

Citation for published version: Wang , M-Y, Ings, TC, Proulx, MJ & Chittka, L 2013, 'Can bees simultaneously engage in adaptive foraging behaviour and attend to cryptic predators?', Animal Behaviour, vol. 86, no. 4, pp. 859-866. https://doi.org/10.1016/j.anbehav.2013.07.029

DOI: 10.1016/j.anbehav.2013.07.029

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1 FINAL DRAFT AUTHOR COPY, FOR COPY OF RECORD: http://www.sciencedirect.com/science/article/pii/S0003347213003515 2 Wang, M. Y., Ings, T. C., Proulx, M. J., & Chittka, L. (2013). Can bees 3 simultaneously engage in adaptive foraging behaviour and attend to cryptic 4 predators? Animal Behaviour, 86, 859-866. 5 6 7 Can Bees Simultaneously Engage in Adaptive Foraging Behaviour and Attend to 8 **Cryptic Predators?** 9 Mu-Yun Wang^a, Thomas C Ings^{ab*}, Michael J Proulx^{ac} and Lars Chittka^a 10 11 a. Biological and Experimental Psychology Group, School of Biological and 12 13 Chemical Sciences, Queen Mary University of London 14 b. Present address: Animal & Environment Research Group, Department of Life 15 Sciences, Anglia Ruskin University, Cambridge, UK. 16 c. Present address: Department of Psychology, University of Bath 17 * Corresponding author: Thomas C Ings 18 19 Animal & Environment Research Group 20 Department of Life sciences 21 Anglia Ruskin University 22 East Road 23 CAMBRIDGE CB1 1PT 24 Tel: + 44 (0)1223 69 8614 25 Fax: +44 (0)1223 417712 e-mail: thomas.ings@anglia.ac.uk 26

28	Bees foraging for nectar often have to discriminate between flowers with similar
29	appearance but different nectar rewards. At the same time, they must be vigilant for
30	ambush predators, such as crab spiders, which can camouflage themselves on flowers.
31	Here we ask whether bees can efficiently discriminate similar flower colours while
32	exposed to predation threat from cryptic predators. Bees were individually tested in
33	tightly controlled laboratory experiments using artificial flowers whose nectar supply
34	was administered with precision pumps. Predation risk was simulated by automated
35	crab spider 'robots' that captured bees for a limited duration without injuring them.
36	Bees' behaviour was monitored by a 3D video tracking system. We experimented
37	both with cryptic and conspicuous spiders, finding that bees had no difficulty avoiding
38	conspicuous spiders while still foraging adaptively. Conversely, they prioritised
39	predator avoidance at the expense of maximising energy intake when faced with
40	detecting cryptic predators and a difficult colour discrimination task. This difference
41	in behaviour was not due to cognitive limitations: bees were able to discriminate
42	between similar flower types under predation risk from cryptic spiders when choosing
43	the safe flower type incurred a gustatory punishment in the form of bitter quinine
44	solution. However, this resulted in bees incurring substantially higher costs in terms
45	of floral inspection times. We conclude that bees have the capacity to attend to

46	difficult foraging tasks while simultaneously avoiding cryptic predators, but only do
47	so when avoidance of gustatory punishment justifies the increased costs.
48	
49	keywords: attention, bumblebees, Bombus terrestris, foraging, predator avoidance,
50	predator crypsis, visual search

52	Animals are exposed to a constant flow of complex sensory input. Foragers, for
53	example, must prioritize information relevant to important tasks, such as locating the
54	most rewarding food items or detecting predators (Milinski 1984; Godin & Smith
55	1988; Clark & Dukas 2003). For many animals, such as bees, foraging and visual
56	search often require a trade-off between attending to the foraging target (e.g. flowers)
57	and focusing on potential danger in the environment (e.g. sit-and-wait predators on
58	flowers). A foraging bee will spend most of its time choosing between visual targets
59	(flowers) that vary in colour, shape, and pattern – and is under constant pressure to
60	select the most rewarding flowers while minimizing predation risk and energetic costs
61	(Chittka & Menzel 1992). The task can be challenging and highly dynamic since there
62	are distractor flowers, i.e. other plant species with different traits (Schaefer & Ruxton
63	2009) and camouflaged predators in the field (Morse 2007). Many plant species, such
64	as those in the orchid family, have flowers which resemble the appearance or odour of
65	co-occurring, rewarding species to attract pollinators (Dafni 1984; Roy & Widmer
66	1999). Moreover, predators can use the attractiveness of flowers to lure their prey. For
67	example, crab spiders (Araneae: Thomisidae) are sit-and-wait predators that ambush
68	pollinators, such as bees, on flowers (Chittka 2001; Insausti & Casas 2008). Some
69	species of crab spiders can reversibly change their body colour to match that of the

70	flower they are hunting on (Morse 1986). They even preferentially hunt on high
71	quality flowers (Morse 1986), which are also preferred by foraging bees (Menzel et al.
72	1993; Heiling et al. 2004).
73	We have a good understanding of the individual problems facing foraging bees:
74	how they choose between different flowers (Giurfa & Lehrer 2001; Shafir et al. 2003;
75	Chittka and Raine 2006) and how they interact with predators (Heiling & Herberstein
76	2004; Dukas 2005; Reader et al. 2006). Bees can associate food rewards with specific
77	floral traits, such as colour, and can successfully discriminate between even subtle
78	differences in traits to maximise foraging efficiency (Dyer & Chittka 2004a).
79	Furthermore, bees are able to learn to avoid both individual flowers harbouring
80	predators and sets of flowers of a given type (colour) associated with predation risk
81	(Ings & Chittka 2008, 2009; Jones & Dornhaus 2011). However, it is not known how
82	bees perform when exposed to both flower colour discrimination and predator
83	avoidance tasks simultaneously, a situation which bees must naturally face. Evidence
84	from field studies suggests that bees may choose to avoid a patch harbouring
85	predatory crab spiders (Dukas & Morse 2003), and laboratory studies indicate that
86	bees may also choose to switch to a less risky flower species (Ings & Chittka 2009;

87	Jones & Dornhaus 2011). Therefore, we ask whether bees have the perceptual and
88	cognitive processing power to carry out such tasks simultaneously.
89	Early work on insects seemed to indicate that pollinators can only efficiently deal
90	with one task at a time (Lewis 1986), and indeed animals with substantially larger
91	brains have extensive capacity limitations in perceptual processing resulting in
92	significant costs associated with performing the precise discrimination of more than
93	one stimulus dimension (Kahneman 1973; Pashler 1998; Dukas 2009). For example,
94	in humans there are severe information processing consequences when one must
95	divide attention between two forms of visual input as simple as shape and orientation,
96	such that only one task can be attended to at a time (Joseph et al. 1997). Therefore, we
97	might expect such capacity limitations to be all the more important in much smaller
98	animals with concomitant smaller nervous systems, such as bumblebees.
99	In this study we ask whether bumblebees are able to maximise energy gains by
100	solving a difficult colour discrimination task whilst simultaneously exposed to
101	predation threat from camouflaged or conspicuous predators. Firstly, we exposed bees
102	to an ecologically relevant scenario where they foraged in an artificial meadow with
103	two visually similar flower types differing in reward quality. Visiting the highly
104	rewarding flower type was risky because 25% of flowers harboured predatory crab

105	spider models. If bees are able to simultaneously solve colour discrimination and
106	predator avoidance tasks we predict that they will visit the highly rewarding species
107	but avoid individual flowers that are risky. Our null hypothesis is that bees are unable
108	to attend to two difficult tasks simultaneously and that i) bees will prioritise predator
109	detection and avoidance when predators are camouflaged and ii) they will continue to
110	maximise energy gains when predators are highly conspicuous. Secondly, because
111	bees did not simultaneously focus on predator avoidance and maximising energy
112	gains we ask whether this is a result of limited cognitive capacity. In this experiment
113	we manipulated the balance of risk and reward beyond that naturally encountered by
114	incorporating gustatory punishment into the colour discrimination task. Under this
115	scenario we predict that bees will be unable to focus on predator avoidance as well as
116	discriminating between rewarding and distasteful flowers. Ultimately, we hypothesise
117	that such limitations in sensory processing will increase indirect trait-mediated effects
118	of predators on plants when predators are cryptic – i.e. bees will alter their foraging
119	preferences when exposed to predation threat from camouflaged predators.

120

121 METHODS

122 Study Animals

123	Three colonies of bumblebees (<i>Bombus terrestris</i> Dalla Torre 1882) from a
124	commercial supplier (Syngenta Bioline Bees, Weert, Netherlands) were used in the
125	experiment. All the bees were individually tagged with number tags (Christian Graze
126	KG, Weinstadt-Endersbach, Germany). Colonies were kept at room temperature
127	(~23°C) and subjected to a 12 hr light/dark cycle (light on at 8am). Sucrose solution
128	(50%, v/v) and pollen was provided ad libitum. A total of 54 foragers were used in the
129	experiments.
130	
101	Experimental Apparatus
131	Experimental Apparatus
132	All experiments were conducted in a wooden flight arena ($1.0 \times 0.72 \times 0.73$
133	m) with a UV-transmitting Plexiglas lid. Two twin lamps (TMS 24 F with HF-B 236
134	TLD [4.3 kHz] ballasts, Philips, The Netherlands) fitted with Activa daylight
135	fluorescent tubes (Osram, Germany) were suspended above the flight arena to provide
136	controlled illumination. Artificial flowers (7×7 cm acrylic, 1 mm thick) were arranged
137	in a four by four vertical grid on one end wall of the arena on a grey background (Fig.
138	A1). The opposite wall contained an entrance hole through which the bees could enter
139	the arena from the colony. Bees were able to access rewards (sucrose solution)
140	through a hole which was 10 mm above a wooden landing platform (40×60 mm). A Page 8 of 42

141	constant flow (1.85 \pm 0.3 μ l per minute) of sugar solution (reward) was supplied to
142	each flower from individual syringes attached to two multi-syringe infusion pumps
143	(KD Scientific, KD220, Holliston, USA). At each flower, the solution was delivered
144	via silicone tubing ending in a 26G syringe needle (BD Microlance Drogheda, Ireland;
145	0.45×13 mm) temporarily held in place in front of the hole in the wall by reusable
146	adhesive (Blue Tack , Bostick, USA). A maximum droplet volume of $4.70 + 0.3 \mu l$
147	could be reached before it fell into a 'waste pot' which was not accessible to bees
148	(thus mimicking a flower that had been emptied by a bee). This avoided unvisited
149	flowers from becoming excessively rewarding and the slow refill rate prevented bees
150	from revisiting a flower immediately after removing the reward. Re-visits did occur
151	$(3.59 \pm 0.4 \text{ per flower})$ as we had a limited number of flowers in the arena, but these
152	typically occurred after the bees had visited several other flowers in the arena first
153	$(130.84 \pm 14.7 \text{ seconds between revisits})$. Robotic 'spider arms' (custom-built by
154	Liversidge & Atkinson, Romford, UK) covered with sponges were set up at the base
155	of the flowers to simulate predation attempts. The trapping mechanism enabled us to
156	capture bees without causing physical damage. 'Dangerous flowers' were fitted with
157	life-sized crab spider (Misumena vatia) models (1 = 12mm, made from Gedeo Crystal
158	resin) placed on the flowers above the feeding hole. The flight behaviour and position

159	of bees were recorded during the experiment with three dimensional coordinates of
160	bee positions being calculated 50 times per second using two video cameras
161	connected to a computer running Trackit 3D software (BIOBSERVE GmbH, Bonn,
162	Germany).
163	
164	Pre-training
165	All bees were allowed to fly in the flight arena without any presentation of
166	floral signals for at least one day before the experiment. A constant flow $(1.85 + 0.3)$
167	μl per minute) of 50% (v/v) sucrose solution was given as a food reward. Only bees
168	that left the colony and fed on the flowers consistently for at least three consecutive
169	foraging bouts were used in the experiments.
170	
171	Experimental Design
172	Experiment 1: Discriminating Reward Quality under Predation Risk.
173	In this experiment we asked whether bees exposed to an ecologically relevant
174	scenario were able to simultaneously solve a colour discrimination task to maximise

175	energy gains whilst avoiding conspicuous or camouflaged predators. Bees could
176	choose between two types of flowers that were similar shades of yellow to human
177	observers (neither shade of yellow reflected appreciable amounts of UV light and
178	therefore both colours were green to bees, i.e. they stimulated predominantly the bees'
179	green receptors; Fig. 1a). The flower colours were chosen so that bees could
180	distinguish between them, but only with significant difficulty (see Supplementary
181	Data). The darker shade of yellow (which was associated with high quality rewards)
182	was distinguished from the lighter yellow shade (low quality rewards or penalties) by
183	a colour hexagon difference of only 0.084 units, which indicates poor discriminability
184	according to previous work (Dyer & Chittka 2004a). We also tested experimentally
185	that the two colours were distinguishable for bees, but with difficulty (Appendix 1).
186	The high quality (dark yellow) flowers carried a risk of predation from either
187	conspicuous or cryptic 'robotic spiders' (Ings & Chittka 2008). Twenty-five percent
188	of the flowers harboured a spider. Conspicuous spiders were of white appearance to
189	human observers. They absorbed UV to some extent (Fig. 1b), and they therefore
190	appear blue-green to bees. However, some of the white spiders' reflectance still
191	extended into the highly sensitive UV-receptor's domain below 400nm. These spiders?
192	colour loci therefore appear very close to the uncoloured point ('bee-white', in the

Page 11 of 42

193	centre of the colour hexagon; Fig. 1a). They were distinguished by a colour contrast
194	(colour hexagon distance) of 0.439 units from the dark yellow flower substrate,
195	indicating a high level of conspicuousness. The contrast provided specifically to
196	bumblebees' green receptor is also important, since this receptor feeds into the
197	motion-sensitive system and is thus often crucial in target detection (Dyer et al. 2008).
198	Green receptor contrast between white spiders and their dark yellow flower backdrop
199	is likewise large (0.104 on a scale of 0 to 1 where zero equals no contrast) indicating
200	high detectability of the white spiders both in terms of colour contrast as well as green
201	contrast. Conversely, cryptic spiders were dark yellow like the flowers on which they
202	were placed, and both colour contrast (0.036 hexagon units) and green contrast (0.004)
203	values were very low, indicating poor detectability of these spiders. As in a previous
204	study (Ings & Chittka 2008) the spiders were only detectable using
205	shape-from-shading cues.
206	Individual bees ($N = 34$ randomly selected from 2 colonies) were initially
207	trained to distinguish between the shades of yellow, with the darker yellow flowers
208	containing high quality rewards (50% v/v sucrose) and the lighter yellow flowers
209	providing low quality rewards (20% v/v sucrose). Training continued until bees made
210	a minimum of 200 flower choices. To reach this criterion, bees returned to the nest to

Page 12 of 42

211	$chipty then crops there to five times (number of foldsing bouts, cryptic = 1.9 \pm 0.7,$
212	conspicuous = 3.7 ± 0.3 , total duration in minutes: cryptic = 45.27 ± 3.71 ;
213	conspicuous = 40.93 ± 3.43). All bees were allowed to complete their final foraging
214	bout and return to the nest under their own volition to avoid unnecessary handling that
215	may have influenced their predator avoidance behaviour. To prevent bees from
216	learning the locations of high reward flowers the positions of all flowers were
217	randomly reassigned between every foraging bout. Redistribution of flowers and their
218	food supply (syringe needles at the end of the silicone tubing) took under five
219	minutes, and in most cases was achieved before bees had emptied their honey crops in
220	the nest and returned to the nest entrance tube. After initial colour discrimination
221	training, bees were randomly assigned to one of two groups exposed to predation risk
222	on high quality flowers (25% of flowers harboured robotic spiders) by either
223	conspicuous (white spider model on dark yellow flower; Fig. 1) or cryptic (dark
224	yellow spider model on dark yellow flower) spiders ($N = 17$ in each group). Predator
225	avoidance training lasted for a further 200 flower choices (total duration of avoidance
226	training in minutes: cryptic = 32.52 ± 2.91 ; conspicuous = 41.32 ± 5.09). Every time a
227	bee landed on a high reward flower with a spider (dangerous flower) it received a
228	simulated predation attempt whereby the bee was held by the arms of a robotic crab

empty their crops three to five times (number of foraging bouts: cryptic = 4.9 ± 0.7 ;

Page 13 of 42

229	spider for two seconds. This emulates natural spider attacks on bumblebees where
230	bees are grasped by the raptorial forelegs of the spider but manage to escape, avoiding
231	immobilization by the spider's bite. As in colour discrimination training, locations of
232	all flowers were randomly reassigned between foraging bouts (number of foraging
233	bouts: cryptic = 4.9 ± 0.8 ; conspicuous = 4.2 ± 0.3).

234

235 Experiment 2: Discriminating Gustatory Punishment and Reward under Predation

236 *Risk*

237	To determine whether the apparent inability of bees to solve colour
238	discrimination and cryptic predator avoidance tasks simultaneously was due to
239	limitations in sensory processing or attention we conducted a second experiment
240	where the balance of risk and reward was adjusted beyond that naturally encountered.
241	In this experiment, a third group of bees ($N = 10$ from colony 3) was given an
242	additional incentive to discriminate between the shades of yellow flower by replacing
243	the low quality rewards with a form a gustatory punishment, a distasteful (bitter)
244	quinine hemisulfate solution that bees rapidly learn to avoid (Chittka et al. 2003). This
245	solution contained no sucrose. Bees do not ingest this solution and abort flower visits
246	immediately upon tasting it. It has been demonstrated empirically that such Page 14 of 42

247	punishment generates much stronger discrimination than simply rewardless flowers
248	that need to be distinguished from rewarding flowers (Chittka et al. 2003). Thus, bees
249	were initially trained to distinguish between dark yellow rewarding flowers containing
250	50% v/v sucrose solution and light yellow distasteful flowers containing 0.12%
251	quinine solution. After colour discrimination training for 200 flower choices (see
252	Experiment 1, total duration in minutes = 37.79 ± 3.78) bees were then exposed to
253	predation risk (25%) from cryptic spiders (the hardest predator avoidance task) on the
254	rewarding (dark yellow) flowers for a further 200 flower visits (total duration = 31.75
255	\pm 2.33 minutes). Locations of flowers were randomly re-assigned between every
256	foraging bout (number of bouts: colour discrimination training = 3.7 ± 0.3 ; predator
257	avoidance training = 4.4 ± 0.4).
258	
259	Data Analysis
260	Individual bees' preferences for highly rewarding flowers (dark yellow) were

261 calculated from their final 30 flower choices of the colour discrimination training

262 phase in both experiments. These preferences were then used to determine predator

avoidance during the training phase, where bees were exposed to predation risk

264 (pairwise comparisons using paired *t* tests or Wilcoxon Signed Rank Tests if data Page 15 of 42

265	violated the assumptions of the t test – all tests were 2-tailed). For example, under the
266	null hypothesis of no spider avoidance, a bee that chose highly rewarding flowers at a
267	frequency of 80% at the end of training would be expected to choose dangerous
268	flowers (2 dangerous flowers out of 8 highly rewarding flowers) with a probability of
269	$0.8 \ge 0.25 = 0.2.$

270	The time bees spent investigating and feeding on flowers was calculated from
271	time and position data recorded using Trackit 3D software. Investigating zones were 7
272	cm (length) by 9 cm (width) by 9 cm (height) from landing platforms, and the feeding
273	zones were 4.5 cm by 1 cm by 1 cm from the feeding hole. Investigating zones were
274	set based on the visual angles of bumblebees where bees were able to detect both
275	flower signals and predators using colour contrast (Spaethe et al. 2001) and feeding
276	zones were based on observation of the position bees take whilst feeding at the
277	flowers. Only instances when bees landed and fed on the flowers were considered as
278	choices. Investigation duration was quantified as the time spent in the investigation
279	zone before landing on a flower, or choosing to depart (when bees rejected the flowers
280	without landing). Data were analysed using R (v. 2.15.1) and JMP (v. 7, SAS
281	Institute). Four bees which lost motivation (i.e. stopped foraging) during training were
282	excluded from the analysis (2 per group in Experiment 1).

284 RESULTS

285 Discrimination Learning

286	Bees in both experiments were trained to differentiate between two similar
287	shades of yellow flower. In the first experiment, colour discrimination was reinforced
288	by differences in reward quality, whereas in the second experiment it was reinforced
289	by the use of a gustatory punishment in the lighter shade of flowers versus sugar
290	reward in the dark yellow flowers. All bees commenced training without a preference
291	(Fig. 2) for either shade of yellow, irrespective of reward level or punishment (mean
292	$[\pm 1SEM]$ percentage of dark yellow flowers selected during the first 30 choices:
293	conspicuous spider group = 50.0 ± 2.25 , cryptic spider group = 48.7 ± 5.4 , quinine
294	group = 49.3 ± 3.9; ANOVA: $F_{2,37}$ = 0.029, P = 0.971; one sample <i>t</i> test against
295	random visits [50%] on pooled data for all groups of bees: $t_{39} = -0.285$, $P = 0.777$; Fig.
296	2). However, by the end of the colour discrimination training, bees in Experiment 1
297	had developed a slight, but significant preference (Fig. 2) for the dark yellow flowers
298	(59.7 \pm 2.0 % [pooled data for both groups] dark yellow flowers selected during the
299	last 30 choices; one sample <i>t</i> test [against 50%]: $t_{29} = 4.853$, $P < 0.001$). Furthermore,
300	colour discrimination was significantly greater in Experiment 2 where bees were Page 17 of 42

incentivised by bitter quinine in the light yellow flowers (83.3 ± 4.0 % dark yellow flowers selected: *t* test [Experiment 1 versus Experiment 2], $t_{38} = -5.710$, P < 0.001; Fig 2).

304

305 Discriminating Reward Quality under Predation Risk

306	Both groups of bees in Experiment 1 rapidly learnt to avoid robotic spiders (Fig. 3),
307	although the initial avoidance response was stronger when spiders were conspicuous
308	(Fig. 3; Mann-Whitney U Test: $U = 197.5$, $N_1 = N_2 = 15$, $P < 0.001$). By the end of
309	training, both groups visited virtually no dangerous flowers (median percentage
310	during the last 30 choices for both groups = 0.0 and the inter-quartile range = 3.3 ;
311	Wilcoxon Signed Rank Test: $T = 4.790$, $N = 30$, $P < 0.001$; Fig. 3). However, the two
312	groups differed significantly in their ability to simultaneously discriminate between
313	similar shades of yellow flowers in order to maximise their energy intake (mean
314	percentage of safe, highly rewarding flowers chosen during the last 30 choices:
315	cryptic spiders = 36.7 ± 2.8 , conspicuous spiders = 52.7 ± 4.4 ; <i>t</i> test: $t_{28} = 3.097$, <i>P</i> =
316	0.004; Fig. 2). Bees encountering conspicuous spiders regained their slight preference
317	for high reward flowers (one sample <i>t</i> test against random visits [37.5 %]: $t_{14} = 3.483$,
318	P = 0.004) whereas bees exposed to cryptic spiders failed to discriminate between Page 18 of 42

319 high and low reward flower types and foraged from all safe flowers at random (one

320 sample *t* test against random visits [37.5 %]: $t_{14} = -0.300$, P = 0.769).

Exposure to predation risk had no significant impact on the average time spent inspecting flowers (comparison of mean duration before and after spiders were added, paired *t* test: conspicuous spider group: $t_{14} = 0.003$, P = 0.998; cryptic spider group: $t_{14} = 1.354$, P = 0.197, Fig. 4).

325

326 Discriminating Gustatory Punishment and Reward under Predation Risk.

327	When failure to choose the correct shade of yellow flower incurred a gustatory
328	punishment (distasteful quinine), rather than a lower quality reward, bees were able to
329	simultaneously solve the colour discrimination task and avoid cryptic predators on the
330	rewarding flower type (Figs 2 & 3). Although bees initially visited dangerous flowers
331	at random (first 10 choices in Fig. 3), they rapidly learnt to avoid cryptic spiders after
332	experiencing simulated predation attempts (median percentage during the last 30
333	choices = 3.3 and the inter-quartile range = 3.3; Wilcoxon Signed Rank Test: $T =$
334	2.805, $N = 10$, $P = 0.005$; Fig. 3). Furthermore, they were able to simultaneously
335	maintain their high level of colour discrimination (mean percentage of safe, highly

Page 19 of 42

rewarding flowers chosen during the last 30 choices = 78.7 ± 5.0 ; one sample *t* test

against random [37.5 %]:
$$t_9 = 8.276$$
, $P < 0.001$; Fig. 2).

338	Once exposed to predation threat, bees spent 28% more time inspecting
339	flowers before making their choices than they did before learning about predation risk
340	(paired t test, $t_9 = 7.442$, $P < 0.001$, Fig. 4). This increase in investigation time was
341	also significantly greater than observed for bees exposed to conspicuous spiders in the
342	first experiment (t_{23} = 3.697, P = 0.001; Fig. 4).

343

344 DISCUSSION

345	In this study we presented bees with two natural tasks that potentially lead to
346	attentional competition (Kahneman 1973; Pashler 1998; Dukas 2009). The first task
347	was to maximise energy intake by using subtle differences in flower colour to
348	differentiate between reward quality. The second was to detect and avoid predators
349	that were either conspicuous or cryptic. We found that when predator detection was
350	difficult, bees prioritised predator avoidance over floral colour discrimination.
351	However, when bees were forced to make the colour discrimination by use of a
352	gustatory punishment in the distractor flowers, bees were able to solve both colour

353	discrimination and predator avoidance tasks simultaneously. Solving both tasks did
354	not come for free, since bees incurred substantially increased inspection times when
355	trying to avoid both predators and quinine penalties. Therefore, we argue that
356	prioritisation of predator detection when predators are cryptic is a strategy employed
357	by bees, rather than being due to a fundamental limitation to attend to only one task at
358	a time (Lewis 1986). As in other tasks, for example sensorimotor learning (Chittka &
359	Thomson 1997) or the formation of visual object concepts (Avargues-Weber et al
360	2012b), it appears that bees can in principle juggle more than a single task, but
361	typically do so at increased temporal costs (Chittka & Thomson 1997). Our results
362	therefore show that bees employ a degree of attentional modulation depending upon
363	the fine balance between risks and rewards (Spaethe et al. 2006; Giurfa 2013).
364	It has recently been suggested that bumblebees might carry out restricted parallel
365	visual search – i.e. where the whole visual field is processed simultaneously and the
366	targets "pop out" from distractors (Morawetz & Spaethe 2012). This being so, bees in
367	our study might focus attention on flowers that match their search image (i.e. dark
368	yellow flowers = highest reward in training). Conspicuous predators are highly salient
369	and bees strongly avoided dangerous flowers right from the beginning of training (Fig.
370	3). It is therefore likely that safe (plain) dark yellow flowers are processed as targets

Page 21 of 42

371	and light yellow flowers and dangerous flowers are processed as distractors. In this
372	case bees would only need to compare each flower against one search image and
373	therefore attend to only a single visual search task.
374	A different pattern emerged when spiders were cryptic. Due to lack of contrast
375	between spiders and background flowers (Fig. 1) we would expect bees to initially
376	view dangerous flowers as desirable target flowers. Indeed, this is exactly what was
377	observed during the first few choices made by bees in the cryptic spider group that
378	chose significantly more dangerous flowers than bees in the conspicuous spider group
379	during their first 30 choices (Fig. 3). Despite this, bees exposed to cryptic spiders did
380	learn to avoid dangerous flowers, indicating that they had developed a new search
381	image for cryptic spiders (Ings et al. 2012). Therefore, we are led to ask how bees
382	process each flower during visual search. Avoiding dangerous flowers and
383	maximising energy gains would require a two-step process due to the similarity
384	between target and distractor flowers: bees could either assess flowers as
385	spider-infested or spider-free and then discriminate between flower colours, or vice
386	versa. This sequential decision making could make the assessment more costly in
387	terms of time than the one step process necessary for avoiding conspicuous spiders
388	(Spaethe et al. 2006; Ings et al. 2008). Our results showed that bees encountering

Page 22 of 42

389	cryptic spiders prioritised predator avoidance at the expense of discriminating floral
390	reward quality of the remaining safe flowers. To understand whether this failure to
391	attend to both tasks is due to principal limitations in sensory processing and cognitive
392	abilities (Lewis 1986; Dukas 2009) we need to consider how bees responded to
393	predation threat in Experiment 2 when they were strongly incentivised to discriminate
394	between the similar shades of yellow.
395	When one flower colour was associated with a positive value (sucrose reward)
396	and the other with a negative value (quinine), bees were able to maintain two
397	value-defined categories for the task (light yellow = punishment, dark yellow =
398	reward). As a result, discrimination between light and dark yellow flowers was
399	substantially better than in Experiment 1 (Fig. 2). Furthermore, bees also maintained
400	this high level of discrimination under predation threat from cryptic spiders on the
401	rewarding flowers. This difference in response compared to bees in the cryptic spider
402	group in Experiment 1 shows that bees are able to simultaneously solve both complex
403	visual search tasks given sufficient incentive. However, this incurs elevated temporal
404	costs which indicate a sequential assessment of the flowers for safety (spider
405	presence/absence) and reward level (by colour), as predicted by assuming that
406	bumblebee are using restricted parallel visual search (Morawetz & Spaethe 2012;

407	Spaethe et al. 2006). Therefore, we are led to conclude that bees are able to divide
408	their attention between two complex visual search tasks in two different contexts. This
409	result is all the more remarkable given the failures of divided attention in related tasks
410	in birds (Dukas & Kamil 2000) and humans (Joseph et al. 1997).
411	An alternative explanation to divided attention is that bees categorised
412	(Srinivassan 2010; Avargues-Weber et al. 2012a) flowers into "good" or "bad" types,
413	irrespective of whether penalties were predation attempts or of a gustatory nature.
414	Light yellow flowers, which contain quinine in Experiment 2, could be classed as
415	poor foraging options, as could dark yellow flowers harbouring cryptic spiders. Dark
416	yellow flowers without spiders could be classed as desirable foraging options. Thus,
417	one might assume that a bee only needs to follow a simple rule – i.e. if the flower
418	matches the search image for 'good' then visit, otherwise avoid. However, the
419	increased inspection times in the face of two undesirable types of flowers indicate that
420	bees actively discriminate against both types of 'bad' flowers, i.e. a scenario based on
421	visual target categorisation would still require the memorisation of three search
422	images being employed simultaneously.
423	Finally, our results have interesting implications for the temporal costs of decision
424	making under natural conditions. Why did bees under predation threat choose not to

able to divid 107 ç, 4h 1 2006)1.1 ւ c 1 1 . 1

Page 24 of 42

425	engage in efficient foraging when solving the colour discrimination task would have
426	meant feeding from flowers bearing more than twice the energetic rewards? In
427	Experiment 2 bees had to spend a significantly (~28%) longer time inspecting flowers
428	under predation threat from cryptic spiders (Fig. 4). Inspection of flowers is carried
429	out in flight, which is an energetically demanding activity (Kacelnik et al. 1986;
430	Hedenström et al. 2001), so even small increases in inspection times are likely to bear
431	high energetic costs to bees. The increased inspection times observed in Experiment 2
432	can largely be attributed to the detection and avoidance of cryptic spiders (Ings &
433	Chittka 2008; Ings et al. 2012) which can lead bees to shift to alternative safe flower
434	types if they are as rewarding as risky flowers (Ings & Chittka 2009). Furthermore,
435	theoretical models (Jones 2010) predict that bees can maximise lifetime foraging
436	gains by switching to lower quality flowers when highly rewarding flowers have a
437	higher level of predation risk. Indeed, bumblebees do appear to make optimal choices
438	under laboratory conditions when predation risk is simulated (Jones & Dornhaus
439	2011), although field studies on honeybees show that they are less inclined to avoid
440	risky but highly rewarding patches (Llandres & Rodríguez-Gironés 2011). While
441	these differences could represent species specific responses, they are equally likely to
442	be due to differences in the balance of risk and reward as well as the difficulty of the

443	visual search tasks involved. In the study by Jones and Dornhaus (2011) predators
444	were in effect cryptic (no spider models were used) and the colour difference between
445	high and low reward flowers was highly salient. In contrast, in our study,
446	discrimination of high and low reward flowers was very difficult, and in some groups
447	predators were conspicuous, as they can be in the field (Defrize et al. 2010). At least
448	at the patch level used in our experiments, it appears that the additional costs of
449	detecting cryptic predators (Ings & Chittka 2008; Ings et al. 2012) are outweighed by
450	the benefits of occasionally visiting a flower with over twice the energetic rewards of
451	the safe flower type. Furthermore, the reduced cognitive demands of detecting
452	conspicuous predators enable bees to continue to forage from risky but rewarding
453	species.
454	In summary, our study clearly shows that bumblebees are able to simultaneously
455	discriminate floral rewards based upon subtle visual differences (colour) and avoid
456	cryptic predators, but will only do so when the benefits outweigh the costs. These
457	findings highlight the importance of considering sensory processing and cognitive
458	abilities of prey when modelling predator-prey interactions (Spaethe et al. 2006;
459	Dukas 2009; Ings & Chittka 2008; Ings et al. 2012). Furthermore, our study
460	contributes to the growing body of evidence showing the importance of trait-mediated

Page 26 of 42

461	indirect effects of predators (e.g. Gonçalves-Souza et al. 2008; Ings et al. 2009;
462	Schoener & Spiller 2012). In particular we showed that the costs associated with
463	detecting cryptic predators and discriminating similar floral colours could lead to
464	strong trait-mediated effects on plants and may benefit mimic plant species that
465	produce little or no floral rewards.
466	
467	REFERENCES
468	
469	Avargues-Weber, A., Mota, T. & Giurfa, M. 2012a. New vistas on honey bee
470	vision. <i>Apidologie</i> , 43 , 244-268.
471	Avargues-Weber, A., Dyer, A. G., Combe, M. & Giurfa, M. 2012b Simultaneous
472	mastering of two abstract concepts by the miniature brain of bees. Proceedings of
473	the National Academy of Sciences of the United States of America, 109, 7481-7486
474	Chittka, L. 1992. The colour hexagon: a chromaticity diagram based on
475	photoreceptor excitations as a generalized representation of colour opponency.
476	Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and
477	Behavioral Physiology, 170, 533-543.

478	Chittka	, L. & Menzel	, R	1992.	The e	volutionary	y ada	ptation	of flowe	r colours	and	the
-----	---------	---------------	-----	-------	-------	-------------	-------	---------	----------	-----------	-----	-----

- 479 insect pollinators' colour vision. *Journal of Comparative Physiology A:*
- 480 *Neuroethology, Sensory, Neural, and Behavioral Physiology*, **171**, 171-181.
- 481 Chittka, L. & Thomson, J. D. 1997. Sensori-motor learning and its relevance for task
- 482 specialization in bumble bees. *Behavioral Ecology and Sociobiology*, **41**, 385-398.
- 483 Chittka, L. 2001. Camouflage of predatory crab spiders on flowers and the colour
- 484 perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). *Entomologia*
- 485 *Generalis*, **25**, 181-187.
- 486 Chittka, L., Dyer, A. G., Bock, F. & Dornhaus, A. 2003. Bees trade off foraging
- 487 speed for accuracy. *Nature*, **424**, 388-388.
- 488 Chittka, L. & Raine, N. E. 2006. Recognition of flowers by pollinators. *Current*
- 489 *Opinion in Plant Biology*, **9**, 428-435.
- 490 Clark, C. W. & Dukas, R. 2003. The behavioral ecology of a cognitive constraint:
- 491 limited attention. *Behavioral Ecology*, **14**, 151-156.
- 492 Dafni, A. 1984. Mimicry and deception in pollination. Annual Review of Ecology and
- 493 *Systematics*, **15**, 259-278.

494	Defrize, J.,	Théry, M. &	Casas, J. 2010	. Background c	olour matching by a crab
-----	--------------	-------------	----------------	----------------	--------------------------

- spider in the field: a community sensory ecology perspective. *Journal of*
- 496 *Experimental Biology*, **213**, 1425-1435.
- 497 **Dukas, R & Kamil, A. C.** 2000. The cost of limited attention in blue jays. *Behavioral*
- 498 *Ecology*, **11**, 502-506.
- 499 **Dukas, R. & Morse, D. H.** 2003. Crab spiders affect flower visitation by bees. *Oikos*,
- **101**, 157-163.
- 501 **Dukas, R.** 2005. Bumble bee predators reduce pollinator density and plant fitness.
- 502 *Ecology*, **86**, 1401-1406.
- 503 **Dukas, R.** 2009. Evolutionary biology of limited attention. In: *Cognitive Biology:*
- 504 Evolutionary And Developmental Perspectives On Mind, Brain And Behavior
- 505 (Ed. by L. Tommasi, L & M. A. Peterson), pp. 147-281. London: The MIT Press.
- 506 Dyer, A. G & Chittka, L. 2004a. Biological significance of distinguishing between
- 507 similar colours in spectrally variable illumination: bumblebees (Bombus terrestris)
- as a case study. *Journal of Comparative Physiology A*, **190**, 105-114.
- 509 Dyer, A. & Chittka, L. 2004b. Fine colour discrimination requires differential
- 510 conditioning in bumblebees. *Naturwissenschaften*, 91, 224-227.

511	Dyer, A. G., Spaethe, J. & Prack, S. 2008. Comparative psychophysics of bumblebee
512	and honeybee colour discrimination and object detection. Journal of Comparative
513	<i>Physiology A</i> , 194 , 617-627.
514	Giurfa, M. & Lehrer, M. 2001. Honeybee vision and floral displays: from detection to
515	close-up recognition. In: Cognitive ecology of pollination (Ed. by Chittka, L. &
516	Thomson, J.), pp. 61-82: Cambridge: Cambridge University Press.
517	Giurfa, M. 2013. Cognition with few neurons: higher-order learning in insects. Trends
518	in Neurosciences, 36 , 285-294
519	Godin, JG. J. & Smith, S. A. 1988. A fitness cost of foraging in the guppy. Nature,
520	333 , 69-71.
521	Gonçalves-Souza T., Omena P.M., Souza J.C. & Romero G.Q. 2008.
522	Trait-mediated effects on flowers: artificial spiders deceive pollinators and
523	decrease plant fitness. Ecology, 89, 2407-2413.
524	Hedenström, A., Ellington, C. P., & Wolf, T. J. 2001. Wing wear, aerodynamics and
525	flight energetics in bumblebees (Bombus terrestris): an experimental study.
526	Functional Ecology, 15, 417-422.

527	Heiling, A.M. & Herberstein, M.E. 2004. Predator-prey coevolution: Australian
528	native bees avoid their spider predators. Proceedings of the Royal Society of
529	London. Series B: Biological Sciences, 271, S196-S198.
530	Heiling, A.M., Cheng, K. & Herberstein, M.E. 2004. Exploitation of floral signals by
531	crab spiders (Thomisus spectabilis, Thomisidae). Behavioral Ecology, 15, 321-326.
532	Ings, T. C. & Chittka, L. 2008. Speed-accuracy tradeoffs and false alarms in bee
533	responses to cryptic predators. Current Biology, 18, 1520-1524.
534	Ings, T. C. & Chittka, L. 2009. Predator crypsis enhances behaviourally-mediated
535	indirect effects on plants by altering bumblebee foraging preferences. Proceedings
536	of the Royal Society B: Biological Sciences, 276, 2031-2036.
537	Ings, T., Wang, MY. & Chittka, L. 2012. Colour-independent shape recognition of
538	cryptic predators by bumblebees. Behavioral Ecology and Sociobiology, 66,
539	487-496.
540	Insausti, T. C. & Casas, J. 2008. The functional morphology of color changing in a
541	spider: development of ommochrome pigment granules. The Journal of
542	Experimental Biology, 211 , 780-789.
543	Jones, E.I. 2010 Optimal foraging when predation risk increases with patch resources:
544	an analysis of pollinators and ambush predators. Oikos, 119, 835–840.

546	and reduce foraging activity. Behavioral Ecology and Sociobiology, 65,
547	1505-1511.
548	Joseph, J. S., Chun, M. M. & Nakayama, K. 1997. Attentional requirements in a
549	'preattentive' feature search task. Nature, 387 , 805-807.
550	Kacelnik, A., Houston, A. I., & Schmid-Hempel, P. 1986. Central-place foraging in
551	honey bees: the effect of travel time and nectar flow on crop filling. Behavioral
552	Ecology and Sociobiology, 19, 19-24.
553	Kahneman, D. 1973. Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.
554	Lewis, A. C. 1986. Memory constraints and flower choice in Pieris rapae. Science,
555	232 , 863-865.
556	Llandres, A. L., De Mas, E.U. & Rodríguez-Gironés, M. A. 2011. Response of
557	pollinators to the tradeoff between resource acquisition and predator avoidance.
558	<i>Oikos</i> , 121 , 687-696
559	Menzel, R., Greggers, U. & Hammer, M. 1993. Functional organization of appetitive
560	learning and memory in a generalist pollinator, the honey bee. In: Insect learning:
561	Ecological and evolutionary perspectives (Ed. by Papaj, D. R. & Lewis, A. C.), pp.

Jones, E.I. & Dornhaus, A. 2011. Predation risk makes bees reject rewarding flowers

545

562 79-125. London, UK: Chapman and Hall.

563	Milinski, M. 1984. A predator's costs of overcoming the confusion-effect of swarming
564	prey. Animal Behaviour, 32 , 1157-1162.

565 Morawetz, L. & Spaethe, J. 2012. Visual attention in a complex search task differs

- between honeybees and bumblebees. *The Journal of Experimental Biology*, **215**,
- 567 2515-2523.
- 568 Morse, D. H. 1986. Foraging behavior of crab spiders (*Misumena vatia*) hunting on
- inflorescences of different quality. *American Midland Naturalist*, **116**, 341-347.
- 570 Morse, D. H. 2007. *Predator upon a flower: life history and fitness in a crab spider.*
- 571 Cambridge, Massachusetts: Harvard University Press.
- 572 **Pashler, H.** 1998. *Attention*. East Sussex, UK: Psychology Press.
- 573 Reader, T., Higginson, A. D., Barnard, C. J., Gilbert, F. S. & The Behavioural
- 574 **Ecology Field Course**. 2006. The effects of predation risk from crab spiders on bee
- 575 foraging behavior. *Behavioral Ecology*, **17**, 933-939.
- 576 Roy, B. A. & Widmer, A. 1999. Floral mimicry: a fascinating yet poorly understood
- 577 phenomenon. *Trends in Plant Science*, **4**, 325-330.
- 578 Schaefer, H. M. & Ruxton, G. D. 2009. Deception in plants: mimicry or perceptual
- 579 exploitation? *Trends in Ecology & Evolution*, **24**, 676-685.

580	Schoener, T. W. & Spiller, D. A. 2012. Perspective: kinds of trait-mediated indirect
581	effects in ecological communities. In: Trait-mediated indirect interactions:
582	ecological and evolutionary perspectives A synthesis. In (Ed. by T. Ohgushi, O.
583	Schmitz & R. D. Holt), pp 9-27. Cambride: Cambridge University Press.
584	Shafir, S., Bechar, A. & Weber, E. U. 2003. Cognition-mediated coevolution -
585	context-dependent evaluations and sensitivity of pollinators to variability in nectar
586	rewards. Plant Systematics and Evolution, 238, 195-209.
587	Skorupski, P., Doering, T. & Chittka, L. 2007. Photoreceptor spectral sensitivity in
588	island and mainland populations of the bumblebee, Bombus terrestris. Journal of
589	Comparative Physiology A, 193: 485-494.
590	Spaethe, J., Tautz, J. & Chittka, L. 2001. Visual constraints in foraging bumblebees:
591	Flower size and color affect search time and flight behavior. Proceedings of the
592	National Academy of Sciences of the United States of America, 98 , 3898-3903.
593	Spaethe, J., Tautz, J. & Chittka, L. 2006. Do honeybees detect colour targets using
594	serial or parallel visual search? Journal of Experimental Biology, 209, 987-993.
595	Srinivasan, M. V. 2010. Honey bees as a model for vision, perception, and cognition.
596	Annual Review of Entomology, 55 , 267-284.
597	

Fig. 1. (a) Appearance of yellow flowers (circles: light grey for light yellow and dark 600 601 grey for dark yellow) and spiders (stars: white for conspicuous spiders and dark grey 602 for cryptic spiders) in bee colour space (calculated using Bombus terrestris colour 603 receptor sensitivity functions in Skorupski et al. 2007) relative to the grey background colour (centre of the hexagon). Positions of the colour loci in the hexagon indicate 604 605 excitation differences of the three bee colour receptors. The corners of hexagon labelled UV, Blue and Green correspond to hypothetical maximum excitation of one 606 607 receptor combined with zero excitation in the two others. The angular position in the hexagon (as measured from the centre) is indicative of bee subjective hue. Loci that 608 609 are close together appear similar to bees and loci that are far apart appear different. (b) Page 35 of 42

Figure 2

- 622 lines represent the expected percentage of high reward flowers if bees foraged
- 623 completely at random, i.e. with no preference for either flower type.

Figure 3

Fig. 3. The mean (plus upper 95% CI) percentage of dangerous flowers chosen during 625 consecutive blocks of 10 trials during avoidance training in Experiments 1 and 2. 626 Black represents bees exposed to cryptic spiders and light grey bees exposed to 627 628 conspicuous spiders in Experiment 1, while dark grey represents bees in Experiment 2 that were exposed to cryptic spiders and quinine punishment in distractor flowers. The 629 630 dashed lines represents the avoidance thresholds (percentage of dangerous flowers expected if bees ignored spiders and visited all dark yellow flowers at their learnt 631 632 preference level) for Experiments 1 (light grey) and 2 (dark grey). Values that lie below these lines indicate significant avoidance of dangerous flowers. 633

Figure 4

635

636 **Fig. 4**. Difference in floral investigation time between colour discrimination training

- 637 and predator avoidance training (average investigating time per flower after adding
- 638 spiders minus average time before adding spiders).

Fig. A1. Experimental setup demonstrating the artificial meadow containing two
similar shades of yellow flowers while two (25%) of the highly rewarding flowers
(dark yellow) harboured cryptic spiders. The positions of the flowers and spiders were
randomly reshuffled for each foraging bout. The spiders were white in the
conspicuous spider group.

Figure A2

645

Fig A2. Discrimination test for similar and distinct colours. The black line is the
average (+/- 1SEM) percentage of bees choosing rewarded flowers between easily
distinguishable colours (white v. s. dark yellow), and the grey line is between colours
that were hard distinguish (dark yellow v. s. light yellow). Each data point represents
10 choices.

651

653 APPENDIX 1: EXPERIMENTAL PROCEDURES AND RESULTS FOR THE654 PRELIMINARY COLOUR DISCRIMINATION TEST.

655 METHODS

656	The aim of the test was to find two colours which are possible, but difficult for
657	bees to distinguish. We chose two different shades of yellow (dark yellow & light
658	yellow) whose distance in the bee colour hexagon (Chittka 1992) was 0.084 units. It is
659	known that bees can easily discriminate between colours 0.152 hexagon units apart
660	but find it impossible to differentiate colours less than 0.01 units apart (Dyer &
661	Chittka 2004b). Therefore, bees should find it difficult, but not impossible to
662	discriminate between our chosen colours. To test this we gave bees $(N = 5)$ a choice
663	between rewarding dark yellow flowers (50% v/v sucrose) and distasteful light yellow
664	flowers containing 0.12% quinine hemisulfate salt solution. A second control group of
665	bees ($N = 5$) from the same colony were exposed to dark yellow flowers (rewarded)
666	and easily distinguishable white flowers (punished with quinine). Individual bees in
667	both groups were allowed to make 200 flower choices to determine whether they
668	could learn to distinguish rewarded and punished flower colours.

669

Page 41 of 42

670 RESULTS

671	All bees learnt that dark yellow flowers were rewarding as the proportion of
672	dark yellow flowers chosen during the last 30 choices was significantly higher than
673	that during the first 30 choices (Paired <i>t</i> test: $t_4 = 2.91$, $P = 0.01$). This confirmed that
674	bees were able to learn to distinguish the two shades of yellow despite their high
675	degree of similarity (Fig. A2). Furthermore, the average percentage of correct choices
676	during the last 30 choices was significantly higher for the easily distinguishable
677	colours (white and dark yellow flowers) than for the more similar colours (dark and
678	light yellow) flowers (<i>t</i> test: $t_4 = 2.48$, $P = 0.03$). This confirmed that although bees
679	are able to discriminate the two similar shades of yellow, they find the task
680	significantly more challenging than the task where the colours where highly
681	discriminable.