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Abstract 

The process by which adults develop competence in symbolic mathematics tasks is poorly 

understood. Non-human animals, human infants, and human adults all form non-verbal 

representations of the approximate numerosity of arrays of dots, and are capable of using 

these representations to perform basic mathematical operations. Several researchers have 

speculated that individual differences in the acuity of such non-verbal number representations 

provide the basis for individual differences in symbolic mathematical competence. 

Specifically, prior research has found that 14-year-old children’s ability to rapidly compare 

the numerosities of two sets of colored dots is correlated with their mathematics 

achievements at ages 5-11. Here we demonstrate that although when measured concurrently 

the same relationship holds in children, it does not hold in adults. We conclude that the 

association between non-verbal number acuity and mathematics achievement changes with 

age, and that non-verbal number representations do not hold the key to explaining the wide 

variety of mathematical performance levels in adults.
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NON-VERBAL NUMBER ACUITY CORRELATES WITH SYMBOLIC 

MATHEMATICS ACHIEVEMENT: BUT ONLY IN CHILDREN 

Dealing accurately with numerical quantities is fundamental to success in modern 

societies. On a daily basis we are asked to make judgments about concepts that are expressed 

numerically, be it monetary value, weather, temporal duration or spatial distance. But what is 

the cognitive basis for our ability to engage with numerical quantities such as these? Recently 

it has been proposed that the answer to this question is an innate and inexact analog system 

known as the Approximate Number System (ANS).  This evolutionarily ancient system 

enables us, for example, to rapidly decide, without explicitly counting, which of two orange 

trees has the greatest number of fruit, or which of two herds has the greatest number of 

gazelle. The ANS supports approximate numerical operations, such as comparison and 

addition, on both visual and auditory arrays, in adults, children and in non-human animals 

(Barth, La Mont, Lipton, Dehaene, Kanwisher & Spelke, 2006; Brannon & Terrace, 2000; 

Cordes, Gelman, Gallistel & Whalen, 2001; Dehaene 1992, 1997; Gallistel & Gelman 1992).  

These findings raise the possibility that the ANS is the cognitive basis of everyday 

numeracy skills such as exact addition, subtraction and multiplication with Arabic numerals. 

At least four sources of evidence support this possibility. First, the ANS appears to be 

automatically activated in response to Arabic numerals by adults as well as children 

(Dehaene, 1997; Moyer & Landauer, 1967). Second, children who have had no formal 

mathematical instruction seem to harness the ANS when asked to perform approximate 

symbolic arithmetic operations (additions of numerosities represented as Arabic numerals, 

Gilmore, McCarthy & Spelke, 2007). Third, several different measures of children’s ANS 

proficiency (using both symbolic and nonsymbolic stimuli) have been found to correlate with 

their performance on tests of early symbolic numeracy skills (e.g., symbolic stimuli: Durand, 

Hulme, Larkin, & Snowling, 2005; Holloway & Ansari, 2009; non-symbolic stimuli: 
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Halberda, Mazzocco & Feigenson, 2008; Mundy & Gilmore, 2009). Fourth, one measure of 

ANS proficiency taken at the start of formal schooling, the symbolic numerical distance 

effect, has been shown to predict young children’s symbolic mathematics competence a year 

later (De Smedt, Verschaffel & Ghesquière, 2009). However, other measures often assumed 

to reflect ANS proficiency, notably the non-symbolic numerical distance effect, have been 

found to not correlate with school-level mathematics achievement (Holloway & Ansari, 

2009; Mundy & Gilmore, 2009). It may be that the NDE is a poor measure of ANS 

proficiency (Gilmore, Attridge, & Inglis, in press).  

A natural question arises from this set of findings: If adults exhibit an automatic 

ANS-based response to symbolic numerosities, and if the ANS is involved in early symbolic 

numerical operations in children, does the ANS also influence more sophisticated numerical 

operations of the types conducted by adults in everyday life? In other words, is the ANS a 

fundamental part of the way humans of all ages engage with numerical quantities? Or, 

alternatively, is the large variance in mathematical competence possessed by adults unrelated 

to differences in ANS acuity? In view of the educational potential for harnessing the ANS to 

develop effective instruction, it is clear that further evidence which speaks to the relationship 

between the ANS and formal mathematics achievement would be desirable. Our goal in this 

paper is to explore this relationship. 

 

The Approximate Number System 

Representations of numerosities within the ANS are noisy, and grow noisier as the 

magnitude of the to-be-represented numerosity increases. To capture this noise, Barth et al 

(2006) proposed that ANS-representations of a numerosity n follow a normal distribution 

with mean n and standard deviation wn. Here w is the internal Weber fraction, which gives a 

measure of the acuity of an individual’s ANS. Thus, on a non-symbolic comparison task, 
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where participants are asked to select which of two arrays of colored dots are numerically 

greater, those participants with high ws have less precise representations, and consequently 

lower accuracy rates. 

Halberda et al (2008) gave 14-year-old children a non-symbolic comparison task, 

calculated each individual’s w (henceforth ANS acuity),  and related these to standardized 

mathematics achievement tests which had been taken at ages 5-11. They found strong 

relationships between these two measures at each testing-point (r2s varied from 0.11 to 0.33). 

These correlations retained significance after controlling for covariates such as IQ and 

working memory measures. This result seems to suggest that ANS acuity and mathematics 

achievement are closely related. However, both ANS acuity (Halberda & Feigenson, 2008) 

and symbolic mathematics achievement are developmental so, because Halberda et al. did not 

test their participants concurrently on the two tasks, it is possible that their ANS measure 

(taken at age 14) had been influenced by developmental patterns not reflected in the 

mathematics achievement tests taken at ages 5-11. For example, it is conceivable that 

individual differences in early mathematics achievement leads, over several years school 

experience, to differential levels of exposure to numerical ideas (both in terms of quality and 

quantity of the exposure), which in turn might lead to differential ANS acuities. Thus 

measuring ANS acuity some years after mathematical achivement might overstate the 

relationship between these two constructs. Some support for this possibility comes from 

Iuculano, Tang, Hall & Butterworth’s (2008) finding that the non-symbolic addition 

performance of 8-9 year old children did not correlate with their exact symbolic addition 

performance when tested concurrently.  

To investigate these issues we conducted Experiment 1. Our aim was to determine 

whether there is a relationship between children’s ANS acuities and formal mathematics 

achievements when the two constructs are measured concurrently. 
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Experiment 1 

Participants 

Participants were 39 children (20 male) aged 7.6-9.4 years (M  =  8.4) who took part, 

with parental consent, at school and were rewarded with stickers. Three tasks were 

administered, as listed below. 

Non-symbolic Comparison Task 

Participants completed a computer-based non-symbolic comparison task in which 

they selected the more numerous of two dot arrays, designed based on the version used by 

Pica, Lemer, Izard, & Dehaene (2004). The two arrays (one red and one blue on a white 

background) were presented side by side simultaneously on a 15” LCD laptop screen. The 

ratios between the numerosities of the left and right arrays were 0.5, 0.6, 0.7, 0.8 and their 

inverses, and the numerosity of the arrays ranged from 5 to 22. The color and side of screen 

of the correct array were fully counterbalanced. Participants were asked to select, as quickly 

and accurately as possible, which array was more numerous. Responses were recorded via the 

leftmost (left bigger) and rightmost (right bigger) buttons on a five button response box. 

Each of 128 trials began with a fixation point for 1000ms, followed by the dot arrays 

for 1500ms. If the participant had not responded within 1500ms, the arrays were followed by 

a white screen with a black question mark. This allowed participants to still respond whilst 

preventing them from counting the arrays. Participants rarely exceeded this duration (2.5% of 

trials) and the mean RT was well within this limit (776ms). The design is summarized in 

Figure 1. Experimental trials were preceded by a practice block of 8 trials. 

To prevent participants reliably using strategies based on continuous quantities 

correlated with number (dot size, total enclosure area), the stimuli were created following the 

method adopted by Pica et al. (2004). For each problem two sets of stimuli were created: one 
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in which the dot size and total enclosure area decreased with numerosity, and one in which 

the dot size and total enclosure area increased with numerosity. 

Woodcock-Johnson III Tests of Achievement 

The Calculation subtest of the Woodcock Johnson III Tests of Achievement was 

administered with the standard procedure (participants had no time limits, and continued until 

they had answered six questions incorrectly in succession). An example problem is given in 

Table 1. 

Weschler Abbreviated Scale of Intelligence 

Participants completed the Matrix Reasoning subtest of the Weschler Abbreviated 

Scale of Intelligence (WASI), following the standard procedure. The raw scores were 

converted into T-scores to give an age-standardized measure of non-verbal intelligence. 

Results 

Those participants who appeared to be using strategies based on continuous quantities 

correlated with number (i.e. those who were not using their ANS) on a majority of trials were 

eliminated from the sample (i.e. those participants whose accuracy rates on the two sets of 

stimuli created by Pica et al.’s (2004) method differed by more than 0.5, N = 10). In addition 

we removed those participants whose performance was not above chance (N = 5). This left 24 

participants for the main analysis. 

Accuracy rates varied from 0.59 to 0.81, with a mean of 0.69 (SD = 0.06), and were 

subjected to an Analysis of Variance (ANOVA) with ratio as a within-subjects factor. There 

was a significant effect of ratio, F(3,69) = 11.76, p < .001, and a significant linear trend, 

F(1,23) = 50.32, p < .001. As is characteristic of the ANS, accuracy rates were highest at the 

0.5 ratio, and lowest at the 0.8 ratio. These data are shown in Figure 2. 

Using the log-likelihood method, each participant’s accuracy data were individually 

fitted to the model proposed by Barth et al. (2006)1. Values of the w parameter varied from 
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0.34 to 1.17, with a mean of 0.65 (SD = 0.23).2 The relationship between participants’ non-

symbolic comparison accuracy and their Woodcock Johnson Calculation subtest scores is 

shown in Figure 3. ANS acuity, as measured by w parameters, was found to negatively 

correlate with Woodcock Johnson Calculation subtest scores, after controlling for age-

standardized WASI matrix reasoning scores and age, pr = -.548, p = .008. In other words, 

high ANS acuities (w parameters close to zero) were related to high scores on the Woodcock-

Johnson Calculation subtest. 

Discussion 

Our goal in Experiment 1 was to determine whether the relationship found by 

Halberda et al. (2008) between ANS acuity at age 14 and mathematics achievement at ages 5-

11, could be replicated when the two measures are taken concurrently. We measured the 

ANS acuity and mathematics achievement of 7-9 year old children and found a strong 

relationship between the two constructs. Those children with high ANS acuity tended to have 

high mathematics achievement scores. As both ANS acuity and mathematics ability are 

developmental, it is natural to ask whether these two constructs co-develop into adulthood. In 

other words, do children develop their mathematics ability and ANS acuity together in a 

mutually reinforcing cycle? To explore this issue we conducted a second experiment with 

adult participants. 

 

Experiment 2 

The primary goal of Experiment 2 was to determine whether the relationship between 

ANS acuity and mathematics achievement we found with 7-9 year old children in Experiment 

1 also holds with adults experienced in everyday mathematics. Along with a measure of 

achievement focused on numerical calculation (used by Halberda et al. (2008) and in 

Experiment 1), we took several other measures of achievement that, taken together, better 
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reflect the broad nature of mathematics. In particular along with various measures of 

numerical skill (calculation, calculation fluency etc), we also took measures of non-numerical 

mathematical skills related to logical inference and geometry.  

Participants 

Participants were 101 adults (50 male, aged 18-48, M = 23) recruited from the 

participant panel of the University of Nottingham’s Learning Sciences Research Institute; 

each was paid £20 for taking part. Testing was conducted individually. Computer tasks were 

presented on a 17” Philips 170B LCD. As well as the tasks reported in this paper, participants 

tackled a number of other numerical cognition tasks (non-symbolic addition, subitizing etc.) 

not discussed here. The order of tasks was counterbalanced between participants, except that 

all tasks with symbolic stimuli were presented after tasks with non-symbolic stimuli, so as to 

avoid cuing counting strategies (cf. Gilmore, et al., in press). 

Non-symbolic Comparison Task 

Participants completed the non-symbolic comparison task from Experiment 1, with 

minor changes to the stimuli characteristics and procedure (pilot testing revealed that using 

identical stimuli to those given to the children may have led to ceiling effects). The numerical 

size of the arrays ranged from 9-70, and the pairs differed by the ratios 0.625, 0.714 and 

0.833 (5:8, 5:7 and 5:6) and their inverses. Again, the stimuli were created following the 

method adopted by Pica et al. (2004). 

Each of 120 trials began with a fixation point for 1000ms, followed by the dot arrays 

until response. Participants were asked to select, as quickly as possible, which array was 

more numerous. Responses were recorded via the leftmost (left bigger) and rightmost (right 

bigger) buttons on a five-button response box.  

There was a response time limit of 1249ms to prevent ceiling effects. The limit was 

determined by taking the mean plus one standard deviation of the reaction times found in 
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pilot testing. This was enforced with a “Please speed up” message, followed by the next trial. 

Few trials led to the display of this message (approximately 3.6%), and these were recorded 

as incorrect responses. The experimental trials were preceded by a block of 10 practice trials. 

Participants were prompted to take breaks after every 20 trials. 

Woodcock-Johnson III Tests of Achievement 

Again, the calculation subtest of the Woodcock Johnson III Tests of Achievement was 

administered with the standard procedure. However unlike in Experiment 1, we also 

administered the Math Fluency, Applied Problems, Quantitative Concepts and Number Series 

subtests of the Woodcock Johnson, again with the standard procedure. Descriptions of each 

of these subtests are given in Table 1. 

Non-numerical tasks 

Participants answered 32 paper-based conditional inference problems following the 

design used by Evans and Handley (1999). In addition, they were given 20 minutes to 

complete a reduced version of the paper-based van Hiele Level Geometry Test (Usiskin, 

1982), and also completed the matrix reasoning subtest of the Weschler Abbreviated Scale of 

Intelligence (WASI), following the standard procedure.  

 

Results 

As in Experiment 1, those participants who appeared to be using non-numeric cues 

for the majority of trials (N = 25), or whose performance was not above chance (N = 11), 

were eliminated from the analysis. This left 64 participants (an additional one participant did 

not complete all the tasks in the study). 

Accuracy rates varied from 0.58 to 0.85, with a mean of 0.73 (SD = 0.06), and were 

subjected to a one-way ANOVA with ratio as a within-subjects factor. Again, responses 
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showed the ratio effect characteristic of the ANS, F(2,126) = 107.6, p < .001, and a 

significant linear trend, F(1,63) = 219.0, p < .001. These data are shown in Figure 4. 

Values of the w parameter varied from 0.22 to 0.95, with a mean of 0.39 (SD = 0.14). 

The relationship between participants’ non-symbolic comparison accuracy and their 

Woodcock Johnson Calculation subtest scores is shown in Figure 5. Unlike in Experiment 1, 

ANS acuity, as measured by w parameters, was not found to correlate with Woodcock-

Johnson calculation subtest scores, after controlling for age-standardized matrix reasoning 

scores and age, pr = +.161, p = .211. This non-significant positive correlation was found to 

be significantly different to the significant negative correlation found in Experiment 1, 

Fisher’s r-to-z transformation, z = 3.07, p = .001.3 In other words, as well as being not 

significantly different to zero, the correlation between ANS acuity and mathematical 

achievement found in adults was significantly different to that found in children. 

In addition, having controlled for age-standardized matrix reasoning scores, no 

significant correlation was found between ANS acuity and either the Math Fluency, pr = 

+.184, p = .156, Applied Problems, pr = -.098, p = .453, Quantitative Concepts, pr = -.110, p 

= .401, or Number Series, pr  = +.081, p = .535, subtests of the Woodcock Johnson III Tests 

of Achievement. Nor were there significant correlations between ANS acuity and overall 

scores on the Conditional Inference task, pr = -.110, p = .400, or the van Hiele Levels 

Geometry Test, pr = -.164, p = .208. 

Summary 

In Experiment 2 we found no significant relationship between adults’ ANS acuity and 

any measure of mathematical achievement. We asked participants to answer a wide variety of 

mathematical tasks, including calculation, speeded calculation, conditional reasoning, and 

applied problems, and found no relationships between these scores and participants’ ANS 
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acuities. In particular, the correlation between ANS acuity and calculation achievement for 

adults was significantly different to that for children. 

 

General Discussion 

Halberda et al. (2008) found a relationship between individuals’ ANS acuity, tested at 

age 14, and their mathematics achievement at ages 5-11. They speculated that this may be 

because the ANS plays a causal role in individual differences in symbolic mathematical 

competency. Since adults also have access to the ANS, which appears to be automatically 

activated when participants view Arabic numerals (Moyer & Landauer, 1967), it is natural to 

hypothesise that a similar relationship holds in adults. Here we confirmed that in 7-9 year old 

children there is a strong relationship between ANS acuity and numerical calculation 

achievement (when tested concurrently), but demonstrated that the same relationship does not 

hold with adults. This finding rules out the possibility that ANS acuity is directly implicated 

in the large individual differences found in adults’ numerical calculation achievement. 

Together these findings suggest that, along with ANS acuity and mathematical achievement 

changing with age, the strength of the association between these constructs does as well. 

One speculative hypothesis that would account for this set of data is to suppose that 

the ANS plays a bootstrapping role in the development of whole number understanding. For 

example, children may come to understand whole numbers by assigning verbal and symbolic 

names to visual and auditory stimuli that give rise to similar ANS representations. Thus for 

young children we might expect that their fluency with symbolic numbers would be 

associated with their ANS acuity as their symbolic numbers would be nothing more than tags 

for ANS representations. However, once children had reached a certain sophistication with 

numerical concepts, other factors (working memory capacity, strategy choice, teaching 

effectiveness, etc) may come to dominate individual differences in mathematical 
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performance, leading to a decline in the relationship with ANS acuity. While speculative, this 

hypothesis does suggest that a detailed microgenetic study of how ANS acuity, and the 

relationship between ANS acuity and mathematics achievement, develops through formal 

schooling would be a valuable contribution to our understanding of how numerical concepts 

are formed. 

There is now growing consensus that our abilities to deal with complex symbolic 

numerical concepts on a day-to-day basis is related in some way to the Approximate Number 

System, an innate analog system which supports rapid approximate numerical judgments. 

However, the exact nature of this relationship remains unclear. The finding that the 

correlation between ANS acuity and mathematics achievement that exists in childhood is not 

present in adulthood indicates that there is no simplistic relationship between the ANS and 

symbolic mathematics achievement. Studying the pattern of decline in the relationship 

between ANS acuity and mathematics achievement as participants gain in maturity and 

mathematical experience may ultimately shed further light on the cognitive basis of the wide 

range of numerical operations that we each perform during everyday life. 
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Notes 

1. Following Green and Swets’s (1966) discussion of Weber’s Law, Barth et al. (2006) 

proposed that the accuracy of a participant when comparing n1 with n2 is given by 
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, where erf is the Gaussian error function, 

and w is the participants’ ANS acuity. 

2. These w parameters are somewhat higher than those that have been previously 

reported in the literature for similar ages (e.g. Halberda & Feigenson, 2008). One 

possible reason for this discrepancy is the shorter durations (participants’ mean RT 

was 776ms) and lack of feedback given in the current study compared to earlier 

studies (Halberda and Feigenson, for example, gave feedback and had trials which 

lasted 1200ms with their 4-, 5- and 6-year old participants). We are not aware of any 

research that has directly investigated the relationship between stimuli display time or 

feedback and ANS acuity. 

3. We also ran a regression including both participants’ accuracy and their mean RT as 

predictors of mathematics achievement. The model did not reach significance, F(2,61) 

= 0.596, p = .554. 
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Table 1. Details about the various subtests of the Woodcock Johnson III Tests of 

Achievement used in Experiments 1 and 2. 

 

Name of Subtest Description Example Problem 

Calculation Arithmetic computation with 

paper and pencil 

12% of 6.0  =   

Math Fluency Number of simple 

calculations performed in 

three minutes (up to 160) 

7 × 9  =  

Applied Problems Oral word problems solved 

with paper and pencil 

If 60 feet of wire weighs 80 pounds 

and you had 150 feet of the wire, how 

many pounds of wire would you 

have? 

Quantitative 

Concepts 

Oral questions about factual 

mathematical information 

What does this symbol mean? π 

Number Series 

 

Determining a numerical 

sequence 

__   13   20   26 
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Figure 1. The experimental paradigm used in Experiment 1. The two dot arrays were colored 

red and blue. 
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Figure 2. Accuracy rates by problem ratio in Experiment 1. Error bars show ±1 SE of the 
mean. 
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Figure 3. The relationship found in Experiment 1 between standardized residuals (controlling 

for age-standardized matrix reasoning scores) for ANS Acuity (non-symbolic comparison 

internal Weber fraction) and the Woodcock Johnson calculation subtest. 
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Figure 4. Accuracy rates by problem ratio in Experiment 2. Error bars show ±1 SE of the 
mean. 
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Figure 5. The relationship found in Experiment 2 between standardized residuals (controlling 

for age-standardized matrix reasoning scores) for ANS Acuity (non-symbolic comparison 

internal Weber fraction) and the Woodcock Johnson calculation subtest. 

 

 


