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Ultrashort Pulse Lossless Propagation Through a
Degenerate Three-Level Medium in Nonlinear Optical

Waveguides and Semiconductor Microcavities
Gabriela Slavcheva, John M. Arnold, and Richard W. Ziolkowski, Fellow, IEEE

Abstract—The authors develop and apply a novel group-theo-
retical approach for studying the coherent dynamics of ultrashort
pulse propagation in nonlinear optical waveguides and passive
semiconductor microresonators. The resonant nonlinearity is
modeled by a degenerate three-level system of saturable absorbers
in order to allow for a two-dimensional medium polarization.
The resulting Maxwell-pseudospin equations are solved in the
time domain using the finite-difference time-domain method.
Conditions of onset of the self-induced transparency (SIT)
regime of propagation are investigated. Numerical evidence of
multidimensional solitons localized both in space and in time
is given for the planar optical waveguides. Pattern formation
and cavity SIT-soliton formation are demonstrated for a passive
semiconductor microcavity filled with saturable absorbers.

Index Terms—Finite-difference time-domain (FDTD) method,
light bullets, Maxwell–Bloch system, multidimensional solitons,
resonant nonlinearities, self-induced transparency, semiconductor
microcavities, spatiotemporal dynamics.

I. INTRODUCTION

CONTEMPORARY integrated optoelectronics and dat-
acomm applications pose severe requirements on the

stability of the shape of the propagating pulses as their temporal
width is constantly decreased. As a consequence, the shorter
the pulse is, the greater is the range of spectral components
that it contains, and the greater is the tendency for the pulse to
spread out during propagation. Therefore, dispersion presents
a limit to either the shortness of the pulse or to the propagation
distance without significant distortions in optical systems. A
solution to this fundamental limitation might be sought either
in engineering photonic structures, which would allow control
of the pulse shape, or by introducing active resonant nonlinear
media and exploiting the self-induced transparency effects
in it, exploring and identifying lossless (soliton) regimes of
propagation. It is more likely, however, that a combination of
both approaches would provide a general solution in the future.

Since the pioneering work of McCall and Hahn [1], [2], it
has been well known that the resonant coherent interaction of
pulses shorter than the characteristic relaxation times of the
medium gives rise to the effect of self-induced transparency
(SIT) that results in solitary electromagnetic wave propagation
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phenomena. Under the assumption of slow variation of all vari-
ables in space and time [slowly varying envelope approximation
(SVEA)] and rotating wave approximation (RWA), the set of
equations describing SIT is completely integrable in one dimen-
sion and the soliton solutions correspond to thepulses [3]. It
has been pointed out [4] that the SIT-soliton in one-dimensional
(1-D) resonant medium is exponentially localized and stable.
The original Maxwell–Bloch equations (without the restrictions
of the SVEA and RWA) represent considerable interest since
they provide a model of the resonant coherent interactions on
ultrashort time scales. The analytical investigation of the full
set of Maxwell–Bloch equations, however, is rather complex
and no exact solutions have yet been found even in one dimen-
sion. If the restrictions of SVEA are removed and the require-
ment of unidirectional propagation is imposed, the so-called re-
duced Maxwell–Bloch equations are obtained, first derived by
Eilbeck et al. [5]. It has been shown [6], [7] that the reduced
set of Maxwell–Bloch equations in one dimension is an inte-
grable system and consequently has soliton solutions. However,
as has been pointed out in [8], the requirement of one-way wave
propagation leads to a limitation of the resonant atoms’ concen-
tration. The assumption of one-way wave propagation neglects
back scattering and, therefore, is applicable only at a relatively
low dipole density, i.e., for resonant media composed of gases,
metal vapors, or impurity doped glasses. Moreover, realistic sit-
uations require consideration of damping caused by dephasing
processes and population relaxation, which in turn leads to ad-
ditional terms in the Maxwell–Bloch system. This represents
another complication for analytical methods. The basic limita-
tions and oversimplifications of the analytical approaches can
be overcome by employing various numerical techniques. In
this respect, the efficiency of the finite-difference time-domain
(FDTD) method, applied to the problem of ultrashort pulse in-
teraction with a two-level atomic system in one dimension, has
been demonstrated in [9].

The solution of the Maxwell–Bloch system and the related
question of integrability become much more complicated in the
more realistic multidimensional case. In this paper, we shall
be interested in the novel, little investigated, class of multidi-
mensional solitons, localized both in space and time, obtainable
by two-dimensional (2-D) and three-dimensional (3-D) self-in-
duced transparency phenomena which we shall call SIT-light
bullets, in agreement with the terminology adopted for multidi-
mensional spatial solitons [10], [11].

On the other hand, photonic structures, and in particular semi-
conductor microcavities containing resonant media, provide a
uniquely advantageous combination of nonlinear properties that

1077-260X/03$17.00 © 2003 IEEE
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allows for the existence of highly nonlinear modes of propaga-
tion. For example, the interplay between Bragg reflections that
block the light propagation in photonic bandgaps, and the dy-
namical modifications of these reflections by coherent nonlinear
light-matter interactions, results in a unique type of nonlinear
modes, localized both in space and time, called cavity SIT-soli-
tons. Cavity spatial solitons in semiconductor microresonators
(light bullets) have been predicted in [12]. They have been a
subject of intensive investigations by a number of theoretical
and experimental groups in the past decade (for a recent re-
view of the present state, see [13] and the references therein)
in view of the possibility of realizing individually addressable
pixel arrays based on SIT-cavity pattern formation effects. The
latter can be exploited for optical storage of information and
parallel optical processing utilizing the spatial solitons as fast
mobile information carriers in a new type of information pro-
cessing devices. However, for the sake of simplicity, these the-
oretical and numerical studies of the optical light bullets based
on the Maxwell–Bloch system have always been limited to the
slowly varying amplitudes of the electric field and polarization,
or on the mean field approximation [12]. Here, we shall apply
the novel formalism for description of the resonant coherent in-
teractions of an optical wave with a discrete multilevel system,
which has been previously developed and details of which have
been published elsewhere [14].

In order to investigate the multidimensional spatiotemporal
localization phenomenon, we need to consider at least a 2-D res-
onant medium. Generally, increasing the number of the spatial
dimensions of the pulse propagation problem implies a corre-
sponding increase in the number of the energy levels of the mul-
tilevel quantum system coupled to the electric field by dipole in-
teraction. We have previously shown [14] that, as a minimum re-
quirement, it is sufficient to consider a degenerate three-level en-
semble of atoms in which two of the allowed electric dipole tran-
sitions are excited by each of the two components of the E-field
in the waveguide plane. This allows for an adequate modeling
of the interaction of an ultrashort laser pulse (one-photon exci-
tation) with the medium in two spatial dimensions within the
adopted generalized pseudospin formalism [15]. In what fol-
lows, we shall consider the most general case of a damped en-
semble of dipole oscillators chosen as representative of a homo-
geneously broadened degenerate three-level quantum system of
polarized atoms which is at or near resonance with the pulse of
2-D-wave radiation. This physical system could represent, for
example, an ensemble of atomic dipoles enclosed in a small por-
tion of a microcavity. However, the model potentially could rep-
resent an adequate description of the heavy-hole exciton transi-
tion in a quantum well within the two-band formulation for the
semiconductors. The multisubband structure of such excitons
is a motivation for applying the present model to the semicon-
ductor quantum-well systems at the center of the Brillouin zone.

In this paper, we shall be aiming to give numerical evidence
for the existence of 2-D SIT-soliton solutions in planar optical
waveguides and semiconductor microcavities.

II. THEORETICAL BACKGROUND AND NUMERICAL

IMPLEMENTATION

We employ the formalism developed in [14]. Our consider-
ations are based on the generalized pseudospin formalism in-

troduced in [15] for treatment of the resonant coherent inter-
actions of ultrashort light pulses with discrete-multilevel sys-
tems. This formalism is based on the group-theoretical treatment
applied to intense-field electrodynamics. It has been demon-
strated that the dynamics of the multilevel laser-atom interacting
system at or near resonance exhibits the Gell–Mann SU(N) sym-
metry. Exploiting the group-symmetry properties of the inter-
action Hamiltonian, we have originally derived a self-consis-
tent set of coupled curl Maxwell-pseudospin equations in two
spatial dimensions and time for the nonlinear resonant medium
modeled by an ensemble of degenerate three-level quantum ab-
sorbers. We consider a V-type degenerate three-level system of
resonant dipoles for which, as we have shown in [14], the dipole
moment operators along the propagation direction and trans-
verse to it are orthogonal. We have justified the degenerate three-
level system as a minimum requirement in order to describe po-
larization induced by the electromagnetic wave in two orthog-
onal directions in the waveguide plane. The pseudospin equa-
tions are phenomenologically extended to include relaxation ef-
fects by introducing nonuniform decay times corresponding to
the various dipole transitions occurring in a three-level system.
We shall be interested in the TM mode of the 2-D optical wave
in a parallel mirror waveguide since this mode couples all three
levels of the system and therefore is irreducible to the 1-D case
treated in [9]. Maxwell pseudospin equations for the TM wave
derived in [14] read

(1)

(2)

(3)

where is an eight-dimensional real coherence vector de-
scribing the time evolution of the quantum system. The
introduction of a real coherence (pseudospin) Bloch vector
represents a generalization of the well known real-vector
representation of the density matrix formalism for a two-level
system. The real pseudospin vector components are related to
the elements of the density matrix by the following:

(4)

(5)

(6)

(7)

The physical meaning of the real coherence vector compo-
nents is as follows: and represent, respectively, the disper-
sive or in-phase and the absorptive or in-quadrature polarization
components associated with the dipole transition , and

are the polarization components associated with the dipole
transition , and are the polarization components
associated with the dipole transition , and the last two
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components and are the population terms representing
the fractional population difference in a three-level system.

The matrix is 8 8 and antisymmetric with only nine
independent nonvanishing components, given by

(8)
We have defined Rabi frequencies of oscillations along the
and directions according to

(9)

where is the dipole coupling constant and is a mea-
sure of the separation between the charges in the dipole. We
have denoted the density of the resonant dipoles byin (2)
and in (3) introduced the diagonal matrixof the nonuniform
relaxation rates of the eight components of the coherence vector

toward its equilibrium state

(10)

Due to dephasing, only the last two population components of
are nonvanishing, namely and

in agreement with the normalization of the density matrix com-
ponents. The equilibrium population terms define the initial
population profile of the degenerate three-level system. We
shall assume that corresponds to a system which is initially
in its ground state and to the system with population
inversion created by some pumping process, i.e., initially in the
excited (doubly degenerate) upper state. Thus, we can model
both absorbing and gain resonant media.

The full-wave vector Maxwell’s equations coupled to the
time evolution equations of the degenerate three-level quantum
system are discretized using finite differences on a specially
constructed modified Yee grid (Fig. 1) and solved numerically
in the time domain using FDTD method [16]. This, in turn,
allows a very general treatment which accounts for the non-
linearity, dispersion, absorption/amplification, saturation, and
resonant effects without invoking any standard approximations
(such as SVEA and RWA). We shall be interested in planar
optical waveguide and semiconductor microcavity geometries
(Fig. 2). The initial value problem considered is a Goursat-type
one and, therefore, is well posed if the whole time history of
the initial electric field is given along some characteristic (e.g.,
the beginning of the medium ) (see [17]). We start to
propagate a source pulse through the medium and monitor the
spatiotemporal dynamics across the structure. We selected the
guided modes of a parallel mirror waveguide as the most nat-
ural choice of the source field for the planar geometries under

Fig. 1. Discretization of the Maxwell-pseudospin system using finite
differences on a 2-D Yee grid with polarization variablesS assigned to the
empty nodes.

Fig. 2. Planar parallel mirror optical waveguide geometry (left), a
semiconductor microcavity (right), and electromagnetic field configuration of
the TM mode considered. Lower(z = 0) and upper(z = L) interfaces are
perfectly transmitting, while the side walls are perfectly reflecting. Initially,
the optical wave enters in the air buffer (free-space region) and afterwards
propagates in the absorbing medium and exits through another free-space
region; cavity is filled with absorbing medium in the case of semiconductor
microcavity.

consideration. Initially, we apply the plane polarized TEM (or
) mode with amplitude , carrier frequency tuned at

the resonance of the degenerate three-level system, modulated
by an arbitrary envelope. We conjecture a hyperbolic-secant

envelope in two dimensions, as this is the stable solution
envelope in 1-D self-induced transparency [1], [2]. Therefore,
for any time moment, the initial pulse is given by

(11)

where and is the pulse duration. In
the more general TM case, we excite a TM guided mode (e.g.,

) modulated by envelope

(12)



932 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 3, MAY/JUNE 2003

with coefficients given by

(13)

where is the separation between the mirrors andis the re-
fractive index of the medium between the mirrors, which in
the case of a microcavity varies with the axial distance from
the lower interface as the wave propagates through the multi-
layer system. Throughout the computations, we have imposed
absorbing (perfectly transmitting) boundary conditions at the
interfaces and based on the Engquist–Majda
one-way wave equation, derived in [14] and perfectly reflecting
(perfectly conducting) boundary conditions on the side walls of
the waveguide, i.e., . To ensure stability of
the numerical algorithm, the time step is chosen according to
the Courant stability criterion in two dimensions. The system
(1)–(3) [with (8)–(10)] is solved by the FDTD time stepping al-
gorithm with a predictor-corrector iterative scheme at each time
step (see [14, Appendix]).

III. SIMULATION RESULTS

A. Planar Parallel-Mirror Optical Waveguides Filled With
Absorbing Medium

We have thoroughly investigated the SIT phenomenon in two
spatial dimensions in order to identify regimes of stable solitary
wave propagation. As a validation study of the model, initially
we have demonstrated soliton-like behavior of the plane-po-
larized TEM mode of a planar parallel mirror optical wave-
guide containing a resonantly absorbing medium (left part of
Fig. 2). In particular, we show that if the initial pulse area of the
pulse injected in the resonant absorbing medium ,
the 2-D pulse continues to propagate undistorted, as predicted
by the pulse area theorem [1], [2] for 1-D self-induced trans-
parency solitons. We excite a fs pulse from the lower
boundary, whose maximum field amplitude is chosen according
to the pulse area theorem, namely for a h.s.-modulatedpulse
[14]

(14)

We assume the following values of the parameters in our sim-
ulations: excitation wavelength m, corresponding to
a frequency s , coupling coefficient

cm, number of resonant dipoles per unit volume
m , and uniform relaxation times

s in order to satisfy the SIT
criterion and to avoid virtual pulse distortions due to nonuni-
form decay rates. With this choice of parameters, the maximum
pulse amplitude is Vm . The following
space and time steps are assumed in the simulations:

nm, nm, fs. In Fig. 3, we
plot the time evolution of the stable soliton solution for the
field component along with the corresponding population term

as compared with the dispersion case obtained for initial
pulse area , yielding maximum field amplitude

Vm . The comparison clearly shows

(a)

(b)

(c)

(d)

Fig. 3. Comparison between the soliton case (a), (b) and dispersion case (c),
(d). (a) Longitudinal cross-section plot of the normalized componentE of a
2� pulse. (b) Corresponding population inversionS versus distance along the
structure at the timet = 150; 250;350;500 fs; initial population profileS
indicates the boundaries of the absorbing medium. (c) Plot of the normalized
componentE of a 0:9� pulse. (d) Corresponding population inversionS
versus distance at the simulation times of (a), (b).

the increasing asymmetry of the pulse in the latter case, as the
pulse continues to propagate through the absorbing medium.
At the same time, the three-level system is only partially in-
verted and the population term does not exhibit full Rabi flop-
ping, as in the soliton case. The energy absorbed by stimu-
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Fig. 4. Longitudinal cross section of the modulus of the electric field pulse and
the meaningful real coherence vector componentsS , S , andS representing
the dispersive (in-phase) part of the induced medium polarization, the absorptive
(in-quadrature) polarization component, and the Rabi flop of the population
difference in the degenerate three-level system, respectively, for the soliton case
of Fig. 3(a).

lated absorption during the initial fraction of the pulse gradu-
ally decreases, while at the same time the energy returned back
to the electromagnetic field by stimulated emission increases,
thus driving the pulse out of its initial equilibrium symmetric
shape. This process persists until the leading edge of the pulse is
fully absorbed and the trailing edge is emitted through the lower
boundary. By contrast, in the soliton case (a), the pulse main-
tains its fully symmetric shape, thus propagating without losses
through the absorbing medium. We demonstrate numerically
the equivalence of the plane-polarized TEM mode propagation
with the 1-D TE-soliton propagation considered in [9]. The real
coherence vector components which have physical meaning in
this case are plotted in Fig. 4 along with the electric field ex-
citation for the soliton case [Fig. 3(a)]. Furthermore, we show
that the TM guided mode of the planar parallel-mirror wave-
guide which couples all three levels of the quantum system and,
therefore, is irreducible to the 1-D case, exhibits soliton-like be-
havior, if the pulse amplitude satisfies a generalized pulse area
theorem, which we have restated for the mutidimensional pulse
propagation [14]. We show that if the initial pulse area below the
field modulus is chosen as an even multiple of, the solution
obtained is stable and propagates without distortions in the ab-
sorbing medium. We launch a source field given by (12) and (13)
corresponding to the TMguided mode of the waveguide. The
maximum pulse amplitude is calculated according to the gener-
alized pulse area theorem, giving Vm . Spa-
tial steps along the propagation axisare chosen nm,
and nm in the transverse direction, implying a time
step fs. The separation between the mirrors is
taken as m and the refractive index is assumed to
be . In Fig. 5, the time evolution of a (in the sense
of the generalized pulse area theorem) TMpulse is plotted at
three simulation times during the propagation in the absorbing
medium together with the corresponding population inversion
dynamics. The soliton-like behavior is clearly discerned from
Fig. 5(a) and (b), showing unchanged pulse shape as the pulse
travels through the absorbing medium, whose boundaries are in-
dicated by the initial population profile . The population in-
version [Fig. 5(c)] performs two Rabi flops across the transverse
dimension of the optical waveguide due to the symmetry with

(a)

(b)

(c)

(d)

Fig. 5. (a) 3-D plot of the time evolution of the optical field of theTM
pulse modulus at the simulation timest = 90; 125; 155 fs. (b) Longitudinal
cross section of (a) at the same simulation times. (c) 3-D-plot of the population
inversion termS time evolution corresponding to (a). (d) Longitudinal
cross-section plot of (c).

respect to the propagation axis. The longitudinal Rabi flopping
is plotted in Fig. 5(d) showing the same behavior of excitation to
the upper doubly degenerate level and de-excitation back to the
ground state caused by the pulse passage. Moreover, the char-
acteristic cubic polynomial features are also present as in the
previous case (compare with Fig. 4 and [9]).
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Fig. 6. 3-D-plot of the refractive index variation across the structure; cavity is
filled with absorbing medium.

B. Semiconductor Microcavities Filled With
Absorbing Medium

We have investigated numerically conditions of onset of
SIT-cavity soliton formation in a semiconductor microcavity
driven by a coherent ultrashort pulse, applied at the lower
boundary (Fig. 2, right). In order to test the influence of the
cavity length on the patterns, we have designed a number of
2-D semiconductor microcavity geometries at an operating
wavelength m. The first microcavity geometry
considered is composed of a cavity filled with absorbing
medium ( ; initial population dif-
ference is assumed) embedded between 31.5 pairs GaAs/AlAs
quarter-lambda layers [bottom distributed Bragg reflector
(DBR)] and 24 pairs Al Ga As/Al Ga As top DBR
stacks preceded by an intermediate layer AlGa As/GaAs.
The refractive index profile as a function of the in-plane
coordinates corresponding to the above structure is plotted in
Fig. 6. Initially, an ultrashort plane-wave (TEM) pulse
fs is excited from the lower interface (Fig. 2 right-hand side,
or Fig. 6 ), at the atomic resonance carrier frequency,
modulated by a hyperbolic secant as a trial pulse. The choice
of the envelope is assumed consistent with the waveguide
soliton solutions. The maximum pulse amplitude is calculated
according to the pulse area theorem, leading to a value of

Vm . The relaxation times are kept
uniform and equal to 100 ps throughout the simulations in order
to satisfy the SIT criterion and to avoid any distortions that
may occur due to the different time scales of the decoherence
processes. The dipole density and the dipole coupling constant
are chosen in agreement with the previous section, respectively,
as m and cm. The width of the
microcavity between the side mirrors is chosen the same as in
the waveguide case, namely m. In what follows, we
shall show that the pulse area requirement is not a necessary
condition in order to obtain SIT cavity patterns. Similar to
the self-induced transparency in resonantly absorbing Bragg
reflectors (RABR) the initial pulse may have an arbitrary
pulse area [18]–[21]. Even relatively weak pulse amplitudes
would lead to SIT intracavity patterns after sufficiently long
simulation times. We shall be interested in the intracavity
pattern formation dynamics. In Figs. 7 and 8, examples of the

(a)

(b)

(c)

(d)

Fig. 7. (a) 3-D-plots of the modulus of the electric field in the vicinity of
the microcavity. (b) Top view of the modulus of the electric field. (c) 3-D-plot
of the population inversion quasi-stationary pattern induced in the cavity. (d)
Population inversion roll patterns (top view).



SLAVCHEVA et al.: ULTRASHORT PULSE LOSSLESS PROPAGATION THROUGH DEGENERATE THREE-LEVEL MEDIUM 935

(a)

(b)

(c)

(d)

Fig. 8. (a) 3-D-plots of theE electric field component in the vicinity of the
microcavity. (b) Top view of theE electric field component distribution. (c)
3-D-plot of theE component. (d) Top view of the spatial pattern of theE
field component.

Fig. 9. Longitudinal cross section of the refractive index profile at a distance
6 �m from the left interface.

quasi-stationary periodic patterns found are plotted. Localized
electric field modulus (or, equivalently electric field intensity)
roll patterns are observed within the cavity (see top line of
Fig. 7), giving rise to a specific number of full Rabi flops of
the population from the ground state with initial population
profile to the upper degenerate level with population
profile , returning the population back to the ground
state. Note that the number of full Rabi flops performed within
the cavity is exactly equal to the number of the half-wave-
lengths across the cavity length (nine in this case, since the
cavity length has been chosen . Although
the amplitude of the field intensity is changed with time, the
number of the maxima within the cavity corresponds to the
number of the Rabi flops in the level population occupancy,
thus forming a population inversion grating. The electric field
pattern and the population roll pattern exhibit the features of
quasi-stationary standing wave (quiescent) SIT-soliton. The
population Rabi flopping inside the cavity gradually builds
up with time starting from only a partially inverted system to
ultimately a completely inverted system (or very close to it), as
shown in Fig. 7(c) and (d). The combined effect of the multiple
reflections from the Bragg mirrors and the cavity length of the
Fabry–Pérot resonator (chosen as a multiple of the dielectric
half-wavelength) enhances the coupling between the driving
electromagnetic field and the three-level absorbing medium,
thus resulting in electric field localization (standing wave) and
at the same time causing Rabi flops of the population inversion
at the antinodes of the quasi-stationary standing wave. In fact,
this situation is reminiscent of the continuous wave formation
of a standing wave profile along the cavity. However, the
continuous wave amplitude is not sufficient to invert locally the
system. This can be achieved by an ultrashort pulse excitation
with sufficiently high intensity. At the same time, roll patterns
and more complicated ones are observed for theand
field component, as can been from Fig. 8(a)–(d).

In order to test out the hypothesis of the existence of a unique
type of SIT nonlinear mode inside the cavity, we have performed
simulations on a number of different designs and driving pulse
durations. In particular, we have designed a structure operating
at m shown in Fig. 9.

The semiconductor microresonator consists of two Bragg
mirrors, GaAs/AlAs (31.5 pairs), and Al Ga As
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(a)

(b)

(c)

(d)

Fig. 10. (a) 3-D-plots of the E-field modulus. (b) Top view of (a) showing the
roll patterns formed. (c) 3-D-plot of the corresponding population inversionS

in the cavity. (d) Top views of (c) showing the roll patterns formed.

Al Ga As (24 pairs), respectively, for the bottom and
top DBR, and a cavity. We apply a driving pulse

(a)

(b)

Fig. 11. (a) Top view of theE field component in the vicinity of the cavity.
(b) Top view of theE field component showing a complex pattern.

excitation with duration fs, which results in a
maximum field amplitude of Vm , if the
pulse area relationship is assumed to be still valid. In Fig. 10,
the electric field modulus and the population inversion profile
in the cavity are plotted. The roll patterns are evident both for
the E-field and for the population inversion [Fig. 10(d)]. The
number of half-wavelengths over the cavity length and the
quasi-complete Rabi flops of the population is ten, i.e., exactly
equal to the number of dielectric half-wavelengths contained
within the cavity length in agreement with
the design parameter. This represents another confirmation of
the positioning and the number of the maxima of the population
grating induced by the cavity field. The respective E-field
component patterns are shown in Fig. 11(a) and (b).

To summarize our simulation results for the semiconductor
microcavities, we have demonstrated numerically on the basis
of the Maxwell-pseudospin [(1)–(3) with (8)–(10)] the existence
of a new type of a multidimensional spatiotemporally localized
standing-wave “light bullet.” The SIT-cavity quasi-soliton is a
product of the interplay between the resonant nonlinearity of the
atomic medium and the Bragg reflections in the Fabry–Pérot mi-
croresonator. Intuitively, we expect that the pulse area theorem
does not apply for a multilayer (nonuniform) medium, since
the pulse area is split between the forward and backward (re-
flected) propagating waves and is no longer conserved. How-
ever, even driving the cavity from outside the microresonator,
applying sufficiently high initial pulse intensities (calculated on
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the basis of the pulse area theorem in homogeneous medium),
we could still compensate for the attenuation of the wave in-
tensity due to the multiple back-reflections during the passage
through the Bragg mirror, as the simulations show. It becomes
apparent that the proper design of a high-finesse semiconductor
microcavity geometry is crucial for the stability of the observed
SIT cavity patterns.

IV. SUMMARY

In this paper, we employ the methodology of numerical
FDTD solution of the full-wave vectorial Maxwell-pseudospin
system to explore the conditions of onset of a self-induced
transparency soliton regime of propagation in planar optical
waveguides containing resonant nonlinearities and to predict
a novel type of multidimensional SIT pattern formation in the
semiconductor microcavities loaded with absorbing medium.
We have successfully demonstrated self-induced transparency
in two spatial dimensions in resonantly absorbing planar
parallel mirror waveguides and generalized accordingly the
pulse area theorem to the multidimensional case. Furthermore,
we have extended the model to account for the multiple
reflections in the multilayer DBR mirrors and applied it to the
number of realistic geometries of semiconductor microcavities
in two spatial dimensions. We have focused on the specific
class of spatiotemporally localized multidimensional solitons
predicted by the numerical computations which manifests
itself by spatial pattern formation and a related grating of the
population inversion. The advantage of the present approach
is in capturing a full physical picture of the resonant coherent
interactions beyond the limitations imposed by the slowly
varying envelope and rotating wave approximations, thus
enabling us to describe the spatiotemporal dynamics of the
ultrashort pulse interactions. It is possible to implement within
the adopted formalism the more realistic inhomogeneously
broadened resonant line shape by introducing the appropriate
resonant energy distribution function into the active medium.
However, we expect that the inclusion of inhomogeneous
broadening would not result in any dramatic changes of the SIT
soliton-like behavior. We believe that a complete understanding
of the design issues and the initial operative conditions is
essential for the realization of devices based on the principles
of the self-induced transparency.

ACKNOWLEDGMENT

The authors would like to acknowledge the CPU time on
the multiprocessor parallel server available under SHEFC grant
VIDEOS at the Department, which made it possible to perform
the simulations within reasonable time scales.

REFERENCES

[1] S. L. McCall and E. L. Hahn, “Self-induced transparency,”Phys. Rev.,
vol. 183, pp. 457–485, 1969.

[2] , “Self-induced transparency by pulsed coherent light,”Phys. Rev.
Lett., pp. 908–911, 1967.

[3] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms. New York: Wiley, 1975.

[4] A. I. Maimistov, A. M. Basharov, O. Elyutin, and Yu. M. Sklyarov,
“Present state of self-induced transparency theory,”Phys. Rep., vol. 191,
pp. 1–108, 1990.

[5] J. C. Eilbeck, J. D. Gibbon, P. J. Caudrey, and R. K. Bullough,J. Phys.
A: Math., Nucl. Gen., vol. 6, p. 1337, 1973.

[6] P. P. Goldstein, “Testing the Painlevé property of the Maxwell-Bloch and
reduced Maxwell-Bloch equations,”Phys. Lett. A, vol. 121, pp. 11–14,
1987.

[7] A. Grauel, “Optical networking update,”J. Phys. A, vol. 19, pp.
479–779, 1986.

[8] R. K. Bullough, P. M. Jack, P. W. Kitchenside, and R. Saunders, “Soli-
tons in laser physics,”Phys. Scr., vol. 20, pp. 364–381, 1979.

[9] R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse in-
teractions with two-level atoms,”Phys. Rev. A, vol. 52, pp. 3082–3094,
1995.

[10] Y. Silberberg, “Collapse of optical pulses,”Opt. Lett., vol. 15, pp.
1282–1284, 1990.

[11] M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally lo-
calized multidimensional solitons in self-induced transparency media,”
Phys. Rev. Lett., vol. 84, pp. 1906–1909, 2000.

[12] W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust control-
lable localized states of a nonlinear cavity,”Phys. Rev. Lett., vol. 76,
pp. 1623–1626, 1996.

[13] S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M.
Guidici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller,
and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,”
Nature, 2002.

[14] G. Slavcheva, J. M. Arnold, I. Wallace, and R. W. Ziolkowski, “Coupled
Maxwell-pseudospin equations for investigation of self-induced trans-
parency effects in a degenerate three-level quantum system in two di-
mensions: finite-difference time-domain study,”Phys. Rev. A, vol. 66,
p. 063 418, 2002.

[15] F. T. Hioe, “Dynamic symmetries in quantum electronics,”Phys. Rev. A,
vol. 28, pp. 879–886, 1983.

[16] A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Norwood, MA: Artech, 1995.

[17] A. C. Newell and J. V. Moloney,Nonlinear Optics. Redwood City, CA:
Addison-Wesley, 1992, p. 233.

[18] A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg re-
flectors: Gap solitons near absorption resonances,”Phys. Rev. Lett., vol.
74, pp. 5020–5023, 1995.

[19] A. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap
solitons in resonantly absorbing gratings,”Phys. Rev. Lett., vol. 81, pp.
3647–3650, 1998.

[20] M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally lo-
calized solitons in resonantly absorbing Bragg reflectors,”Phys. Rev. E,
vol. 62, pp. R57–R59, 2000.

[21] G. Kurizki, D. Petrosyan, T. Opratny, M. Blaauboer, and B. Malomed,
“Self-induced transparency and giant nonlinearity in doped photonic
crystals,”J. Opt. Soc. Amer. B, vol. 19, pp. 2066–2074, 2002.

Gabriella Slavcheva received the M.Sc. degree in
semiconductor physics from Sofia University, Sofia,
Bulgaria, in 1983 and the Ph.D. degree in theoretical
condensed matter physics from the Bulgarian
Academy of Sciences, Sofia, Bulgaria, in 1997.

After graduation, she joined the Institute of Solid
State Physics (BAS) as a Ph.D. student doing theoret-
ical and experimental research on low-dimensional
disordered semiconductor nanostructures. She spent
subsequently three-and-a-half years leave in the In-
stitute of Acoustics (C.N.R.), Rome, Italy, working

on vibrational dynamics of semiconductor superlattices and inhomogeneous
elastic membranes and a six-month leave at the Physics Department, Chula-
longkorn University, Bangkok, Thailand, as a Visiting Professor, working on
the path-integration methods applied to the electronic structure calculations of
low-dimensional disordered semiconductors. In 1999, she joined the Device
Modeling Group at the University of Glasgow, U.K. There she worked on a
NASA project “Limits of miniaturization of Semiconductor Devices,” devel-
oping theoretical methods for treatment of statistical fluctuations in sub-0.1–�m
devices and quantum confinement effects, incorporated in the three-dimensional
atomistic solver. In 2000, she joined the Optoelectronics Research Group. Her
research interests include the development of a quantum electronics model for
the nonlinear coherent dynamics in one and two dimensions and FDTD nu-
merical implementation on a parallel multiprocessor server. Her research inter-
ests also include theoretical condensed matter physics, theoretical and computa-
tional quantum electronics, nonlinear optics, and high-performance computing.
She has published more than 30 research articles in refereed journals and papers
at international conferences.



938 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 3, MAY/JUNE 2003

John M. Arnold received the B.Eng. degree in
electronic engineering and the Ph.D. degree from
the University of Sheffield, U.K., in 1968 and 1974,
respectively.

He was a Postdoctoral Research Assistant at the
Department of Electronic and Electrical Engineering,
Queen Mary College, University of London, London,
U.K., from 1974 to 1978. In 1978, he was appointed
Lecturer at the Department of Electronic and Elec-
trical Engineering, University of Nottingham, U.K.
In 1985, he was appointed Lecturer in the Department

of Electronics and Electrical Engineering, University of Glasgow, U.K., where
has been Professor of Applied Electromagnetics since 1994. He was appointed
Head of Department of Electronics and Electrical Engineering in April 2003.
His research interests include mathematical methods in applications to optics
and electromagnetic wave propagation, particularly in nonlinear guided-wave
optics and semiconductor lasers.

Dr. Arnold is a Fellow of the Institute of Physics. He is a Member of the
URSI Commission B and has served as the U.K. National Representative for
URSI Commission B from 1991 to 1996.

Richard W. Ziolkowski (M’87–SM’91–F’94)
received the Sc.B. degree in physicsmagna cum
laude from Brown University in 1974 and the M.S.
and Ph.D. degrees in physics from the University
of Illinois, Urbana-Champaign, in 1975 and 1980,
respectively.

He was a Member of the Engineering Research
Division at the Lawrence Livermore National
Laboratory from 1981 to 1990 and served as the
Leader of the Computational Electronics and
Electromagnetics Thrust Area for the Engineering

Directorate from 1984 to 1990. He joined the Department of Electrical and
Computer Engineering at the University of Arizona, Tempe, as an Associate
Professor in 1990, and was promoted to Full Professor in 1996. His research
interests include the application of new mathematical and numerical methods
to linear and nonlinear problems dealing with the interaction of acoustic and
electromagnetic waves with realistic materials and structures.

Dr. Ziolkowski is a member of Tau Beta Pi, Sigma Xi, Phi Kappa Phi, the
American Physical Society, the Optical Society of America, the Acoustical So-
ciety of America, and Commissions B (Fields and Waves) and D (Electronics
and Photonics) of the International Union of Radio Science (URSI). He was an
Associate Editor for the IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION

from 1993 to 1998. He served as the Vice Chairman of the 1989 IEEE/AP-S
and URSI Symposium in San Jose, CA, and as the Technical Program Chair-
person for the 1998 IEEE Conference on Electromagnetic Field Computation
in Tucson, AZ. He served as a member of the IEEE AP-S Administrative Com-
mittee (ADCOM) from 2000 to 2002. For the U.S. URSI Commission B, he
served as Secretary from 1993 to 1996 and as Chairperson of the Technical Ac-
tivities Committee from 1997 to 1999. He is currently serving as a Member-at-
Large of the U.S. National Committee (USNC) of URSI and as Secretary for the
U.S. URSI Commission D. He was a Co-Guest Editor of the 1998 special issue
of Journal of the Optical Society of America A, featuring Mathematics and Mod-
eling in Modern Optics. He was a Co-Organizer of the Photonics Nanostructures
Special Symposia at the 1998, 1999, and 2000 OSA Integrated Photonics Re-
search (IPR) Topical Meetings. He served as the Chair of the IPR subcommittee
IV, Nanostructure Photonics, in 2001. He was awarded the Tau Beta Pi Pro-
fessor of the Year Award in 1993 and the IEEE and Eta Kappa Nu Outstanding
Teaching Award in 1993 and 1998.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


