lower mass transfer resistance) 

between the reactant and the active enzymes as well as a higher volume of liquid processed 

per pass (as expected at the higher flow rates) to allow more tributyrin to converted. Since 

this flow region is beyond the concentric flow where it is clear that the entire cloth is being 

wetted, this result may also indicate that the radial finger-like flow at the higher flow rates is 

characteristic of a fully wetted cloth (as per concentric flow) where the higher fluid flow rate 

and higher spinning speed (and therefore centrifugal force) allows more fluid through the 

paths of least resistance in the cloth (as they did at the lower spinning speeds and flow rates). 

Therefore more fluid is able to contact the enzymes at the decreased mass transfer resistances 

produced at the higher flow rates and spinning speeds combined with a higher fluid volume 

per pass in the reactor, producing the higher conversion. 

3.3.2 Reactor model and kinetic modeling  

The RTD and visual analysis of the SCDR above indicates that the flow is far from plug flow 

under a majority of the investigated conditions, meaning that the entire SCDR system overall 

meets the requirements of a well-mixed reactor  (under the perfect mixing model), validating 

the model of this system proposed in Eq. 10 to Eq. 17. So, from this, the apparent kinetic 

constants vmax'/Km' and Ki' could be and were estimated to be 0.494 s
-1

 and 1.088 mol m
-3 

respectively. The estimated global mass transfer coefficients kLa from Eq. 17 at various flow 

rates and spinning speeds were shown in Table 1. It is observed that kLa increased from 0.614 

to 1.331 s
-1

, and 0.769 to 1.462 s
-1

 as the spinning speed increased from 250 to 500 rpm for 

the flow rates of 2 mL s
-1

 and 5 mL s
-1

 respectively. This increasing trend in the SCDR is 

similar to that reported in the SDR [45] and the RPB [13], which may be due to the 

intensified turbulence at higher spinning speeds and flow rates.  
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An example of the time course of tributyrin hydrolysis from experiment and modeling at 

selected spinning speeds and flow rates is shown in Fig. 9, showing a good match between 

the model and the experimental data for individual reaction conditions. Looking at the 

reaction data as a whole, Fig. 10 shows the validation of the proposed model by comparing 

the conversion predicted from the model at different spinning speeds and flow rates to that 

from the experimental data. The reaction features in Fig. 10 has already been explained in our 

previous paper [23]. Fig. 10 shows that the SCDR reactor model gives reasonably good 

agreement with the experimental data, especially at the lower flow rate (2 mL s
-1

) where the 

reactor is closer to being a well-mixed reactor. Overall, the model slightly overestimated the 

conversion for all the flow rates (<5 %), which might be attributed to the 

detachment/deactivation of enzyme caused by the high shear forces, which was not 

considered in this modeling. At the higher flow rate (5 mL s
-1

), where the SCDR becomes 

closer to plug flow in its flow characteristics (RTD), the deviation between the model and the 

experimental data increased (as is also expected).  

3.3.3 Implication to reactor classification  

Overall, the combination of RTD results, visual analysis and well-mixed reactor modeling 

indicate that the SCDR is neither a conventional SDR (in particular due to it being well 

mixed) nor a RPB (in particular the surface flow) – it is a reactor with characteristics that are 

in-between these two. It is therefore a separate and new type of spinning disc-type reactor for 

process intensification, which therefore requires a classification. Due to the mixture of SDR 

and RPB characteristics, we propose that this new reactor class is known as ‘spinning mesh 

disc reactors’ which can be abbreviated as ‘SMDR’. 
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4. Conclusions 

In this study, the flow regimes in the SCDR were characterized by RTD and visual study, and 

a model of the SCDR was proposed with respect to spinning speeds and flow rates using 

tributyrin hydrolysis as a model reaction and immobilized lipase on woolen cloth as the 

biocatalyst.  

RTD analysis showed that the flow pattern on the spinning disc with/without cloth became 

close to plug flow with the increase of spinning speed and flow rate. The disc with cloth 

showed a larger deviation from plug flow pattern in comparison to that without the cloth, 

with the number of tanks-in-series (N) required to model the RTD two times smaller than that 

of the disc with cloth.  

Two flow regimes were observed from the visual dye study: radial finger-like flow and 

concentric flow. At low spinning speed and high flow rate, the flow was in the form of a few 

random and uneven radial streams, with the zone between the streams free of dye. At higher 

spinning speeds and lower flow rates, the unevenly radial flow was replaced by an even 

concentric flow. There were also two regions of flow – within the cloth and on top of the 

cloth, showing that the SCDR acts both as a conventional SDR (with unbound flow on top of 

the cloth disc) and also partially like a RPB (with bounded flow within the cloth).  

When comparing RTD, the visual study and previously determined reaction conversions 

however, no significant correlation between the different flow regimes and the RTD and the 

reaction conversion was found.  

Based on the RTD and visual analysis, the SCDR reactor mathematical model based on 

perfectly mixed model was developed to simulate the variation in SCDR conversion with 

spinning speed and flow rate. The model fitted well with the experimental data, further 
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substantiating that the SCDR is a well-mixed reactor. The combination of RTD results, visual 

analysis and well-mixed reactor modeling indicate that the SCDR is neither a conventional 

SDR nor a RPB. It is therefore a separate and new type of spinning disc-type reactor for 

process intensification – a reactor class we call ‘spinning mesh disc reactors’, allowing any 

type of mesh (not just cloths) on a rotating disc with the top surface left unbound to be 

included. 
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Nomenclature 

C substrate concentration in the bulk solution (mol m
-3

) 

Vr  liquid volume in the reactor (m
3
)  

Vt  total liquid volume in the system (m
3
)  

r' global reaction rate (mol m
-3

 s
-1

) 

Q volumetric flow rate (m
3
/s)  

υ kinematic viscosity (m
2
/s)  

ω spinning speed (rad/s) 

h film thickness (m) 

r distance between any point on the disc to the center (m) 

R constant, the radius of the disc (0.125 m) 

Ci substrate concentration at the interface (mol m
-3

) 

C0 initial concentration of the glyceride (mol m
-3

)  

kL mass transfer coefficient (m s
-1

) 

a effective interfacial area per unit volume (m
-1

) 

kLa global mass transfer coefficient (s
-1

) 

vmax' apparent maximum reaction rate (mol m
-3

 s
-1

)  

Km' apparent Michaelis-Menten constant for the glyceride (mol m
-3

) 

Ki' apparent inhibition constant for the fatty acid (mol m
-3

) 
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Figure legends 

Figure 1(a) Schematic diagram of the enzymatic reactor setup for the RTD and visual study 

of the SCDR. (b) Top view of a 25 cm diameter woolen cloth with immobilized lipase on the 

disc of the SCDR. 

Figure 2 Effect of spinning speed on residence time distribution. (a) flow rate 2 mL s
-1 

without cloth; (b) flow rate 2 mL s
-1 

with cloth; (c) flow rate 5 mL s
-1

 without cloth; (d) flow 

rate 5 mL s
-1

 with cloth; (e) flow rate 8 mL s
-1

 without cloth; (f) flow rate 8 mL s
-1

 with cloth. 

Figure 3 The mean residence time at different spinning speeds and flow rates. Results were 

from triplicate measurements and error bars are the average ± one standard deviation. 

Figure 4 The number of tanks-in-series (N) at different spinning speeds and flow rates. 

Results were from triplicate measurements and error bars are the average ± one standard 

deviation. 

Figure 5 Images of the dye spreading types on the spinning disc cloth with different spinning 

speeds and flow rates. All the images were at the same time of 12 s after injection of the dye. 

Figure 6 The dependency of flow regimes and the reaction conversion on spinning speeds and 

flow rates in the SCDR.  

Figure 7 Droplets on the spinning cloth at a spinning speed of 250 rpm and a flow rate of 5 

mL s
-1

. 

Figure 8 The corresponding conductivity in the outlet versus time as the dye was 

continuously fed to the SCDR at various flow rates: (a) 2 mL s
-1

, (b) 3.5 mL s
-1

, (c) 5 mL s
-1

, 

(d) 8 mL s
-1

. 

Figure 9 Time course of tributyrin hydrolysis in the SCDR. The scattered points are the 

continuous experimental data from the pH stat, while the solid lines are calculated from the 
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derived reactor model (Section 2.6): (a) flow rate: 2mL s
-1

, spinning speed: 250 rpm; (b) flow 

rate: 5 mL s
-1

, spinning speed: 500 rpm. 

Figure 10 Conversion of tributyrin hydrolysis in the SCDR at various spinning speeds and 

flow rates. The scattered points are the experimental data, and the solid lines are from the 

derived reactor model (Section 2.6). Substrate concentration: 33 mM, feed volume: 1L, 

reaction time: 4 h. Half of the experimental data points were from triplicate measurements, 

and error bars are the average ± one standard deviation. 
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Table 1 Global mass transfer coefficient (s
-1

) at various spinning speeds and flow rates. 

Spinning speed (rpm) 250 300 350 400 450 500 

2 mL s
-1

 0.614 0.670 0.771 0.928 1.097 1.331 

5 mL s
-1

 0.769 0.812 0.952 1.142 1.310 1.462 

 

 

 

 


