

Citation for published version:
Li, T, Balke, T, De Vos, M, Satoh, K & Padget, JA 2013, Detecting conflicts in legal systems. in Y Motomura, A
Butler & D Bekki (eds), New Frontiers in Artificial Intelligence : JSAI-isAI 2012 Workshops, LENLS, JURISIN,
MiMI, Miyazaki, Japan, November 30 and December 1, 2012, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 7856, Springer, Berlin, pp. 174-189, 4th JSAI International Symposia on Artificial
Intelligence, JSAI-isAI 2012, Miyazaki , Japan, 30/11/12. https://doi.org/10.1007/978-3-642-39931-2_13,
https://doi.org/10.1007/978-3-642-39931-2_13
DOI:
10.1007/978-3-642-39931-2_13
http://dx.doi.org/10.1007/978-3-642-39931-2_13

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

Publisher Rights
Unspecified
The final publication is available at link.springer.com

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-39931-2_13
https://doi.org/10.1007/978-3-642-39931-2_13
https://researchportal.bath.ac.uk/en/publications/detecting-conflicts-in-legal-systems(b1379fd2-8155-4e88-8c70-496bb4cec2aa).html

Detecting Conflicts in Legal Systems

Tingting Li1, Tina Balke2,1, Marina De Vos1, Ken Satoh3, and Julian Padget1

1 University of Bath, Dept. of Computer Science, UK
{t.li,mdv,jap}@cs.bath.ac.uk

2 University of Surrey, Centre for Research in Social Simulation, UK
t.balke@surrey.ac.uk

3 National Institute of Informatics, Principles of Informatics Res. Division, Japan
ksatoh@nii.ac.jp

Abstract. When acting in different jurisdictions (e.g. under the laws of different
countries) at the same time, it can be of great value for individuals to be able to
determine whether disparities among the laws of these different systems exist and
allowing them to identify the consequences that may follow from these dispari-
ties. For individuals, it is typically not of interest to find all the ways in which
these legal systems differ, but rather to establish whether a particular course of
action may have different legal interpretations, depending on the jurisdiction. In
this paper we present a formal and computational framework that, given specific
scenarios (descriptions of courses of action), can automatically detect whether
these scenarios could lead to different outcomes. We demonstrate our approach
by means of a private international law case-study where a company drafts a con-
tract clause after examining the consequences in the available jurisdictions.

1 Introduction

An individual or company may be used to doing business in a particular way in the
jurisdiction(s) with which they are familiar. Unfortunately, the same modus operandi
may not be interpreted in the same way under the laws of another country and there
may be different requirements, sequences of actions, additional actions, unnecessary
actions and caveats, compared to their usual behaviour, when engaging in an activity
that is partly covered by one jurisdiction and partly by another, or even several others.

This “conflict of laws” [14] is an established area of legal research and provides the
motivation for the identification of the legal consequences of differences in the legal
interpretation of actions in different jurisdictions, in order to be able to take account of
them a priori. It is not the paper’s intention to be able to find all the disparities or poten-
tial conflicts between the given systems, although theory and computational methods
do allow for it. Rather, our aim is to demonstrate a mechanism that might be used to
determine: (i) whether a particular behaviour on their part could be legally interpreted
differently in the pertinent jurisdictions, and (ii) could thus lead to a different, possibly
detrimental, possibly beneficial, outcome.

To illustrate our methodology we take a real-world case study described in [6]. The
case study focuses on two companies, a British software provider and an Italian soft-
ware purchaser, that wish to conclude a contract about the purchase of some software.

Whereas the focus in [6] is on examples of conflicting laws, our objective here is to
show how our methodology can encode aspects of those laws and thereby enable the
detection of the existence of those conflicts.

The case study starts when the companies in question are at the stage of drafting the
contract and want to include a liquidated-damage-clause specifying the compensations
to be paid in case of insufficient performance with respect to the terms of the contract.
When drafting such a clause, it is important for the companies to be able to determine
that the clause has the desired effect and is not affected by differences in law that might
result in unexpected changes in the handling of the clause. By using our mechanism to
analyse a formal representation of the legal text on liquidated damages in both countries,
the companies could detect that these clauses differ significantly on one point: namely,
according to Art. 1384 of the Italian Civil Code, the liquidated-damages penalty can be
diminished equitably by a judge, if the principal obligation was executed in part or if the
amount of the penalty was apparently excessive, taking into account the performance
of the contractors in respect of the contract. This clause has no counterpart in British
Law; an important point of variance between the two legal systems, which could result
in significant differences in the liquidated-damage demands. This might be of interest
to the two companies in drafting their contract. They might want to address this issue
by for example by specifying a jurisdiction for handling claims.

In this paper, we present a formal framework and a computational procedure that,
given specific scenarios (descriptions of courses of action) can automatically detect
whether these scenarios could be affected by differences between legal systems, thus
enabling individuals consequently to account for these cases. Throughout the paper, we
use the term conflict informally to denote a difference between the legal interpretation
in one system and another. The formal notion of conflict is manifested by the presence
of a fluent in one system when it is not present in another: this is explained in greater
detail shortly. We use the term jurisdiction to refer the extent or range of some judicial or
administrative power and legal system to refer to the set of laws and processes that apply
in some jurisdiction. We use the term legal framework to refer to our computational
model of some part of such a legal system.

The remainder of the paper is structured as follows: based on ideas presented in
previous works of the authors [4], we start by outlining our view of legal frameworks
and the corresponding computational model of a single legal framework (Section 2).
These ideas are then used to capture comparative legal frameworks in Section 3. Con-
sequently, in Sections 3.3 and 3.4 we focus on the detection of conflicts between the
law of comparative legal frameworks. We use the private international law case-study
outlined above to demonstrate our approach. Our approach however is applicable to
finding conflicts between laws in general, not just in the specific case study described.
The paper ends with a short summary, conclusions and an outline of future work (Sec-
tion 5).

2 Legal Frameworks

A Formal Model for Legal Frameworks For modelling legal frameworks we use the
InstAL language and its tools [2]. The purpose of the model is to formalize the con-

struction of traces that characterize the result of individuals’ actions with respect to a
given legal corpus. We call such a formal model of (parts of) a legal system a legal
framework. In other application domains such a framework is called an institution or
normative framework. In [4], we demonstrated how such a formal model can be applied
in a legal context. To make this paper self-contained, we briefly review the model but
more details can be in found in [4].

To a first approximation, the model comprises an initial state and a state transformer
function that, given an action and a state, determines the successor state. To this we add
two particular refinements: (i) a function G that maps an individual’s physical actions
Eex, subject to conditions on the legal state, to their corresponding legal interpretation
Eact; for example the signing of a piece of paper when two witnesses are present may
denote the signing of a (legal) contract, and (ii) a function C that transforms the legal
state as a result of an action, be it physical or legal, if the current state matches a spec-
ified set of conditions; for example the signing of the contract brings about the legal
state in which the signatory is bound by the terms of the contract. Apart from physi-
cal actions (Eex), traditionally referred to as exogenous events, and their legal action
counterparts (Eact), the framework also has violation events (Eviol). Legal actions and
violations together comprise the legal events (Elegal) of a legal framework.

The legal state is modelled by a set of fluentsF , which are facts about the legal state
that are true by their presence and false in their absence. It is useful to identify several
disjoint subsets of fluents within the legal state. The first subset contains information
about the domain (D ⊂ F). For example, indicating whether a contract was signed
or not. The remaining subsets convey information about the actions and events of the
system. The fluents P ⊂ F indicate which physical and legal events are permitted. The
occurrence of events that are not permitted results in a violation. Legal power fluents
(W ⊂ F) indicate whether an event has currently the legal power to affect the legal
state, for example whether an individual has the legal power to witness a signature.
An event that is not empowered has no (legal) effect. Furthermore, actions may have
consequences for the individual, such as the obligation (O ⊂ F) to take some future
action before a certain deadline event. Failure to satisfy the obligation results in a vi-
olation. Once the obligation is satisfied or violated the obligation is removed from the
state. Conditions (φ) on a state are expressed over a subset of the set of all fluents and
their negation (φ ⊂ F ∪ ¬F). The initial state ∆ ⊆ F is the set of fluents that are true
when the legal framework is created. Putting the foregoing together, we define legal
frameworks as a quintuple L = 〈E ,F ,G, C, ∆〉.

The semantics of the legal framework is defined over a sequence, called a trace,
of exogenous events. Starting from the initial state of the legal framework, for each
exogenous event in the trace, we take (i) the transitive closure of G function augmented
with a violation generation function for unfulfilled obligations and non-permitted events
to generate all events taking place in the framework, and (ii) for each of these events,
the C relation is used to determine the fluents that need initiation and termination in
order to derive the next state. We also terminate obligations that were met or violated.
A summary of the formal model appears in Figure 1(a).

The Computational Model For a legal framework to be useful, it needs a corresponding
computational model. Hence, a user can, for example, verify if a series of actions results

in a violation of the laws encoded in the framework. The InstAL system [2] translates
the formal model to an equivalent computational model that uses Answer Set Program-
ming (ASP) [9]. To make the computational model accessible to a wider audience, [1]
proposes an intuitive natural-language based action language for the specification of
legal frameworks.

ASP is a declarative programming paradigm for logic programs under answer set
semantics. A variety of programming languages for ASP exist. We use AnsProlog ,
as several efficient solvers exist for this language. Like all declarative languages Ans-
Prolog has the advantage of describing the constraints and the solutions rather than
writing algorithm to find the solutions to the problem.

The basic components of the language are atoms, elements that can be assigned a
truth value. An atom can be negated using negation as failure. Literals are atoms a or
negated atoms not a. We say that not a is true if we cannot find evidence supporting
the truth of a. Atoms and literals are used to create rules of the general form: a ←
b1, ..., bm,not c1, ...,not cn, where a, bi and cj are atoms. Intuitively, this means if all
atoms bi are known/true and no atom cj is known/true, then a must be known/true. We
refer to a as the head and b1, ..., bm,not c1, ...,not cn as the body of the rule. Rules
with empty body are called facts. Rules with empty heads are known as constraints,
indicating that no solution should be able to satisfy the body. A (normal) program (or
theory) is a conjunction of rules and is also denoted by a set of rules. The semantics of
AnsProlog is defined in terms of answer sets, that is, assignments of true and false to
all atoms in the program that satisfy the rules in a minimal and consistent fashion. A
program may have zero or more answer sets, each corresponding to a solution.

The mapping of a legal framework consists of three parts: a base component which
is independent of the legal framework being modelled, the time component and the
framework-specific component. The base component deals with the inertia of fluents,
generation of violation events from non-permitted actions and unfulfilled obligations.
It also terminates fulfilled and violated obligations. The time component defines the
predicates for time and generates a single exogenous event at each time instance.

Figure 1 provides the framework-specific translation rules, including the definition
of all the fluents and events as facts. A fluent p is declared as ifluent(f) and event(e)
is used for an event. The predicate evtype(e, TYPE) specifies the type of the event e.
The time instant is captured by the predicate instant(T). According to C function, a
fluent can be initiated 4 (initiated(f, T)) or terminated 5 (terminated(f, T)) by the
occurrence of a legal event (occurred(e, T)). For a given expression φ ∈ X , we use
EX(φ, T) to denote the translation of φ into a set of ASP literals of the form (not)
holdsat(f, T), denoting that some fluent f (does not hold) holds at time T. The initial
state of the framework is encoded as facts (holdsat(f, i00)). For the detection of
conflicts, three atoms are important: occurred(e, i) indicates an event e took place at
time instance i, observed(e, i) that the exogenous action e was observed at time i and
holdsat(f, i) that fluent f is true at time i.

4 by being initiated, the fluent f holds true at the successor time instant, i.e. holdsat(f, T) holds
true at T.

5 by being terminated, the fluent f holds false at the successor time instant,
i.e.not holdsat(f, T) holds true at T.

L = 〈E ,F ,G, C,∆〉, where

1. F =W ∪P ∪O ∪D
2. G : X × E → 2Elegal

3. C : X × E → 2F × 2F

where C(X, e) =
(C↑(φ, e), C↓(φ, e)) where

(i) C↑(φ, e) initiates a
fluent

(ii) C↓(φ, e) terminates a
fluent

4. E = Eex ∪ Elegal
with Elegal = Eact ∪ Eviol

5. ∆
6. State Formula: X = 2F∪¬F

(a)

p ∈ F ⇔ifluent(p). (1)
e ∈ E ⇔event(e). (2)

e ∈ Eex ⇔evtype(e, obs). (3)
e ∈ Eact ⇔evtype(e, act). (4)
e ∈ Eviol ⇔evtype(e, viol). (5)

C↑(φ, e) = P ⇔∀p ∈ P · initiated(p, T)
← occurred(e, T),EX(φ, T). (6)

C↓(φ, e) = P ⇔∀p ∈ P · terminated(p, T)
← occurred(e, T),EX(φ, T). (7)

G(φ, e) = E ⇔g ∈ E,
occurred(g, T)←occurred(e, T),
holdsat(pow(g), T),EX(φ, T). (8)

p ∈ ∆⇔holdsat(p, i00). (9)

(b)

Fig. 1. (a) Formal specification and (b) translation of legal framework rules into AnsProlog

Case Study: Liquidated-damage Clause Having outlined the formal and computational
models, we look first at the encoding of the case-study. As mentioned in Sec. 1, the
case-study illustrates the process of drafting a new contract between a British software
provider and an Italian software purchaser, when they want to know any possible con-
flicts exist regarding liquidated-damage clauses. A conflict occurs in the determination
of the compensation amount, because Italian law specifies that judges can reduce the
amount if appropriate, but British law has no such provision. Table 1 and 2 give the
formal model for both frameworks and the ASP literals for each element in the model.

Both frameworks share the same set of exogenous events (Eex) which captures ac-
tions performed by contractors in the physical world. The event makeContract denotes
the action of establishing a contract between Promisee and Promissor. It also spec-
ifies that a payment of amount Payment is obliged to be paid before deadline Time,
otherwise a penalty Fine can be claimed, as agreed in the contract. The event pay
represents the event of making a payment in the real world, with amount Payment.
Moreover, clock is used to generate a time counter and signal the deadline later.
With the event demandComp, Promissor can request compensation value at Fine from
Promisee. It can be noticed that the Italian framework has two additional exogenous
events: setActualDamage which indicates the damages awarded for insufficient per-
formance by the contractors and reduceComp which denotes the action of a judge to
reduce the compensation. As shown in the table, each exogenous event is mapped to
one legal action in the set Eact, which are the legal interpretation of physical events
and actually change the legal states. The set Eviol consists of violation events for each
exogenous and legal event in order to signal the occurrence of non-permitted events
and unfulfilled obligations, e.g. the violation event paymentViolation is generated
to capture the non-performance of the payment obligation. The domain fluents record
when a contract is valid (contract), when is the promised deadline of the payment
(deadline), temporal relations (next), penalty amount comparison (lessThan and

B
ritish

L
aw

Italian
L

aw

E
ex

=
{
m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),c

l
o
c
k
(T
i
m
e
),

d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)}

E
a
ct
=
{
i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),i

n
t
D
e
a
d
l
i
n
e
(T
i
m
e
),

i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)}

E
v
io
l =
{
v
i
o
l
(e
)|
e
∈
(E

ex ∪
E
a
ct)}
∪
{
p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)}

D
=
{
c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

n
e
x
t
(T
i
m
e
,T
i
m
e
),d

e
a
d
l
i
n
e
(T
i
m
e
),l

e
s
s
T
h
a
n
(P
a
y
m
e
n
t
,P
a
y
m
e
n
t
),

c
o
m
p
(F
i
n
e
),l

e
s
s
T
h
a
n
F
i
n
e
(F
i
n
e
,F
i
n
e
)}

W
=
{
p
o
w
(e
)|
e
∈
E
a
ct }

P
=
{
p
e
r
m
(e
)|
e
∈
E}

O
=
∅

E
ex

=
{
m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),c

l
o
c
k
(T
i
m
e
),s

e
t
A
c
t
u
a
l
D
a
m
a
g
e
(F
i
n
e
),

d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
),

r
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
,F
i
n
e
)}

E
a
ct
=
{
i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),i

n
t
D
e
a
d
l
i
n
e
(T
i
m
e
),i

n
t
D
a
m
a
g
e
(F
i
n
e
),

i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
),

i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
,F
i
n
e
)}

E
v
io
l =
{
v
i
o
l
(e
)|
e
∈
(E

ex ∪
E
a
ct)}
∪
{
p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)}

D
=
{
c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

n
e
x
t
(T
i
m
e
,T
i
m
e
),d

e
a
d
l
i
n
e
(T
i
m
e
),l

e
s
s
T
h
a
n
(P
a
y
m
e
n
t
,P
a
y
m
e
n
t
),

c
o
m
p
(F
i
n
e
),l

e
s
s
T
h
a
n
F
i
n
e
(F
i
n
e
,F
i
n
e
),d

a
m
a
g
e
(F
i
n
e
)}

W
=
{
p
o
w
(e
)|
e
∈
E
a
ct }

P
=
{
p
e
r
m
(e
)|
e
∈
E}

O
=
∅

G
(X
,E

)
:

〈∅,m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)〉

→
{
i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)}

〈{
c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

¬
l
e
s
s
T
h
a
n
(P
a
y
m
e
n
t
M
a
d
e
,P
a
y
m
e
n
t
)}
,p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
)〉

→
{
i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)}

〈∅,d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)〉

→
{
i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)}

〈{
d
e
a
d
l
i
n
e
(T
i
m
e
2
)},c

l
o
c
k
(T
i
m
e
2
)〉

→
i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
2
)

G
(X
,E

)
:

〈∅
,m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)〉

→
{
i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)}

〈{
c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

¬
l
e
s
s
T
h
a
n
(P
a
y
m
e
n
t
M
a
d
e
,P
a
y
m
e
n
t
)}
,p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
)〉

→
{
i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)}

〈∅
,d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)〉

→
{
i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)}

〈{
d
e
a
d
l
i
n
e
(T
i
m
e
2
)},c

l
o
c
k
(T
i
m
e
2
)〉

→
i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
2
)

〈∅
,s
e
t
A
c
t
u
a
l
D
a
m
a
g
e
(F
i
n
e
)〉

→
i
n
t
D
a
m
a
g
e
(F
i
n
e
)

〈{
p
o
w
(i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
)),

p
e
r
m
(i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
))},

r
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
)〉

→
i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
)

Table
1.T

he
B

ritish
and

Italian
L

iquidated-D
am

age
L

egalFram
ew

orks
Part1

B
ri

tis
h

L
aw

cn
t.

It
al

ia
n

L
aw

cn
t.

C↑
(X
,E

)
:

〈∅
,i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)〉
→

{c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

o
b
l
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),
i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
),

p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
))
,

p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,d
e
a
d
l
i
n
e
(T
i
m
e
)}

〈∅
,p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)〉

→
{p
e
r
m
(d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
,

p
o
w
(i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
,

p
e
r
m
(i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
}

〈∅
,d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)〉

→
{c
o
m
p
(F
i
n
e
)}

〈∅
,i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
)〉

→
{c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
}

〈∅
,p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)〉

→
{p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
}

C↑
(X
,E

)
:

〈∅
,i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
)〉
→

{c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

o
b
l
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
),
i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
),

p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
))
,

p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,A
n
y
P
a
y
m
e
n
t
))
,d
e
a
d
l
i
n
e
(T
i
m
e
)}

〈∅
,p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)〉

→
{p
e
r
m
(d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
,

p
o
w
(i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
,

p
e
r
m
(i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
))
,

p
e
r
m
(s
e
t
A
c
t
u
a
l
D
a
m
a
g
e
(F
i
n
e
1
))
,p
e
r
m
(i
n
t
D
a
m
a
g
e
(F
i
n
e
1
))
,

p
o
w
(i
n
t
D
a
m
a
g
e
(F
i
n
e
1
))
}

〈∅
,d
e
m
a
n
d
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,F
i
n
e
)〉

→
{c
o
m
p
e
n
s
a
t
i
o
n
(F
i
n
e
)}

〈∅
,i
n
t
D
a
m
a
g
e
(F
i
n
e
)〉

→
{d
a
m
a
g
e
(F
i
n
e
)}

〈{
d
a
m
a
g
e
(F
i
n
e
),
l
e
s
s
T
h
a
n
F
i
n
e
(F
i
n
e
,A
g
r
e
e
d
F
i
n
e
)}
,

i
n
t
C
o
m
p
(P
r
o
m
i
s
s
o
r
,P
r
o
m
i
s
e
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
)〉

→
{p
e
r
m
(r
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
))
,

p
o
w
(i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
))
,

p
e
r
m
(i
n
t
R
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
))
}

〈∅
,r
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
)〉

→
c
o
m
p
e
n
s
a
t
i
o
n
(F
i
n
e
)}

〈∅
,i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
)〉

→
{c
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
),

p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
}

〈∅
,p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
)〉

→
{p
e
r
m
(p
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
e
r
m
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
,

p
o
w
(i
n
t
P
a
y
(C
o
n
t
r
a
c
t
I
D
,P
a
y
m
e
n
t
M
a
d
e
))
}

〈∅
,r
e
d
u
c
e
C
o
m
p
(J
u
d
g
e
,C
o
n
t
r
a
c
t
I
D
,A
g
r
e
e
d
F
i
n
e
,F
i
n
e
)〉

→
{C
o
m
p
(A
g
r
e
e
d
F
i
n
e
)}

∆
=
{p
e
r
m
(c
l
o
c
k
(T
i
m
e
))
,p
e
r
m
(i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
))
,p
o
w
(i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
))
,

p
e
r
m
(m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
,

p
o
w
(i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
,

p
e
r
m
(i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
}

∆
=
{p
e
r
m
(c
l
o
c
k
(T
i
m
e
))
,p
e
r
m
(i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
))
,p
o
w
(i
n
t
D
e
a
d
l
i
n
e
(T
i
m
e
))
,

p
e
r
m
(m
a
k
e
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
,

p
o
w
(i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
,

p
e
r
m
(i
n
t
C
o
n
t
r
a
c
t
(C
o
n
t
r
a
c
t
I
D
,P
r
o
m
i
s
e
e
,P
r
o
m
i
s
s
o
r
,P
a
y
m
e
n
t
,F
i
n
e
,T
i
m
e
))
}

Ta
bl

e
2.

T
he

B
ri

tis
h

an
d

It
al

ia
n

L
iq

ui
da

te
d-

D
am

ag
e

L
eg

al
Fr

am
ew

or
ks

Pa
rt

2

B
ritish

L
egalFram

ew
ork

Italian
L

egalFram
ew

ork

E
ffects

of
paym

entV
iolation

i
n
i
t
i
a
t
e
d
(p
e
r
m
(d
e
m
a
n
d
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(b
r
i
t
i
s
h
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
o
w
(b
r
i
t
i
s
h
l
a
w
,i
n
t
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(b
r
i
t
i
s
h
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
e
r
m
(i
n
t
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(b
r
i
t
i
s
h
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
e
r
m
(d
e
m
a
n
d
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
e
r
m
(i
n
t
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
),I

))
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
o
w
(i
t
a
l
i
a
n
l
a
w
,i
n
t
C
o
m
p
(i
t
,g
b
,c
o
n
t
r
a
c
t
,1
0
0
0
0
),I

))
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
e
r
m
(s
e
t
A
c
t
u
a
l
D
a
m
a
g
e
(c
o
n
t
r
a
c
t
,5
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
e
r
m
(i
n
t
D
a
m
a
g
e
(c
o
n
t
r
a
c
t
,5
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

i
n
i
t
i
a
t
e
d
(p
o
w
(i
t
a
l
i
a
n
l
a
w
,i
n
t
D
a
m
a
g
e
(c
o
n
t
r
a
c
t
,5
0
0
0
)),I

)
:−

o
c
c
u
r
r
e
d
(p
a
y
m
e
n
t
V
i
o
l
a
t
i
o
n
(c
o
n
t
r
a
c
t
,5
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

E
ffects

of
reduceC

om
p

N
otR

ecognised
by

B
ritish

L
aw

i
n
i
t
i
a
t
e
d
(c
o
m
p
(5
0
0
0
),I

)
:−

o
c
c
u
r
r
e
d
(r
e
d
u
c
e
C
o
m
p
(j
u
d
g
e
,c
o
n
t
r
a
c
t
,1
0
0
0
0
,5
0
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

t
e
r
m
i
n
a
t
e
d
(c
o
m
p
(1
0
0
0
),I

)
:−

o
c
c
u
r
r
e
d
(r
e
d
u
c
e
C
o
m
p
(j
u
d
g
e
,c
o
n
t
r
a
c
t
,1
0
0
0
0
,5
0
0
0
),I

),
h
o
l
d
s
a
t
(l
i
v
e
(i
t
a
l
i
a
n
l
a
w
),I

),i
n
s
t
a
n
t
(I
).

Table
3.PartialC

om
parison

ofB
ritish

and
Italian

L
egalFram

ew
ork

in
A
n
sP
rolog

lessThanFine), and most importantly for detecting the conflict, the fluent denoting
the amount of settled compensation (comp(Fine)).

The action setActualDamage is only meaningful for the Italian framework and the
generated legal event intDamage initiates the fluent damage, denoting the value of the
actual damage awarded. The permission to perform reduceComp is initiated when the
amount of the penalty was excessive compared to the amount of the actual damage, as
expressed by damage(Fine) and lessThanFine in the conditions of the rule.

The most significant differences between the two models occurs in the effects after
the occurrence of events paymentViolation and demandComp. After observing the
violation event paymentViolation, the permission and power of demandComp are
initiated in both frameworks, but the Italian framework also initiates the permission of
the event setActualDamage. The fluent comp(Fine) is initiated to the amount agreed
in the contract by performing event demandComp. However, the event reduceComp
in the Italian framework can reduce the penalty amount by terminating the original
comp(AgreeFine) and initiating comp(Fine) to denote the new reduced amount of
compensation. The differences described above are shown in Table 3.

3 Modelling and Reasoning of Comparative Legal Frameworks

We can now introduce the concept of comparative legal frameworks, denoted CL, that
comprises a set of individual legal frameworks for conflict analysis, CL with L =
{L1, . . . ,Ln}. Within CL, all the individual frameworks are still treated as autonomous
entities, butCL provides an interface for the user to interact with the combination, rather
than an individual framework.

In this paper we are concerned with the detection of conflicts between different legal
frameworks. To be able to compare legal frameworks and the concepts they model, we
assume an existing legal ontology that enables semantic alignment between the frame-
works. In other words, after semantic alignment, exactly the same fluent or event name
is used to express the same concept within all frameworks that are part of CL. This im-
plies that if comp(Fine) denotes the final compensation to be paid in one legal frame-
work, then we assume that exactly the same fluent is used in the other legal frameworks
to denote the final compensation settlement.

3.1 Comparative Traces

Once a comparative legal framework is formed from a set of individual legal frame-
works, users can provide specific cases to analyse. A case is a sequence of exogenous
events that captures a sequence of actions performed in the physical world in the context
of a comparative legal framework. More precisely, cases can be any possible combina-
tion of exogenous events from individual legal frameworks and such cases are defined
as comparative traces. Each of the exogenous events can be recognised by one or more
of the individual frameworks.

Definition 1. Given a comparative legal framework CL consisting of legal frameworks
L = {L1, . . . ,Ln}. A comparative trace is a sequence 〈e1, . . . em〉 such that ∀ei, 1 ≤
i ≤ m : ∃1 ≤ j ≤ n : ei ∈ Ejex.

3.2 Null Events

To analyse how a given comparative trace drives the state transition for each individual
legal framework, we need to generate individual traces for each individual framework
from the given comparative trace. Comparative traces are formed by the events in the
union of all possible exogenous events, so some events might be recognised by some
legal frameworks, but not by the others, potentially leading to individual traces with dif-
ferent lengths. This implies that even the same event might be associated with different
time instances in different individual frameworks. Consequently the state transitions in
each individual framework may not be synchronized.

To resolve this technically, we introduce null events into our formal model: for each
exogenous event in a comparative trace, if it is unknown to some individual framework,
then a null event appears in the individual trace. The null events do not change the
state, that is null events are not used in either G or C, but do result in a state transition
and therefore guarantee that all individual traces are synchronized. As null events are
exogenous events, they need to be permitted in the initial state. For each framework
Li ∈ CL, we add enull ∈ E iex and perm(enull) ∈ ∆ to the formal model.

We now present a simple example from the liquidated-damage clause case study to
demonstrate why synchronised traces are necessary for conflict detection. Suppose we
have the following comparative trace:

CTR = 〈insuffPay, setDamage(5000), demandComp(10000), reduceComp(5000)〉.

The trace describes a sequence of actions: the Italian company made an insufficient pay-
ment insuffPay, which caused damage valued at 5,000 Euros setDamage(5000). As
a result, the British company demanded compensation of 10,000 Euros from the Italian
company demandComp(10000). This is then followed by reduceComp(5000), result-
ing in the compensation amount being reduced to 5,000. The events setDamage(5000)
and reduceComp(5000) are only recognised by the Italian framework thus the separate
traces (without synchronisation) for the British and Italian frameworks respectively are:

trgb = 〈insuffPay, demandComp(10000)〉
trit = 〈insuffPay, setDamage(5000), demandComp(10000), reduceComp(5000)〉

Therefore, we align the traces by inserting null events enullGB at time of the oc-
currence of event setDamage(5000) and reduceCompen(5000) for the British trace:

trgb = 〈insuffPay, enullGB, demandComp(10000), enullGB〉
trit = 〈insuffPay, setDamage(5000), demandComp(10000), reduceComp(5000)〉

Following the occurrence of event reduceComp(5000), Italian framework termi-
nates (and removes) the fluent comp(10000) and initiated another fluent comp(5000)
with new value 5000 that is reduced from 10000. Consequently, we can now detect the
expected conflict correctly between fluent comp(10000) in SGB

4 and comp(5000) in
SIT
4 at time instant 4 from the synchronised traces. We call the traces generated from a

given CTR and synchronised by means of null events synchronised traces.

Definition 2. Given a comparative trace CTR = 〈e1, . . . , et〉 for a comparative legal
framework CL consisting of legal frameworks L = {L1, . . . ,Ln}, the synchronised

trace for any individual legal framework Li ∈ CL w.r.t. CTR is the trace 〈a1, . . . , at〉
with ak = ek if ek ∈ E iex and with ak = enull otherwise.

Based on the definition of comparative trace, we can present the comparative model
for a comparative legal framework. A comparative model is a set of states sequences
over time and each sequence expresses the state transition for each individual frame-
work according to a synchronised trace obtained from CTR.

Definition 3. Given a comparative trace CTR for a comparative legal frameworkCL with
L = {L1, . . . ,Ln}, the corresponding comparative model is the set of models Mi with
1 ≤ i ≤ n where Mi is the model for the synchronised trace of framework Li.

3.3 Conflict Traces

The problem stated at the outset was to uncover situations whereby a course of actions
might be interpreted differently depending on which jurisdiction is used.

This mechanism is formalized here as a comparative trace CTR and the conflicting
states can be detected by analysing the corresponding comparative model. A compara-
tive trace CTR is a conflict trace, if any two frameworks have a shared fluent holding
true in the state of one and false in the corresponding state of the other.

Definition 4. Given a comparative legal frameworkCL with a comparative trace CTR.
CTR is a conflict trace iff:

– ∃Li,Lj ∈ L with synchronised models Mi = 〈Si
0, . . . S

i
t〉 and Mj = 〈Sj

0, . . . S
j
t 〉

such that
– ∃f ∈ (F i ∩ F j) such that
– ∃k, 0 ≤ k ≤ t such that
– f ∈ Si

k and ¬f ∈ Sj
k

We also say a comparative legal framework is conflict-free when none of the possi-
ble comparative traces are conflict traces.

3.4 Law Conflict Discovery

In this section, we present an implementation of the theory introduced above. Firstly,
we represent each individual framework in InstAL and then translate them automati-
cally into ASP, which sets the stage for conflict detection. One might initially think that
we could simply merge the AnsProlog programs for each framework and add the con-
straints (i) conflict : −holdsat(F, T),not holdsat(F, T), and (ii) : −not conflict
to find conflicts with respect to fluent F. However, the same fluent has exactly same rep-
resentation in each framework, which implies that even if there is a conflict for the fluent
F, it can never be detected since the first rule will never hold. We resolve this problem
by a simple technical solution in which the events and fluents are consistently renamed.
We construct a mapping such that rename(F, FInst, Inst) indicates that fluent/event
F corresponds to FInst in framework Inst. For example, the fluent comp(Fine) is
compGB(Fine) in britishlaw and compIT(Fine) in italianlaw. Two facts estab-
lish the mapping: (i) rename(comp(Fine), compGB(Fine), britishlaw), and
(ii) rename(comp(Fine), compIT(Fine), italianlaw).

We define two different conflict atoms, one with zero arguments and the other
with three. The first is because we are interested in the occurrence of conflicts. There-
fore, the constraint ensures the generation only of answer sets containing conflicts.
Thus, if there are no answer sets, there are no conflicts in the comparative legal frame-
work. We could test the following program with all possible comparative traces CTR
(programs to generate all CTRs come shortly) to determine whether a comparative le-
gal framework is conflict-free:

conflict : −holdsat(FInX, I),not holdsat(FInY, I),
rename(F, FInX, InX), rename(F, FInY, InY),
ifluent(FInX), ifluent(FInY),
instant(I), inst(InX; InY).

: −not conflict.
On the other hand, it is also of great value to determine whether a provided CTR will
cause any conflicts and what the conflicts are. Thus we also define an atom conflict/3
with the first argument denoting the fluent occurring positive, the second argument in-
dicating the occurrence of the negative counterpart and the third argument being time
instant in which the conflict occurs. Compared with the conflict atom with no argu-
ment, this one carries more information about a specific conflict the system detected
and would be of great use for further analysis.

conflict(FInX, FInY, I) : −holdsat(FInX, I),not holdsat(FInY, I),
rename(F, FInX, InX), rename(F, FInY, InY),
ifluent(FInX), ifluent(FInY),
instant(I), inst(InX; InY).

In order to determine whether a comparative legal framework is conflict-free, we could
apply conflict detection to all possible comparative traces. The rules below are designed
for this purpose by generating all possible comparative traces CTR as the set of all an-
swer sets.

compEvent(E) : −rename(E, EIn, In), evtype(EIn, ex), evinst(EIn, In), inst(In).
{compObserved(E, I)} : −compEvent(E), instant(I),not final(I).

ev(I) : −compObserved(E, I), instant(I).
: −not ev(I), instant(I),not final(I).
: −compObserved(E1, I), compObserved(E2, I), E1! = E2,

instant(I), compEvent(E1), compEvent(E2).
The first rule translates all exogenous events from the individual frameworks to compar-
ative events compEvent/1, from which we then form comparative traces by means of
the second rule. {compObserved(E, I)} indicates a choice to generate the atom or not.
If generated, then a ev(I) is provided accordingly. The last two constraints guarantee
that only one event can be observed/produced at each non-final time instant.

As discussed in Section 3.2, having obtained comparative traces, we now need to
separate the traces for each individual legal framework. The observed/2 atoms are
produced from compObserved/2 by generating renamed events for each framework
that recognises the events or null events otherwise. The program fragment is as follows:

observed(EIn, I) : −compObserved(E, I), rename(E, EIn, In), evinst(EIn, In),
inst(In), instant(I).

observed(NullEvent, I) : −compObserved(E, I), rename(E, EIn, In),not evinst(EIn, In),
inst(In), instant(I), nullEvent(NullEvent, In).

3.5 Case Study Conflicts

We can now apply the conflict detection mechanism to the case study presented in Sec-
tion 2. A comparative trace is provided as follows to detect any conflicts that occur:

CTR =〈makeContract(gb, italy, 1000, 10000, deadline), makePayment(500),
demandComp(italy, gb, 10000), setActualDamage(5000),
reduceComp(judge, 10000, 5000)〉

The trace shows that a British company and Italian company have signed a contract
specifying the Italian company is obliged to pay the full purchase amount of 1,000 Eu-
ros before a certain deadline, otherwise a liquidated-damage penalty of 10,000 Euros
will be demanded. However, the Italian company only paid 500 Euros before the dead-
line, which caused damage valued at 5,000 Euros for the British company. As a result,
the British company demands compensation of 10,000 Euros as the amount agreed in
the contract. As discussed in Section 2, at this point, referring to different legal texts
produces different interpretations and results. For example, the judge may decide to re-
duce the compensation amount to 5,000 Euros instead according to Italian Civil Code.

The conflict detection program find two conflicts with respect to compensation.
As can be seen from the result, conflicts occur because of different values are produced
to the same fluent from British law and Italian law.

conflict(compGB(10000), compIT(10000), 8)
conflict(compIT(5000), compGB(5000), 8)

4 Related Work

In this paper we presented a computational approach for detecting conflicts between
different legal systems with the help of legal frameworks. Modelling and reasoning
about legal systems with the help of legal frameworks is not a new idea, but has been
subject of research for several decades (see [12] for a comprehensive discussion). Of
these works, we highlight Dung and Sartor [6] who present a logic-based approach to
model private international law and Governatori [10] who proposed the use of RuleML
for representing and reasoning about clauses of business contracts. Dung and Sartor’s
work is of particular interest because not only do they focus on private international
law as the example in this paper does, but they also analyse the interactions between
different legal systems to explain how these can be coordinated. In particular, they adopt
modular argumentation in which each legal system is modelled as a module, allowing
relevant modules to deal with specific queries.

However, there are major differences between our work and theirs: we present a
generalised methodology to model legal systems and illustrate how different jurisdic-
tions change their legal state in response to the exogenous events and from which, as a
result, conflicts might emerge and can be detected. In contrast, they focus on the repre-
sentation of individual examples and their specific resolution.

There are also some other legal modelling methodologies in the literature address-
ing different foci and motivations. For example, Governatori et al [11] present a legal
modelling approach based on temporal defeasible logic (TDL). They focus on cap-
turing the temporal properties of legal effects, such as persistence and retroactivity.
We capture similar concepts by inertial and non-inertial fluents in our model specifica-
tion.Governatori [10] converts business contracts from natural language into executable

rules based on RuleML with the aim of monitoring contract execution. Moreover, con-
flicting rules are assumed to be identified beforehand in order to be able to establish
precedence relations between them. No mechanism is provided to identify conflicts au-
tomatically, in contrast to our approach.

Several other works address potential conflicts in legal or normative settings, such
as: [8,13,14,18,17]. Of these, [8,13,14] assume that the legal specifications of the sys-
tems to be analysed can be altered over time and proposes mechanisms to deal with
conflicts detected. Our paper takes the viewpoint of the designer who wishes to check
that the system is conflict-free. Although [8] and [14] present a formal definition of
a conflict that is similar to the one presented here, no computational mechanisms for
detecting conflicts are provided, and it is assumed that all conflicts are known a priori.
This is unlikely in the situation described in this paper, because actors (companies in
this case) are unlikely to have detailed legal knowledge but need to explore their spe-
cific business situation with respect to the consequences arising from interacting with
different legal systems.

Vasconcelos et al. [18,17] concentrate on both the detection and the resolution of
conflicts between legal systems. They apply first-order unification to discover overlap-
ping substitutions to the variables of laws/norms in which legal/norm conflicts may
occur. Conflicts are then resolved by annotating a norm with an undesirable set speci-
fying values its variables should not have in order to avoid overlaps and hence conflicts.
This approach allows for the detection of conflicts between norms relating to single ac-
tions. In contrast to their work, we aim to uncover a broader class of conflicts between
normative frameworks, namely those that may emerge as consequences of a sequence
of events (here specified as a trace). We contend that our approach is more suitable for
legal reasoning, because many conflicts between laws are not easily observed by the
static comparison of legal texts, but rather may only arise as a consequence of specific
legal cases and can be only precisely detected through continuous comparison of the
changing legal states and consequences.

5 Conclusion and Future Work

Legal conflicts are a common issue when different jurisdictions are applicable in the
same case. It is of great value for individuals to be able to determine whether any dis-
parities exist between pertinent jurisdictions in general, or whether a course of actions
would result in any conflicts of law leading to unforeseen outcomes, in particular in the
case of penalties. In this paper, we present a formal and computational framework to
model jurisdictions and then automatically detect possible conflicts between them. The
approach presented has, we believe, no intrinsic limitation to our private international
case study, but is generally applicable to conflict-finding between different jurisdictions,
or indeed any other type of framework that may be composed or compared. Examples
of such frameworks could be the detection of conflicts between revised and existing
laws, or the comparison of two different existing contracts. Our approach performs as
good as the traces the users provide. The more details (events) provided with the traces,
the more accurate conflicts can be detected. If users are interested in all conflicts among
legal systems, then all possible traces need to be examined. This might bring some

concern on computational complexity because generating all possible traces is compu-
tationally expensive. However, it is possible to compute the reachable state space of
comparative legal framework.

We identify several issues for future work. The first concerns extensions of the ideas
set out here, where we consider only conflicts between permission and prohibition. An-
other typical sources of conflict arises between obligation and prohibition. A compre-
hensive overview of legal conflicts is provided in [14], which points out more directions
for the future applications. We should note that our system can detect all types of legal
conflicts presented in [14].

The second is to address a potentially useful and novel application domain, in that it
would be interesting and valuable to detect conflicts between existing laws and proposed
revisions: some may be intentional, others not.

The third issue is that of semantic alignment. In this paper we make an assumption
that the legal frameworks are already semantically aligned as a result of using a common
established legal ontology. More precisely, we assume that there is a one-to-one map-
ping between concept and representation. This assumption can be relaxed by means of
a legal ontology that unifies a set of representations with a legal concept. This topic has
been studied for the last two decades and is regarded as the bridge between legal theory
and AI & Law in [16]. Generally speaking, legal ontology is able to provide a means to
establish a shared conceptualisation way of any legal systems, by which the legal enti-
ties and notions can be represented by disambiguate logical propositions. In the future,
we will try to tackle this problem based on some developed ontological frameworks.
For example, JurWordNet [7] and LOISWordNet [5] are typical semantic matching sys-
tems specially designed for legal domain. They enables the search in legal documents
by using layman’s search terms and in response with legal professional terms. These
two systems are actually extensions to a generic ontological framework WordNet [15].
Inspired by this, we can consider how to establish an ontological framework by linking
legal codes to InstAL representations. Using this ontology we could then interpret con-
sistently elements that have different representations but the same intended meaning in
different legal frameworks.

A fourth point for future work is conflict resolution. While not applicable to the
case-study, as the laws modelling in the frameworks cannot be altered by the partici-
pants, other application domains could benefit from this. An example would be when
new laws cause unintentional conflict with existing laws. In that case, more revisions
might be needed. Some work on revision already exists. Sartor [14] proposes classic
ordering strategies over laws using either a belief change function or a non-monotonic
reasoning approach. An alternative resolution approach is proposed by Garcı́a-Camino
et. al [8]. The authors resolve conflicts by removing laws with lower priority. Our in-
tention is to work out how to revise laws, rather than deleting or ignoring them. With
a formal model and corresponding AnsProlog encoding, we believe that Corapi et al.’s
[3] can provide us with both the theoretical and computational model to do so.

References
1. O. Cliffe, M. De Vos, and J. Padget. Specifying and reasoning about multiple institutions. In

P. Noriega, J. Vázquez-Salceda, G. Boella, O. Boissier, V. Dignum, N. Fornara, and E. Mat-

son, editors, Coordination, Organization, Institutions and Norms in Agent Systems II, volume
4386 of LNCS, pages 67–85. Springer, 2007.

2. O. Cliffe, M. De Vos, and J. A. Padget. Answer set programming for representing and rea-
soning about virtual institutions. In K. Inoue, K. Satoh, and F. Toni, editors, Computational
Logic in Multi-Agent Systems, volume 4371 of LNCS, pages 60–79. Springer, 2007.

3. D. Corapi, A. Russo, M. D. Vos, J. A. Padget, and K. Satoh. Normative design using inductive
learning. TPLP, 11(4-5):783–799, 2011.

4. M. De Vos, J. Padget, and K. Satoh. Legal modelling and reasoning using institutions. In
T. Onoda, D. Bekki, and E. McCready, editors, New Frontiers in Artificial Intelligence (JSAI-
isAI 2010 Workshop), pages 129–140. Springer, 2011.

5. L. Dini, W. Peters, D. Liebwald, E. Schweighofer, L. Mommers, and W. Voermans. Cross-
lingual legal information retrieval using a wordnet architecture. In Proceedings of the 10th
international conference on Artificial intelligence and law, pages 163–167. ACM, 2005.

6. P. M. Dung and G. Sartor. The modular logic of private international law. Artificial Intelli-
gence and Law, 19:233–261, 2011.

7. A. Gangemi, M. Sagri, and D. Tiscornia. Metadata for content description in legal informa-
tion. In Procs. of LegOnt Workshop on Legal Ontologies, 2003.

8. A. Garcı́a-Camino, P. Noriega, and J.-A. Rodrı́guez-Aguilar. An algorithm for conflict res-
olution in regulated compound activities. In Engineering Societies in the Agents World VII,
volume 4457, pages 193–208. Springer, 2007.

9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):365–386, 1991.

10. G. Governatori. Representing business contracts in ruleml. International Journal of Coop-
erative Information Systems, 14(2–3):181–216, 2005.

11. G. Governatori, A. Rotolo, and R. Rubino. Implementing temporal defeasible logic for mod-
eling legal reasoning. New Frontiers in Artificial Intelligence, pages 45–58, 2010.

12. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems: the
normative systems perspective. In J.-J. C. Meyer and R. J. Wieringa, editors, Deontic logic
in computer science, pages 275–307. John Wiley & Sons Ltd., 1993.

13. M. J. Kollingbaum, T. J. Norman, A. Preece, and D. Sleeman. Norm refinement: Informing
the re-negotiation of contracts. In ECAI 2006 Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems, COIN@ECAI 2006, pages 46–51, 2006.

14. G. Sartor. Normative conflicts in legal reasoning. Artificial Intelligence and Law, 1:209–235,
1992.

15. M. Stark and R. Riesenfeld. Wordnet: An electronic lexical database. In Proceedings of 11th
Eurographics Workshop on Rendering. Citeseer, 1998.

16. A. Valente and J. Breuker. Ontologies: The missing link between legal theory and ai & law.
In JURIX, volume 94, pages 139–149. Citeseer, 1994.

17. W. Vasconcelos, M. Kollingbaum, and T. Norman. Normative conflict resolution in multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 19(2):124–152, 2009.

18. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Resolving conflict and inconsis-
tency in norm-regulated virtual organizations. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 644–651. ACM, 2007.

	Detecting Conflicts in Legal Systems

