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ORTHOGONAL SIMPLE COMPONENT ANALYSIS: A NEW,
EXPLORATORY APPROACH

By Karim Anaya-Izquierdo, Frank Critchley and Karen Vines

The Open University

Combining principles with pragmatism, a new approach and ac-
companying algorithm are presented to a longstanding problem in
applied statistics: the interpretation of principal components. Fol-
lowing Rousson and Gasser [53 (2004) 539–555]

the ultimate goal is not to propose a method that leads au-
tomatically to a unique solution, but rather to develop tools
for assisting the user in his or her choice of an interpretable
solution.

Accordingly, our approach is essentially exploratory. Calling a vector
‘simple’ if it has small integer elements, it poses the open question:

What sets of simply interpretable orthogonal axes—if any—are
angle-close to the principal components of interest?

its answer being presented in summary form as an automated visual
display of the solutions found, ordered in terms of overall measures of
simplicity, accuracy and star quality, from which the user may choose.
Here, ‘star quality’ refers to striking overall patterns in the sets of
axes found, deserving to be especially drawn to the user’s attention
precisely because they have emerged from the data, rather than being
imposed on it by (implicitly) adopting a model. Indeed, other things
being equal, explicit models can be checked by seeing if their fits occur
in our exploratory analysis, as we illustrate. Requiring orthogonality,
attractive visualization and dimension reduction features of principal
component analysis are retained.

Exact implementation of this principled approach is shown to pro-
vide an exhaustive set of solutions, but is combinatorially hard. Prag-
matically, we provide an efficient, approximate algorithm. Through-
out, worked examples show how this new tool adds to the applied
statistician’s armoury, effectively combining simplicity, retention of
optimality and computational efficiency, while complementing exist-
ing methods. Examples are also given where simple structure in the
population principal components is recovered using only information
from the sample. Further developments are briefly indicated.
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1. Introduction and overview. Principal components are linear combina-
tions of a set of, say, p commensurable variables with coefficients (‘loadings’)
given by eigenvectors of their covariance or correlation matrix S. As such,
they simultaneously enjoy many optimal properties: see, for example, Jolliffe
(2002), Chapters 2 and 3. However, to be useful in practice, such components
often need interpretation in the context of the data studied. Unfortunately,
optimality is no guarantee of interpretability. Accordingly, principal compo-
nents may possess optimal theoretical properties, but be of limited practical
interest. This motivates replacing them by components which are more in-
terpretable by virtue of being ‘simpler’ in some sense, albeit at the expense
of some degree of optimality.

We begin with a brief overview of existing approaches to this problem,
further details being available in the references cited.

1.1. Existing approaches. In a broad sense, simplicity means the appear-
ance of nice structures in the loadings matrix Q= (q1| · · · |qk) which con-
tains the k ≤ p eigenvectors of interest. Often, the scientist in charge of
the study would like to see if there are clear-cut patterns reflected in Q
which help him or her to better understand the meaning of the components
q⊤
r x (r = 1, . . . , k) which it generates. Examples of nice structures include

the presence of simple weighted averages, contrasts, groups of variables and
sparseness. However defined, simplicity inevitably implies some loss of opti-
mality and it is the scientist in charge of the study who needs to calibrate
the trade-off between simplicity and optimality, as we further comment in
Section 1.2.

The oldest approach to simplifying principal components is rotation, ex-
ploiting the fact that—as with principal component analysis itself—rotation
of the p original axes (one for each variable) defines new orthogonal co-
ordinate axes on which the data can be displayed while total variance is
preserved. This provides attractive visualization and dimension reduction
features. In particular, there being no double counting of total variance, the
user can identify and plot the data on just those axes making the largest or
smallest contributions to it, depending on the focus of scientific interest—
explaining variability or exploring potential scientific laws (near constant
linear relations among the variables).

Only rotation methods are guaranteed to provide new axes which are or-
thogonal. Nonrotation methods in general lack the attractive features noted
above, joint visualization of components being impeded by nonorthogonal-
ity of axes and dimension reduction by loss of the additive decomposition of
total variance.

Overall, the rotation approach to simplification seeks more interpretable,
orthogonal axes while retaining as much optimality as possible. See, for
example, Chapter 11 of Jolliffe (2002), which provides an excellent overall
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review of simplification of principal components as of 2002. More recently,
assuming normality, Park (2005) has proposed a penalized profile likelihood
method, using varimax as the penalty function, which favors rotation of
ill-defined components (those whose eigenvalues are close). However, in all
these methods, the loadings involved are usually real numbers, which means
that interpretation can still be difficult.

Another approach to simplification is to target sparsity. The presence
of many zeroes in Q can be useful for interpretation, for example, when
dealing with many variables. See, for example, D’Aspremont et al. (2007),
Farcomeni (2009), Chipman and Gu (2005) and the references therein. One
class of methods which targets sparseness is that based on the Least Absolute
Shrinkage Selection Operator (LASSO). See, for example, the papers by
Trendafilov and Jolliffe (2007), Zou, Hastie and Tibshirani (2006), Sjöstrand,
Stegmann and Larsen (2006) and Jolliffe, Trendafilov and Uddin (2003).
Although most of these methods lead to orthogonal simplified components,
combined with the presence of exact zero loadings, the remaining loadings
are still real numbers, again impeding interpretation.

Other approaches simplify by imposing specific structures on the original
data matrix X and can be seen as constrained singular value decompositions.
For example, the semidiscrete decomposition (SDD) approach of Kolda and
O’Leary (1998) restricts the loadings to lie in {−1,0,1}. Again, the nonneg-
ative matrix factorization (NMF) approach of Lee and Seung (1999) requires
the original variables to be nonnegative, decomposing X into two nonnega-
tive factor matrices. More recently, plaid models [see, for example, Lazzeroni
and Owen (2002)] impose various block structures on X which are useful for
interpretation in gene expression microarray data. However, this class of
methods does not require orthogonality of the simplified components, with
the potential loss of attractive features noted above.

A more explicitly modeling approach to simplification has recently been
suggested in Rousson and Gasser (2004). Intrinsically restricted to prin-
cipal component analysis of a correlation matrix, it assumes a particular
pattern in the eigenstructure of that matrix in which groups and contrasts
of variables are forced to appear. Although not always appropriate, it is
when all variables are positively correlated, the first eigenvector being then
a weighted average of the variables and, consequently, the remaining eigen-
vectors being basically contrasts. The loadings obtained are all proportional
to integers, aiding interpretation. However, the components obtained need
not be orthogonal, again with the potential drawbacks noted above.

The approaches in Hausman (1982), Sun (2006) and Vines (2000) are
similar to the one presented here, in the sense that all three give orthog-
onal components with loading vectors proportional to integers. Hausman’s
method only allows the loadings to take the values −1, 0 or 1 and so is not
always able to find a complete set of orthogonal vectors. In contrast, Vines’



4 K. ANAYA-IZQUIERDO, F. CRITCHLEY AND K. VINES

method produces loading vectors that are proportional to integers via a se-
quence of pairwise ‘simplicity-preserving’ transformations which ensure that
orthogonality is maintained. However, although always proportional to inte-
gers, the size of the integers is not bounded and may at times be very large.
A fuller discussion of the method, and its properties, can be found in Sun
(2006).

1.2. Interpretability. With others, we note that interpretability is neither
guaranteed nor amenable to precise mathematical formulation, this latter
being evidenced by the variety both between and within methods reviewed
above.

These remarks have two key methodological consequences. First, whereas
simplification can help in the vital step of interpretation, we do not ex-
pect any method to lead to interpretable results in all cases. And second,
rather than attempt to find a unique optimal simplification in any prede-
fined sense—in particular, rather than attempt to completely automate the
trade-off between simplicity and optimality—they provide motivation for
adopting an essentially exploratory approach which systematically produces
an ordered range of solutions, from which the user can choose one or more
preferred solutions.

Factors that can guide this choice include the following: (a) the criteria
on which a method is based, (b) subject matter considerations, particular
to the context of the data set under analysis, and (c) suboptimality with
respect to exact principal component analysis, including loss of explanatory
power—or of focus on potential scientific laws—and correlation. Only princi-
pal component analysis itself can give orthogonal loadings and uncorrelated
components, and so any other rotation method will always show some degree
of correlation.

1.3. Overview of a new approach. Beginning with a synoptic account,
we give here an overview of our new, exploratory approach. Requiring or-
thogonality, it is based on three primary criteria: simplicity, angle-accuracy
and ‘star quality.’

1.3.1. A synoptic account. Retaining the attractive visualization and di-
mension reduction features noted above, the approach to be presented is
based on rotation to axes which are ‘simple’ in the sense—adopted hence-
forth—that each is defined by small integer loadings. It combines principles
with pragmatism, complementing those already available. Following Rous-
son and Gasser (2004),

the ultimate goal is not to propose a method that leads automatically to a
unique solution, but rather to develop tools for assisting the user in his or her
choice of an interpretable solution.
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Accordingly, our approach is essentially exploratory, posing the open ques-
tion:

What sets of simply interpretable orthogonal axes—if any—are angle-close to
the principal components of interest?

its answer being presented in summary form as an automated visual display
of the solutions found, ordered in terms of overall measures of simplicity,
angle-accuracy and star quality, from which the user may choose.

Here, ‘star quality’ refers to striking overall patterns in the sets of axes
found, deserving to be especially drawn to the user’s attention precisely
because they have emerged from the data, rather than been imposed on
it by (implicitly) adopting a model. Indeed, other things being equal, ex-
plicit models can be checked by seeing if their fits occur in our essentially
exploratory analysis, as we illustrate.

Our approach treats the components of interest equally, reflecting equal
scientific interest in them. Along with later worked examples, the one that
follows illustrates the appropriateness of adopting this principle. Adapta-
tions of our methodology to other scientific contexts—notably, to those
where interest focuses exclusively on explaining variability—are noted in
Section 4.

Again, our approach trades angle-accuracy off against simplicity, with a
bias toward the latter. Its exact implementation provides an exhaustive set
of solutions but can be prohibitively hard, the solution space having com-
binatorial complexity which grows with p, k and N∗, the maximum size of
integer allowed. However, the nature of our approach allows efficient explo-
ration of this vast space without restriction to any of its particular subsets,
such as those determined by modeling assumptions. Pragmatically, we are
able to provide an efficient, approximate algorithm for this computationally
challenging problem.

1.3.2. A worked example: Blood flow data. A worked example illustrates
this new approach. Figure 1, whose construction and terms are described in
Section 2, summarizes its results on the covariance matrix for four different
measurements of an index of resistance to flow in blood vessels [see the
paper by Thompson, Vines and Harrington (1999)]. Here, p= k = 4 and, as
throughout the paper, we take the maximum integer allowed (N∗) to be 9,
this corresponding to allowing only single digit representations.

Three solutions are obtained and ordered as shown, none of them being
dominant in terms of both simplicity and accuracy. The user is referred first
to the one ‘two star’ solution found, Ŝ1, also obtained by Vines (2000) and
by the undeflated form of Chipman and Gu (2005) [recall that Rousson and
Gasser (2004) cannot be used for covariance matrices]. This two star solution
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Table 1

Principal component loadings for the blood flow data q1, . . . ,q4 and the corresponding
simplified loading vectors ẑ1, . . . , ẑ4 for solution Ŝ1

Variable q1 ẑ1 q2 ẑ2 q3 ẑ3 q4 ẑ4

Right doppler 0.42 1 −0.32 −1 −0.58 −1 −0.62 −1
Left doppler 0.43 1 0.30 1 −0.55 −1 0.65 1
Right CVI 0.55 1 −0.65 −1 0.43 1 0.30 1
Left CVI 0.58 1 0.63 1 0.42 1 −0.31 −1

Variance (%) 58.0 57.0 25.9 23.8 9.5 10.5 6.5 8.6

is also the simplest one found in this case, details being shown in Table 1
along with the original principal components.

The simplified loadings here have a very clear structure and are easier
to understand than the continuous ones, so much so, in fact, that it looks
like we have uncovered nature’s design: a main effect, plus three orthogonal
contrasts. The simplified components being orthogonal, the total variance is
retained, being redistributed among the components so as to enhance inter-
pretability. In particular, there is just a little loss in the variance explained
by the first two components, while the relatively small variability in the last
two suggests possible underlying regularities.

Fig. 1. A graphical summary of the solutions obtained for the blood data by our approach.
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The user is referred next to the other, here ‘one star,’ solutions, starting
with the simpler one. Having the same sign pattern, just different weights,
they have essentially the same overall interpretation as Ŝ1. Successively gain-
ing accuracy at the cost of some simplicity, the simplified loading vectors
and percentages of variance explainedfor Ŝ2 and Ŝ3 are given in Table 2.

Overall, as this and later examples will show, we can obtain good ap-
proximations in the sense that only small integers are used, while retaining
closeness to the original components and exact orthogonality. A distinctive
feature of our exploratory approach is that the user is provided with an
ordered set of alternative views of the same data, from which s/he may
choose.

We move now to put some flesh on the bones of the synoptic account
above, noting first that intrinsic interest lies in eigenaxes, not eigenvectors.

1.3.3. Eigenvectors, eigenaxes and their approximation. Recall that in-
terest centers on a p × k loadings matrix Q= (q1| · · · |qk) containing the
eigenvectors of interest. Without loss, these are normalized to unit length
(‖qr‖= 1, r = 1, . . . , k), λ1 > · · ·> λk being the corresponding eigenvalues.
The overall sign of each eigenvector is arbitrary. Rather, interest really cen-
ters on the ordered set of axes ±Q := (±q1| · · · |±qk), where we identify any
pair of nonzero opposed vectors ±q with the axis (line through the origin
or one-dimensional subspace) ℓ(q) := {cq :−∞< c<∞} containing them.

The approach taken here treats the columns of ±Q equally. It retains
their orthogonality while replacing each eigenaxis α= ℓ(q) by another one
α̂ = ℓ(ẑ), close to it in angle terms, which is ‘simple’ in the sense that it
contains a nonzero vector ẑ with small integer elements. There is no loss
in taking the highest common factor of the absolute values of the nonzero
elements of ẑ, denoted hcf(|ẑ|), to be 1. For, if not, we can divide each
element of ẑ by it, without changing ℓ(ẑ).

Overall then, ±Q is approximated by ±Ẑ := (±ẑ1| · · · |±ẑk) where Ẑ :=
(ẑ1| · · · |ẑk) belongs to the set Z(p, k) of all p × k integer matrices with

Table 2

Integer representations of solutions Ŝ2 and Ŝ3 for the blood flow data

Ŝ2 Ŝ3

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ1 ẑ2 ẑ3 ẑ4

Right doppler 1 −1 −1 −2 2 −1 −3 −2
Left doppler 1 1 −1 2 2 1 −3 2
Right CVI 1 −2 1 1 3 −2 2 1
Left CVI 1 2 1 −1 3 2 2 −1
Variance (%) 57.0 25.9 10.5 6.5 57.9 25.9 9.7 6.5
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nonzero, pairwise orthogonal columns in each of which the absolute val-
ues of the nonzero elements are coprime, two members of this set being
axis-equivalent if they differ, at most, in the overall signs of their columns.

1.3.4. Four maxims. Our approach is driven by four maxims, adopted
for specific methodological reasons. Briefly, these are as follows.

(1) Integers aid interpretation. This maxim speaks for itself: we require
linear combinations of variables defined by simple vectors since they are
typically much easier to interpret than the principal components which they
approximate. Again, exact zeroes and simple averages appear naturally.

Approximating an eigenaxis α = l(q) by a simple axis α̂ = l(ẑ) where
hcf(|ẑ|) = 1, we call ẑ an integer representation of α̂ and the maximum
absolute value of its elements the complexity of ẑ—interchangeably, of α̂—
denoting these complexities by compl (ẑ)≡ compl (α̂).

Other things being equal, we seek to keep the complexity of each α̂r

(r = 1, . . . , k) as low as possible.
(2) Be angle accurate (for the k eigenvectors of interest). By keeping each

approximating vector angle-close to its exact counterpart, we ensure that we
do not lose potentially meaningful individual eigenvectors and that overall
optimality is maximally retained. This is consistent with our principle of
equal treatment of all the eigenaxes of interest, while providing a natural,
operational measure of discrepancy, both for each axis separately and—it
turns out—overall.

More specifically, we measure the discrepancy with which a simple axis
α̂=±ẑ approximates an eigenaxis α=±q by the acute angle

d(α, α̂) := arccos

( |q⊤ẑ|
‖q‖‖ẑ‖

)
(1.1)

between them, this being a (geodesic) distance measure between axes. Equiv-
alently, for reporting purposes, we may use the accuracy measure

accu(α, α̂) := cos(d(α, α̂)),

this taking values in [0,1].
It turns out that, when approximating each of a set of axes, the greater

the minimum angle-accuracy attained overall, the closer the original and
approximating sets are in terms of a natural measure of distance (see Ap-
pendix A).

(3) Be biased toward simplicity. It is always possible to approximate with
reasonably high accuracy a single p-dimensional axis ℓ(q) by a simple axis
of low complexity. Figure 2 shows, for different values of p and cos(θ), the
empirical distribution (based on 10,000 independent replications) of the min-
imum complexity N1(θ) required for there to be a simple axis having accu-
racy greater than cos(θ) when ℓ(q) is sampled from the uniform distribution
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Fig. 2. Empirical distribution of minimum complexities N1(θ) in simple approximations
to p-dimensional space.

over the set of all possible axes [see Fang and Li (1997)]. Clearly, without
orthogonality restrictions, accurate approximations of axes tend not to be
very complex.

However, there is a clear trade-off between simplicity and accuracy: highly
accurate approximations usually have high complexity, making interpreta-
tion more difficult. In general, we choose the simplest possible axis that is
accurate enough, this bias toward simplicity being, in effect, a bias toward
interpretability. In other words, in case of conflict, we favor maxim 1 over
maxim 2.

(4) Orthogonality brings benefits. Primarily, we choose orthogonality be-
cause it aids interpretation. Our rotation approach enjoys the general visu-
alization and dimension reduction features recalled above. Although none of
these additional features is either targeted or imposed, sparsity, contrasts,
simple relations between components and groups of variables may all emerge
as a consequence of using orthogonality combined with integer coefficients.
Orthogonality is also useful at several stages of the development, as we note.
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1.4. Organization and running example. Section 2 develops these max-
ims into a methodology, the running example below being used for illustra-
tion throughout. The reader interested primarily in how this new approach
performs may wish to skip this development and go straight to Section 2.5,
where its results are summarized. Further examples are given in Section 3.
Section 4 gives a short discussion of complements and extensions. Technical
and computational details are given as Appendices.

The running example used is based on Table 3 which shows the unit length
eigenvectors (rounded to 2 decimal places) of the sample correlation matrix
for a data set consisting of the scores achieved by 88 students in p= k = 5
tests, a combination of open- and closed-book exams [Mardia, Kent and
Bibby (1979)]. Thus, the first principal component is a weighted average of
all the different subject scores, while the other principal components can
be interpreted as contrasts. However, more detailed interpretation of the
principal components, particularly those other than the first, is not easy.

Throughout, Zp denotes the set of all p×1 vectors with integer elements—
positive, negative or zero—and Z

(p) the same set with the zero vector re-
moved. Replacing integers by real numbers, the corresponding sets are de-
noted R

p and R
(p), respectively.

2. A new approach.

2.1. A sequential approach. Operationally, we approximate the k eige-
naxes of interest sequentially. The order in which we do this matters, for
two principal reasons: earlier approximations restrict the approximations
available for later eigenaxes and, hence, their maximum possible achievable
accuracy.

To illustrate these points consider, say, the ‘forwards’ 1 to k order from
high to low eigenvalue. When dealing with α1, there are no orthogonality
restrictions and we seek an approximation α̂1 to it in the setM1 of all simple
axes in R

p. In contrast, for each r ∈ {2, . . . , k}, we seek an approximation

Table 3

Principal component loadings for the exams data

q1 q2 q3 q4 q5

Mechanics (closed) 0.40 −0.65 0.62 0.15 −0.13
Vectors (closed) 0.43 −0.44 −0.71 −0.30 −0.18
Algebra (open) 0.50 0.13 −0.04 0.11 0.85
Analysis (open) 0.46 0.39 −0.14 0.67 −0.42
Statistics (open) 0.40 0.47 0.31 −0.66 −0.23

Variance (%) 63.6 14.8 8.9 7.8 4.9
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Table 4

Integer representations for the examinations data with θ = π/4

Variable ẑ1(θ) ẑ2(θ) ẑ3(θ) ẑ4(θ) ẑ5(θ)

Mechanics (closed) 1 1 1 0 1
Vectors (closed) 1 1 −1 0 1
Algebra (open) 1 0 0 0 −4
Analysis (open) 1 −1 0 1 1
Statistics (open) 1 −1 0 −1 1

Accuracy 0.997 0.973 0.9375 0.937 0.974

Max accuracy ‖q⊥
r ‖ 1 0.999 0.99 0.95 0.97

Variance (%) 63.3 14.4 8.9 7.9 5.5

α̂r to αr within the set Mr of all simple axes in R
p orthogonal to each of

α̂1, . . . , α̂r−1.
Thus, for the exams data, M1 is the set of all axes generated by vectors

in Z
(5) while, for example, taking ẑ1 = (1,1,1,1,1)⊤, ℓ((1,1,0,−1,−1)⊤) is

a member ofM2, but ℓ((1,1,0,0,−1)⊤) is not.
The second point is clear geometrically. The angle-closest axis to α or-

thogonal to α̂1, . . . , α̂r−1 is its projection onto the orthogonal complement
of their span. This restricts the maximum accuracy that can be achieved.
For, if q⊥

r is the orthogonal projection of the unit vector qr onto the orthog-
onal complement of Span{z1, . . . ,zr−1}, some straightforward trigonometry
shows that any approximation α̂ ∈Mr satisfies

accu(αr, α̂) = accu(αr, ℓ(q
⊥
r ))accu(ℓ(q

⊥
r ), α̂)

= ‖q⊥
r ‖accu(ℓ(q⊥

r ), α̂),

so that accu(αr, α̂) ≤ ‖q⊥
r ‖, equality holding if and only if α̂ = ℓ(q⊥

r )
[which requires ℓ(q⊥

r ) to be simple]. Thus, over Mr, not every possible ac-
curacy is achievable for αr (r > 1), although no such upper bound applies
to accu(ℓ(q⊥

r ), α̂).
For the exams data with α̂1 = ℓ((1,1,1,1,1)⊤), the projection of q2 onto

the orthogonal complement of α̂1 is q⊥
2 = (−0.63,−0.42,0.15,0.41,0.49)⊤

(to 2 decimal places). Since ‖q⊥
2 ‖ = 0.999, there is no approximation to

α2 orthogonal to α̂1 which can achieve an accuracy bigger than this. In
particular, α̂2 = ℓ((1,1,0,−1,−1)⊤) has an accuracy of 0.973 with respect
to α2, while its accuracy with respect to ℓ(q⊥

2 ) is slightly higher, being given
by accu(α2, α̂2)/‖q⊥

2 ‖ = 0.973/0.999 ≈ 0.974. Similar information for other
axes is given in Table 4.

Accordingly, to treat all axes of interest equally, we would in principle con-
sider all k! possible orders. In practice, this can be too many. Pragmatically,
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restricting attention to just the following four orders has been found to work
well. Together, they combine speed, accuracy and a balance between prior-
itizing largeand small eigenvalues, the two ‘next-best’ orders incorporating
an obvious greedy heuristic:

Forwards (F): Take the eigenaxes in decreasing order of their eigenvalues.
Backwards (B): Take the eigenaxes in increasing order of their eigenvalues.
Next-best forwards (NF): Take first the eigenaxis with the largest eigen-

value and then, sequentially, the one with the largest maximum possible
achievable accuracy, ‖q⊥

r ‖, among those remaining.
Next-best backwards (NB): Take first the eigenaxis with the smallest eigen-

value and then, sequentially, the one with the largest maximum possible
achievable accuracy, ‖q⊥

r ‖, among those remaining.

Whichever order is used to obtain them, the approximations found are re-
ported in the same 1 to k order.

To describe our approach in more detail, it suffices to consider a single,
fixed order. We use the forwards order below.

Note that when all eigenaxes are of interest (k = p), there is no choice to
be made when approximating the final axis, there being a unique simple axis
in R

p satisfying the (p − 1) orthogonality requirements. In particular, the
accuracy and complexity of the pth axis approximation cannot be directly
controlled. However, if the first (p− 1) are accurate, then so too is the last.
Again, in general, the simpler the first (p−1) approximations are, the simpler
the last is. Overall, then, the number of axes for which approximations are
sought (rather than forced by previous approximations) is k̃ := min(k, p−1).

2.2. Approximation for a given angle-accuracy.

2.2.1. Paradigm: Best θ-accurate simple approximation. We describe here
the approximation paradigm at the heart of our approach.

Recall that our approach favors simplicity over accuracy. Accordingly,
subject to being accurate enough—while orthogonal to previously approx-
imated axes—we seek the simplest possible approximation to each axis in
turn. If there is more than one such axis, we choose the most accurate.
More precisely, we adopt the paradigm: for a given angle θ, and for each
r = 1, . . . , k̃ in turn, seek the ‘best θ-accurate simple’ approximation α̂r(θ)
to αr in the following sense.

For any θ ∈ (0, π/2), we say that an axis α̂ is θ-accurate for αr if it is
within an angle θ of it—that is, if accu(α̂, αr) > cos(θ). As we have just
seen, there are no such axes inMr unless cos(θ)< ‖q⊥

r ‖, so we always make
this requirement.



ORTHOGONAL SIMPLE COMPONENT ANALYSIS 13

Again, we denote by Nr(θ) the smallest value of N ∈ {1,2, . . .} for which
there is a θ-accurate axis inMr having complexity N . Thus, the ‘cone’

Cr(θ) := {α̂ ∈Mr :accu(α̂, αr)> cos(θ), compl (α̂) =Nr(θ)}
comprises all those axes inMrwith the minimal possible complexity Nr(θ)
subject to being within an angle θ of αr. For given θ, we define ‘the best
θ-accurate simple’ approximation α̂r(θ) to αr as the axis in Cr(θ) closest to
αr. That is, α̂r(θ) is the closest of all the simplest possible, θ -accurate axes
in Mr. Either of the two possible integer representations of α̂r(θ) will be
denoted by ẑr(θ).

Finding α̂r(θ) can be a hard combinatorial optimization problem, espe-
cially when the dimension p is large. Therefore, to avoid the combinatorial
complexity, we propose an algorithm to approximate α̂r(θ) which, after a re-
ordering of the variables, involves a computing effort linear in p, for use when
exact calculations are prohibitive. We briefly describe such an algorithm in
Appendix B.

We call cos(θ) the minimum accuracy required for the approximation to

αr. We use the same value for each of the k̃ eigenaxes for which approxima-
tions are sought, denoting by Ŝ(θ) := (α̂1(θ), . . . , α̂k(θ)) the full set of approx-

imations obtained. To measure the overall closeness of Ŝ(θ) to (α1, . . . , αk),
we use the minimum of the k accuracies attained {accu(αr, α̂r(θ))}kr=1, which

we denote by MA(Ŝ(θ)). As noted above, the larger this is, the smaller a
natural measure of overall distance between these two ordered sets of axes
(see, again, Appendix A).

2.2.2. Tuning parameters. Our approach uses the tuning parameters N∗

and θ∗, described here, its results being typically less sensitive to the choice
of N∗ due to its bias toward simplicity. A third and final tuning parameter
ε, introduced for operational convenience, is described in Section 2.3.

To facilitate interpretation, we require N ≤ N∗, taking the single digit
default N∗ = 9 in all calculations reported here. Thus, in practice, it may
not be possible to complete the set of approximations Ŝ(θ), as some Nr(θ)
may be found to exceed N∗. A similar effect occurs in Hausman (1982)
where, in effect, N∗ = 1.

As we want to stay close to the original eigenaxes, we require θ ≤ θ∗ for
some 0< θ∗ ≤ π/4, values of θ∗ greater than 45◦ clearly allowing poor ap-
proximations. Thus, overall, we have the following bounds on the accuracies
attained for each r = 1, . . . , k̃:

cos(θ∗)≤ cos(θ)< accu(αr, α̂r(θ))≤ ‖q⊥
r ‖,(2.1)

where, for the first axis, we trivially have q⊥
1 = q1, so that ‖q⊥

1 ‖ = 1. For
most purposes, we recommend taking θ∗ = π/4, an exhaustive account of all
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angles smaller than θ∗ being provided by considering an automated sequence
of angles, as described in Section 2.3. This choice of θ∗ has the advantage
that no potentially useful approximations are ruled out of consideration a
priori. Rather, the user is free to draw the line regarding acceptable accuracy
in the light of all the potentially useful solutions found.

2.2.3. Running example revisited. We illustrate the above developments
using our running example, with θ = θ∗ = π/4.

For the exams data, there is a (π/4)-accurate axis for α1 with complex-
ity one; that is, N1(π/4) = 1. Further, out of all axes of complexity one,
ℓ((1,1,1,1,1)⊤) is the closest to α1. Therefore, ẑ1(π/4) = (1,1,1,1,1)⊤ is
an integer representation of the best (π/4)-accurate simple approximation
to α1.

Here, N2(π/4) is also 1, there being many (π/4)-accurate axes for α2

with complexity one orthogonal to α̂1(π/4), including ℓ((1,1,0,−1,−1)⊤)
and ℓ((1,0,0,0,−1)⊤). Of these, we prefer the former, their accuracies being
0.973 and 0.789, respectively. In fact, it can be shown that ℓ((1,1,0,−1,−1)⊤)
is the best (π/4)-accurate simple approximation to α2.

Again, N3(π/4) and N4(π/4) are also 1, integer representations of the
corresponding best (π/4)-accurate simple approximations being given in Ta-
ble 4 alongside ẑ1(π/4) and ẑ2(π/4). An extra decimal place is used in re-
porting accu(α3, α̂3(π/4)) to show where the minimum accuracy is attained.

As noted at the end of Section 2.1, there is no choice about ẑ5(π/4).
However, illustrating the general points made there, α̂r(π/4) being close to
αr for each r = 1, . . . ,4, α̂5(π/4) is also close to α5 (having an accuracy of
0.974), while the relative simplicity of α̂5 reflects that of α̂1 to α̂4.

2.3. Effect of varying the minimum accuracy required. When θ = π/4 the

approximations Ŝ(θ) typically have low complexity overall and so can usually
be interpreted. Unless all the eigenaxes are already simple, we might expect
the overall complexity of the approximations to steadily increase with the
minimum accuracy required. However, it turns out there is no straightfor-
ward relationship between the complexity of the approximations and θ. This
nonmonotone behavior of the approximations Ŝ(θ) when cos(θ) increases is
due to the discreteness inherent in our approximations. Restricting the el-
ements of the integer representations to be coprime is mainly responsible
for this, division by a highest common factor greater than 1 always being a
possibility.

The net effect is that it is not possible to fully predict the qualitative
behavior of Ŝ(θ) as θ varies. Accordingly, instead of attempting to find an
optimal value of cos(θ) under some criterion, we vary the value of θ so as to
explore all possible sets of approximations. The different sets of orthogonal
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axes thereby obtained offer different views of the same data set, giving the
user more scope for interpretation.

The good news is that it is only necessary to explore a discrete set of values
of θ. To see this, we introduce the following notation. For any 0 < θ ≤ θ∗,
we denote by

S̃(θ) := (α̂1(θ), . . . , α̂k̃(θ)
(θ)), where k̃(θ)≤ k̃,

the ordered set of approximate axes obtained among the k̃ =min(k, p− 1)

sought. This set is complete [k̃(θ) = k̃] unless there is a first k̃(θ)< k̃ with

N
k̃(θ)+1

(θ) found to be greater than N∗. When S̃(θ) is complete, so too is

the full set of k approximate axes Ŝ(θ), being given by

Ŝ(θ) =

{
S̃(θ), if k < p,

(S̃(θ), α̂p(θ)), if k = p,

where α̂p(θ) is the unique simple axis in R
p orthogonal to the (p−1) axes in

S̃(θ). Otherwise, Ŝ(θ) itself is incomplete, and so not reported. In all cases,

the minimum accuracy attained among the axes in S̃(θ), denoted MA(S̃(θ)),

satisfies MA(S̃(θ))> cos(θ), by (2.1). For any 0< θ ≤ θ∗, defining θ+ < θ by

cos(θ+) =MA(S̃(θ)),

it follows that the same set of approximations is obtained [S̃(θ) = S̃(θ′)] for
all smaller angles θ′ in the range (θ+, θ) determined by

cos(θ)< cos(θ′)< cos(θ+),

but that change happens at the more accurate end of this range, θ+-accuracy
precluding S̃(θ) = S̃(θ+).

Thus, to fully explore the range of possible approximations, it is sufficient
to consider the strictly decreasing sequence of angles θ[1], θ[2], . . . defined by

θ[1] := θ∗ and θ[n+1] := (θ[n])+ (n≥ 1).(2.2)

In practice, for operational convenience, we stop when the minimum accu-
racy required cos(θ) reaches (1− ε) for some small tuning parameter ε. In
general, no simple solutions are missed by doing this, approximations with
very high minimum accuracy required usually being very complex. Experi-
ence has shown that a value of ε= 0.01 gives satisfactory results, while also
keeping the computations fast.

Key features of the relation between consecutive sets of approximations
obtained, S̃(θ[n]) and S̃(θ[n+1]), now follow. Let

rn := arg min
1≤r≤k̃(θ[n])

accu(αr, α̂r(θ
[n]))(2.3)
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Table 5

Integer representations for the examinations data with cos(θ[3]) = 0.9375

Variable ẑ1(θ) ẑ2(θ) ẑ3(θ) ẑ4(θ) ẑ5(θ)

Mechanics (closed) 1 1 2 1 1
Vectors (closed) 1 1 −2 −1 1
Algebra (open) 1 0 0 0 −4
Analysis (open) 1 −1 −1 2 1
Statistics (open) 1 −1 1 −2 1

Accuracy 0.997 0.973 0.980 0.979 0.974

Variance (%) 63.3 14.4 8.9 7.8 5.5

indicate the first approximation which changes from n to n+1. Earlier ap-
proximated axes do not change as {α̂r(θ

[n])}rn−1
r=1 are already θ[n+1]-accurate.

However, for αrn an approximation strictly more accurate than α̂rn(θ
[n])

must be sought. Further, if k = p while Ŝ(θ[n]) and Ŝ(θ[n+1]) are complete,
the orthogonality restrictions imply that the subspace generated by the re-
maining approximate axes is the same for Ŝ(θ[n+1]) as it is for Ŝ(θ[n]). That
is,

span{ẑr(θ[n+1]) : r = rn, . . . , p}= span{ẑr(θ[n]) : r = rn, . . . , p}.
In other words, we are obtaining a different, more accurate, orthogonal sim-
ple basis for the same subspace.

With θ[1] = θ∗ = π/4, the minimum accuracy required is 1/
√
2≈ 0.7071.

For the exams data, the minimum accuracy attained in this case is for the
fourth eigenaxis, so that r1 = 4 and cos(θ[2]) = 0.937 (see Table 4). We there-
fore have at once that α̂r(θ

[2]) = α̂r(θ
[1]) for r = 1,2 and 3. However, it

is not possible to find an improved accuracy approximation α̂4(θ
[2]) with

complexity at most N∗ = 9, so that k̃(θ[2]) = 3 and S̃(θ[2]) is incomplete.
Without further calculation, Table 4 gives r2 = 3, cos(θ[3]) = 0.9375 and
α̂r(θ

[3]) = α̂r(θ
[2]) = α̂r(θ

[1]) for r= 1 and 2.

In fact, Ŝ(θ[3]) is complete, corresponding integer representations being
reported in Table 5. The increase in minimum accuracy required in going
from θ[2] to θ[3] is very small but, due to discreteness effects, results in a
drop in the complexities of the third and fourth axis approximations down
below N∗ = 9. The newly approximated axes {α̂r(θ

[3])}5r=3 span the same
subspace as {α̂r(θ

[1])}5r=3. Further, α̂5(θ
[3]) = α̂5(θ

[1]) precisely because, in
this example, {α̂3(θ

[3]), α̂4(θ
[3])} and {α̂3(θ

[1]), α̂4(θ
[1])} span the same two-

dimensional subspace. The Ŝ(θ[3]) pair of axes here are now almost as simple

as those for Ŝ(θ[1]) but more accurate, striking a different simplicity-accuracy
trade-off. Comparing Tables 4 and 5, this example also illustrates that mov-
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ing to a new simplicity-accuracy trade-off need not change the variances
explained by each axis in any material way.

From cos(θ[4]) = 0.973 onward, it is not possible to find complete sets of

approximations Ŝ(θ) with complexity at most N∗ = 9. Thus, for the for-

wards order of approximation, Tables 4 and 5, detailing Ŝ(θ[1]) and Ŝ(θ[3]),
respectively, together cover the full range 0< θ ≤ θ∗ = π/4.

2.4. Automated visual display of solutions. Based on S , the complete set
of solutions (sets of approximate axes) Ŝ(θ) found by one or more of the four
orders of approximation described in Section 2.1, the user can now proceed
to answer the open question posed at the outset:

What sets of simply interpretable orthogonal axes—if any—are angle-close to
the principal components of interest?

In principle, an overall informed choice requires the user to compare all solu-
tions regarded as angle-close in terms of a range of factors, including subject
matter considerations, as described in Section 1.2. Only the individual user
can calibrate the various trade-offs involved and different users will, quite
reasonably, choose different (numbers of) solutions.

In practice, the work involved can be substantial and, to help the user
make this choice, we provide a summary automated visual display in which
the solutions found are ordered in terms of overall measures of star quality,
simplicity and accuracy. Tabular information for each solution is presented
to the user in this order. In describing this automated display here, we
emphasize that—although clearly principled—this order of solutions does
not, indeed cannot, presume to be the preference order for any particular
user.

2.4.1. Accuracy–simplicity scatterplot. Prioritizing our main criteria of
simplicity and accuracy, each solution Ŝ is plotted at a point in the positive
quadrant with the following coordinates. Horizontally, we use the discrep-
ancy measure

discr (Ŝ) = 1−MA(Ŝ),

a natural measure of (squared) distance between the eigenaxes (±q1| · · · |±qk)

and Ŝ. The smaller discr (Ŝ), the more accurate Ŝ. Vertically, we use overall
complexity measure

compl (Ŝ) =Nmax(Ŝ) + λ(Ŝ),

where Nmax(Ŝ) is the maximum complexity of the axes in Ŝ, the term 0<

λ(Ŝ) :=

√∑
h

∑
r
ẑ2
hr

/(pk)

2Nmax(Ŝ)
≤ 1

2 being included to further discriminate between



18 K. ANAYA-IZQUIERDO, F. CRITCHLEY AND K. VINES

Fig. 3. Solution set S for the exams data.

solutions with the same maximum complexity. The smaller compl (Ŝ), the

simpler Ŝ.
Figure 3 shows the corresponding scatterplot for the exams data where,

overall, 12 different solutions were obtained. The numbering of the solutions
reflects a particular principled order described below, together with the plot
symbols used. In particular, the forwards solutions Ŝ(θ[1]) and Ŝ(θ[3]) dis-

cussed above appear here as Ŝ1 and Ŝ7, respectively.

2.4.2. Minimal and dominated solutions. Low values of both discr(Ŝ)

and compl (Ŝ) are clearly desirable, but cannot usually be simultaneously
achieved. For example, Figure 3 shows that there is a trade-off for the exams
data, with no solution attaining the smallest value of both these coordinates.
However, the five solutions joined by straight lines are visibly special, the
rectangle formed by each of them with the origin containing no other solu-
tions. For any set of solutions, we call these the minimal solutions—those for
which no lower value of either coordinate can be found without increasing
the other. Thus, here, among Ŝ3, Ŝ4, Ŝ5, Ŝ6 and Ŝ12, the simpler solutions
are less accurate, and the more accurate solutions are less simple.

There is always at least one minimal solution, usually more. Together,
they form the lower-left boundary of the scatterplot whose shape reflects,
in any particular case, the trade-off between simplicity and accuracy. All
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Table 6

Integer representations of the two star solutions for the exams data

Ŝ1 Ŝ2

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ1 ẑ2 ẑ3 ẑ4 ẑ5

Mechanics 1 1 1 0 1 1 1 1 1 0
Vectors 1 1 −1 0 1 1 1 −1 1 0
Algebra 1 0 0 0 −4 1 −1 0 1 1
Analysis 1 −1 0 1 1 1 −1 0 1 −1
Statistics 1 −1 0 −1 1 1 0 0 −4 0

Accuracy 0.997 0.973 0.9375 0.937 0.974 0.997 0.802 0.9375 0.729 0.897

Variance (%) 63.3 14.4 8.9 7.9 5.5 63.3 12.1 8.9 9.9 5.8

other solutions are dominated by a minimal solution. For example, here, Ŝ1
and Ŝ7 are dominated by Ŝ4, with Ŝ4 being simpler and more accurate than
both.

2.4.3. Star quality solutions. In general, focusing only on solutions which
lie in the minimal set does not necessarily capture all clearly interpretable
solutions. Other, dominated, solutions may possess ‘star quality’ in the sense
that there are striking overall patterns in the set of approximate axes found,
deserving to be especially drawn to the user’s attention. For example, Ŝ1
(Table 4, repeated here as the left-hand part of Table 6) has a very clear
and interpretable structure and so deserves to be brought early to the user’s
attention, even though it does not lie in the minimal set. For many users
this increased interpretability is likely to be worth the cost in terms of dis-
crepancy and overall complexity.

We recognize that interpretability is a subjective concept. Rather than
attempting a quantification, we use a star rating system to indicate the
degree to which a solution conforms with one of a predefined set of clear
structures: ‘two star’ solutions conform to the clearest structures and ‘one
star’ to the next clearest, while ‘unstarred’ solutions do not conform to any
of the predefined structures.

Here, we use six predefined structures, these being one and two star ver-
sions of three mutually exclusive types, denoted A, B and C, described next.
There are clear points of contact with the work of Rousson and Gasser, sum-
marized in the following Section 2.4.4.

Let Ẑ = (ẑ1| · · · |ẑk) be a matrix of integer representations of Ŝ. Each
structure used requires that the p variables can be partitioned into b ≥ 1
blocks, where each block labels the set of nonzero (by convention, positive)
elements of a single-signed column ẑr . If b < k, orthogonality entails that
the remaining (k − b) columns of Ẑ are contrasts—that is, have elements
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of both signs. The within-block condition W-B [condition 3 in Rousson and
Gasser (2004)] holds if the nonzero elements of each contrast occur within
a single block.

In this terminology, the three mutually exclusive types of predefined struc-
ture are as follows:

A: b = 1—that is, an overall (possibly, weighted) mean, plus orthogonal
contrasts.

B: b > 1 and W-B holds, so that each block has type A structure.
C: b > 1 and W-B does not hold.

The type of each starred solution is noted in its table of information but,
for visual clarity, not in the accuracy–simplicity scatterplot.

We call ẑr parsimonious if N ♯
r , the number of distinct nonzero elements

it contains, is small. The more parsimonious a starred solution, the clearer
its structure. Accordingly, we award two stars when it is as parsimonious as
possible of its type, and one star otherwise. Orthogonality entails that, for
each type, two star solutions are precisely those which obey the following
two conditions:

max{N ♯
r : ẑr defines a block}= 1 and

max{N ♯
r : ẑr defines a contrast}= 2.

For example, adopting an obvious notation, an A∗∗ solution has a simple
arithmetic mean, plus a set of orthogonal contrasts in each of which the
nonzero elements comprise m times a value n, and n times a value −m,
whereas an A∗ solution has either an unequally weighted mean, or a contrast
not of this form.

Examples of the six possible starred structures are given below, the A∗

example being Ŝ3 in Figure 3 and detailed in the left-hand part of Table 7.

Structure type

A B C

Two star




1 1 1 0 1
1 1 −1 0 1
1 0 0 0 −4
1 −1 0 1 1
1 −1 0 −1 1







1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1







1 0 1 1
1 0 −1 −1
0 1 1 −1
0 1 −1 1




One star




3 −1 1 0 0
3 −1 −1 0 0
2 1 0 0 −2
2 1 0 1 1
2 1 0 −1 1







1 0 2 0
2 0 −1 0
0 1 0 2
0 2 0 −1







1 0 2 2
2 0 −1 −1
0 1 2 −2
0 2 −1 1
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Table 7

Integer representations of the two best one star approximations for exams data

Ŝ1 Ŝ2

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ1 ẑ2 ẑ3 ẑ4 ẑ5

Mechanics 3 −1 1 0 0 1 3 2 1 0
Vectors 3 −1 −1 0 0 1 3 −2 −1 0
Algebra 2 1 0 0 −2 1 −2 0 0 −2
Analysis 2 1 0 1 1 1 −2 −1 2 1
Statistics 2 1 0 −1 1 1 −2 1 −2 1

Accuracy 0.996 0.928 0.937 0.937 0.959 0.997 0.956 0.98 0.978 0.959

Variance (%) 60.2 17.3 8.9 7.9 5.7 63.3 14.2 8.9 7.8 5.7

2.4.4. Empirical support for assumed models: Points of contact with Rous-
son and Gasser. Our approach seeks solutions supported by the data in the
sense that no modeling assumptions are imposed, apart from our axes be-
ing orthogonal and containing vectors of integers. Therefore, if an optimal
solution under some modeling assumptions is produced by our analysis, this
provides empirical evidence in favor of such a model.

We develop this general point here with respect to the Rousson and Gasser
method, as reported in Rousson and Gasser (2004), with which there are
clear points of contact, recalling that it applies to correlation matrices only.

A key point is that two star structures emerging from our essentially ex-
ploratory analysis of the data correspond to assumed structures optimally
fitted to it in Rousson and Gasser (2004), with the added condition of or-
thogonality between all pairs of approximate axes. Accordingly, solutions
generated by Rousson and Gasser (2004) can only coincide with ours when
they are orthogonal, in which case they are two star solutions. In particular,
one star solutions—involving weighted means and/or contrasts not of the
A∗∗ form noted above—cannot arise in such an analysis.

For any given number of blocks b, the scalar target function optimized
in Rousson and Gasser (2004)—the ‘corrected sum of variances’ [see the

paper by Gervini and Rousson (2004)], denoted here by optim(Ŝ)—can be
used whether components are orthogonal or not. Although not optimized
for in our approach, its value can be calculated for each of our solutions and
compared to the best value found in Rousson and Gasser (2004). However, its
maximization reflects an exclusive interest in explaining variability, whereas,
being as interested in exploring potential scientific laws, our approach treats
all eigenvectors of interest equally.

Overall, the two methods will give complementary results, agreement only
being expected when there is strong empirical evidence of an orthogonal two
star structure underpinning the variability in the data.
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2.4.5. A total order of solutions. A principled total order of the full set
of solutions S is now obtained, in two stages.

First, we place each solution into one of four classes, ordered by inter-
pretability: two star solutions, one star solutions, unstarred solutions lying
in the minimal set for S , and the rest. All solutions in a higher class are
ranked ahead of all those in a lower class.

Then, we order the solutions within each class by simplicity and accuracy,
with our usual bias toward the former, as follows. Having found the minimal
set for a given class, we give its solutions the highest available rankings,
ordering them by compl (Ŝ) [any ties being broken by discr (Ŝ)]—in other
words, working from right to left in the accuracy–simplicity scatterplot. We
now remove this minimal set from the class and repeat the ranking procedure
on the remainder until all solutions in the class have been ranked.

Tabular information for each solution is presented to the user in the re-
sulting total order. For visual clarity, solutions in the lowest class—those
neither starred, nor minimal for S—are not numbered in the scatterplot.

For example, for the exams data, the two star class comprises Ŝ1 and Ŝ2
(shown in Table 6), reflecting the fact that they are considered top in terms

of interpretability. Both are of type A. Between them, Ŝ1 is ranked higher
as it dominates Ŝ2, having the same overall complexity but a much better
minimum accuracy attained: 0.937 compared to 0.729 (for the fourth axis in
both cases). Indeed, the corresponding angle for this axis being some 43◦, it

seems likely that many users will rule out Ŝ2 as being insufficiently accurate.
The one star class comprises solutions Ŝ3 to Ŝ11. Among them, solutions

Ŝ3–Ŝ6 have the highest rankings since they form the corresponding minimal
set—that is, within this class, it is not possible to improve on either overall
simplicity or accuracy without doing worse on the other criterion. They are
ranked by overall simplicity [small values of compl (Ŝ)]. Removing them from

the class and continuing, the new (ordered) minimal classes are Ŝ7 to Ŝ9 and,

finally, Ŝ10 and Ŝ11. For the exams data, Ŝ12 is the only unstarred solution
in the minimal set for S , while there are no solutions in the lowest class.

2.5. Running example: Summary comparison of results. We summarize
here our results for the exam data running example (Section 1.4) displayed
in Figure 3, whose terminology is explained above, comparing them with
those of Rousson and Gasser (2004) and Vines (2000).

Overall, the user is referred first to Ŝ1, shown in the left part of Ta-
ble 6. This effectively combines simplicity, accuracy and subject matter in-
terpretability, this latter being particularly straightforward:

α̂1: Represents overall mathematical ability.
α̂2: Contrasts closed- and open-book exam performance, omitting Algebra.
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Fig. 4. Scatterplot matrix of the simplified principal components for the exams data.

α̂3: Contrasts performance in the two closed-book exams, Mechanics and
Vectors.

α̂4: Contrasts performance in the two open-book exams, Analysis and
Statistics, included in α̂2.

α̂5: Contrasts Algebra with all other subjects.

Figure 4 shows the scatterplot matrix for Ŝ1, the visualization and di-
mension reduction features offered by such orthogonal-axis plots only being
guaranteed with rotation approaches such as ours. The performance of each
student on each of these five readily interpreted axes is visible. In particular,
two or three students stand out at either extreme of overall mathematical
ability, these students having very similar open- and closed-book perfor-
mances as measured by α̂2. Again, we can see at once that there are no great
correlations induced by this simplification—in fact, the two largest absolute
correlations between the simple components are about 0.2, for (α̂1, α̂5) and
(α̂1, α̂4), respectively. Overall, the scatterplot matrix is visually close to the
one given by an exact principal component analysis, but much more inter-
pretable.
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Skipping Ŝ2, the two best one star solutions, Ŝ3 and Ŝ4, again both of
type A, are shown in Table 7. They remain clearly interpretable, having
greater overall simplicity than Ŝ1 and comparable accuracies to it (indeed,

Ŝ4 dominates Ŝ1). In particular, the first two simple components comprise

an overall mean and an open-closed book contrast, Ŝ3 using a weighted
mean and Ŝ4 a weighted contrast. Between them, our automated bias toward
simplicity puts Ŝ3 first. In it, all other contrasts are either within closed-
book exams (ẑ3) or within open-book exams (ẑ4 and ẑ5). Overall, Ŝ3 and Ŝ4
provide helpful, alternative views of the same data. As noted above (Section
2.4.4), Rousson and Gasser (2004) will not report such one star solutions.

The default version of Rousson and Gasser (2004) estimates one block

to be appropriate for this data set. Our Ŝ1 solution coincides with their
corresponding optimal b= 1 fit, providing empirical support for its implicit
model (see Section 2.4.4). Although orthogonal, their optimal b= 2 fit does
not appear among our solutions, adding further empirical evidence that a
two block model is not appropriate for these data.

The method of Vines (2000) with associated parameter c= 0 produces the

same first and third components as our Ŝ1. Its other components differ and
are somewhat harder to interpret, the highest complexity (11 for component
4) exceeding N∗ = 9.

3. Further examples.

3.1. Reflexes data. The reflexes data, taken from Section 3.8.1 of Jol-
liffe (2002), comprise measurements on 143 individuals of left and right re-
flexes for five parts of the body, three in the upper limb and two in the
lower.

A principal component analysis of the correlation matrix is reported in
Table 8. This brings out some of the structure in the data. It also provides
a further example of the appropriateness of taking equal scientific interest
in all the components.

The dominant component is an overall mean, while components 2–5 con-
trast reflexes in different parts of the body. Smaller components mainly
contrast reflexes on the left and right sides of the body, the substantially
smaller variances associated with them suggesting near constant linear rela-
tionships. However, more detailed interpretation of the principal components
is not immediate. For example, interpretation of the first principal compo-
nent is impaired by variability in the loadings, notably the relatively small
ones allocated to the two ankle measurements.

3.1.1. Results of our approach. Our approach provides six different solu-
tions for these data. The corresponding accuracy–simplicity plot (Figure 5)
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Table 8

Exact PCA loadings (rounded to 2 decimal places) for the reflexes data

Variable q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

triceps.R 0.35 −0.18 0.18 0.49 −0.27 −0.06 −0.05 0.00 0.10 0.69
triceps.L 0.36 −0.19 0.15 0.47 −0.27 −0.02 −0.13 0.01 −0.13 −0.70
biceps.R 0.36 −0.13 −0.14 0.04 0.71 −0.50 −0.22 −0.03 −0.19 0.04
biceps.L 0.39 −0.14 −0.09 0.05 0.41 0.70 0.35 0.02 0.19 −0.03
wrist.R 0.34 −0.24 0.14 −0.51 −0.16 −0.21 −0.13 −0.01 0.67 −0.10
wrist.L 0.34 −0.22 0.17 −0.52 −0.23 0.11 0.08 0.03 −0.67 0.12
knee.R 0.30 0.29 −0.50 0.02 −0.24 −0.35 0.62 −0.02 0.01 −0.04
knee.L 0.27 0.35 −0.54 −0.07 −0.18 0.28 −0.63 0.02 −0.02 0.06
ankle.R 0.20 0.53 0.41 −0.03 0.07 0.03 0.00 −0.71 −0.01 −0.02
ankle.L 0.19 0.54 0.40 −0.02 0.10 −0.04 0.01 0.70 0.03 −0.01

Variance (%) 52.23 20.36 10.94 8.57 4.96 1.08 0.86 0.59 0.23 0.19

shows Ŝ1 and Ŝ2 with two stars, Ŝ3 and Ŝ4 with one star, Ŝ5 as an unstarred
minimal solution, and one unlabeled ‘other’ solution Ŝ6.

The user is referred first to solution Ŝ1, shown in Table 9, which has the
following clear interpretation. The dominant simple component α̂1 is just
the simple average of all the reflexes, while α̂2 contrasts those in upper and
lower limbs. Again, α̂3 contrasts the two lower limb parts, while α̂4 and α̂5

Fig. 5. Solution set S for the reflexes data.
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Table 9

Integer representations for Ŝ1

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ6 ẑ7 ẑ8 ẑ9 ẑ10

triceps.R 1 2 1 1 −1
triceps.L 1 2 1 1 1
biceps.R 1 2 −2 −1 1
biceps.L 1 2 −2 1 −1
wrist.R 1 2 −1 1 −1
wrist.L 1 2 −1 1 1
knee.R 1 −3 −1 −1 −1
knee.L 1 −3 −1 1 1
ankle.R 1 −3 1 −1
ankle.L 1 −3 1 1

Accuracy 0.98 0.95 0.92 0.99 0.91 0.91 0.91 0.998 0.95 0.98

Variance (%) 50.8 20.6 11.2 8.6 5.6 1.1 1.1 0.6 0.3 0.2

Notes: Reflexes data. Empty entries mean zeroes.

contrast the three upper limb parts: first, triceps with wrist; then, biceps
with these two. Taking the near constant simple components in reverse order,
α̂10 to α̂8 suggest left–right symmetry in triceps, wrist and ankle respectively.
Finally, taking α̂7 and α̂6 together as we may (they have essentially the
same variance), the two-dimensional subspace which they span suggests left–
right symmetry in knees and biceps. This follows at once from considering
their sum and difference, corresponding to a 45◦ rotation of axes within this
subspace.

The variance explained by the first five simple components here is 96.7%
compared to 97.1% for the exact principal components, each being close
to that of its optimal counterpart. There are three absolute correlations of
about 0.3 [for (α̂5, α̂7), (α̂6, α̂9) and (α̂7, α̂9)], all others being appreciably
smaller.

The one star solution Ŝ3 is very close to Ŝ1 in Figure 5. Indeed, it differs
from it only in α̂6 and α̂7 representing another rotation within their span,
already interpreted above as suggesting left–right symmetry in knees and
biceps. This time, at the cost of increasing the complexity of both α̂6 and
α̂7 by one, their accuracies improve to 0.95 and 0.97, respectively. This
illustrates that subspace rotation can increase accuracy without changing
overall interpretation.

Although dominated by Ŝ1, the other two star solution Ŝ2 provides an
interesting alternative view. It differs only on two components, both having
very clear interpretations:

α̂2: Contrasts upper and lower limbs, omitting biceps, using only ±1
loadings.
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α̂5: Contrasts biceps with everything else, using only 1 and −4 loadings.

The other, unstarred, minimal solution Ŝ5 (details not shown) is simple
and accurate, but somewhat less clearly structured. Its α̂4 and α̂8 to α̂10

agree exactly with Ŝ1, the sign pattern of α̂6 and α̂7 also agreeing (each now
has loadings of ±2). α̂1 is a weighted mean, omitting ankle. α̂5 also omits
ankle, contrasting biceps with the other three body parts. α̂2 contrasts upper
and lower limbs, omitting biceps. Finally, α̂3 also omit biceps, contrasting
knee with the other three body parts.

The other two solutions, Ŝ4 and Ŝ6, are markedly less simple and accurate.

3.1.2. Comparison with other approaches. We briefly compare our re-
sults here with those of other methods.

The comparison with Rousson and Gasser’s approach for these data is,
essentially, the same as it was for the running exams data (see the end
of Section 2.5). The default version of Rousson and Gasser (2004) again

estimates b= 1, our Ŝ1 solution coinciding with their corresponding optimal
fit, providing empirical support for its implicit model. Although orthogonal,
their optimal b= 2 fit does not appear among our solutions, adding further
empirical evidence that a two block model is not appropriate for these data.

Table 10 shows the components obtained using the method of Vines (2000)
with associated parameter c= 0. Compared to the original principal compo-
nent analysis (Table 8), this gives a substantially simpler, more interpretable

solution. It differs from Ŝ1, especially for middle components, but interest-
ingly picks up the same simplified components α̂1, α̂4 and α̂10, interpreted
above (this might, in part, be because Vines’ method is able to seek simplifi-
cations of components in a nonsequential fashion). Axes α̂8 and α̂9 here have

Table 10

Integer representations for the reflexes data using Vines’ method with c= 0

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ5 ẑ6 ẑ7 ẑ8 ẑ9 ẑ10

triceps.R 1 1 2 1 19 −19 19 19 −19 −1
triceps.L 1 1 2 1 19 −19 19 19 −19 1
biceps.R 1 1 −1 −42 −2479 −42 −42 42
biceps.L 1 1 −1 −40 2561 −40 −40 40
wrist.R 1 1 2 −1 18 −19 19 18 −2541
wrist.L 1 1 2 −1 20 −19 19 20 2503
knee.R 1 −1 −9 10 −9 −2512 10 −10
knee.L 1 −1 −9 8 −9 2530 8 −8
ankle.R 1 −2 6 −5 6 −6 −2529 6
ankle.L 1 −2 6 −7 6 −6 2517 6

Accuracy 0.98 0.97 0.99 0.99 0.97 0.85 0.89 1.00 0.95 0.98

Variance (%) 50.8 21.5 11 8.6 5 1.2 0.99 0.60 0.30 0.20

Note: Empty entries mean zeroes.
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Table 11

Exact principal component analysis loadings (rounded to 2 decimal
places) for the alate adelges data

Variable q1 q2 q3 q4

Length 0.25 0.03 0.02 0.07
Width 0.26 0.07 0.01 0.10
Forwing 0.26 0.03 −0.05 0.07
Hinwing 0.26 0.09 0.03 0.00
Antseg 1 0.24 −0.18 0.04 −0.01
Antseg 2 0.25 −0.16 0.00 0.02
Antseg 3 0.23 0.24 0.05 0.11
Antseg 4 0.24 0.04 0.16 0.01
Antseg 5 0.25 −0.03 0.10 −0.02
Tarsus 3 0.26 0.01 0.03 0.18
Tibia 3 0.26 0.03 0.08 0.20
Femur 3 0.26 0.07 0.12 0.19
Rostrum 0.25 −0.01 0.07 0.04
Ovipositor 0.20 −0.40 −0.02 0.06
Spiracles 0.16 −0.41 −0.19 −0.62
Ov-spines 0.11 −0.55 −0.15 0.04
Anal fold −0.19 −0.35 0.04 0.49
Ant-spines −0.13 −0.20 0.93 −0.17
Hooks 0.20 0.28 0.05 −0.45

Variance (%) 73.0 12.5 3.9 2.6

virtually the same accuracy as in Ŝ1 but are much more complex, illustrat-
ing that our bias toward simplicity does not necessarily sacrifice accuracy.
Indeed, having a dominant pair of elements of nearly equal size and opposite
sign, α̂8 and α̂9 are both angle-close to the corresponding axes in Ŝ1, inter-
preted above as suggestive of left–right symmetry in the corresponding part
of the body. By the same token, α̂6 and α̂7 are also angle-close to suggesting
corresponding left–right symmetries. The remaining axes, α̂2, α̂3 and α̂5,
are more accurate, but less directly interpretable, than those in Ŝ1.

3.2. Alate adelges data. These data consist of 19 anatomical measure-
ments of 40 alate adelges (winged aphids), as reported in Jeffers (1967). The
measurements taken on each aphid are its length and width, fore-wing and
hind-wing lengths, 5 antennal segment lengths, 3 leg bone measurements,
measurements of the rostrum and the ovipositor, anal fold, and counts of
the number of spiracles, ovipositor spines, antennal spines and hind-wing
hooks.

Jeffers (1967) focuses attention on the k = 4 dominant eigenvectors of the
correlation matrix shown in Table 11, these accounting for 92% of the total
variability in the data. He interprets α1 as a general index of size, and α2
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to α4 as essentially measuring the number of ovipositor spines, of antennal
spines and of spiracles, respectively.

These tidy interpretations are not without difficulty. For α1, some later
variables have notably smaller loadings, of both signs. For each other αr, the
interpretation offered amounts to ‘thresholding’ (setting all smaller loadings
to zero) at the maximum absolute value of qr. Whereas this looks quite
reasonable for α3, it seems much less so for α2 and α4, these axes contain-
ing a range of substantial loadings, some of comparable magnitude to their
maximum.

Inspection of the correlation matrix in Jeffers (1967) shows that, while
positively correlated with each other, the two variables with negative load-
ings on α1 are, with one insignificant exception, negatively correlated with
all the other variables. Indeed, a single negative (at −0.026, essentially zero)
correlation remains when both their signs are reversed. Following Rousson
and Gasser (2003), one strategy is to reverse these two signs, analyze the
data in some way and then, to retain the interpretation of the original vari-
ables, switch them back again. We call this process ‘sign reversal.’

We compare here three solutions for these data, detailed in Table 12:

• Ŝ1, as defined above,
• S̃1, the result of an Ŝ1 analysis with sign reversal, and
• S̃RG , an optimal Rousson and Gasser (2004) fit with b = 1 and, again,

sign reversal.

Vines’ method is not capable to produce any answer here, mainly due to the
complexity of some of the approximate loading vectors growing far too big.

Whereas none is ideal (in particular, there is substantial correlation in

each, especially Ŝ1), these three solutions provide helpful, complementary
views of these data. We discuss them in turn.

As expected, given that α1 is not single-signed, Ŝ1 is unstarred. Neverthe-
less, it is perhaps the most easily interpreted solution. It is the simplest and
sparsest, all loadings being 0, 1 or −1. Its dominant component is the sim-
ple average of all the variables, excluding the four count variables and anal
fold. Its third component is the number of antennal spines. The other two
components are simple contrasts, whose pattern of zeroes is consistent with
thresholding at lower levels with only two exceptions (the last two loadings
in α̂2), these zeroes ensuring orthogonality. However, α̂2 is not very accurate
and, indeed, explains less variance than α̂4.
S̃1 is the most accurate solution, the minimum accuracy being 0.92. Al-

though also unstarred, it is perhaps the next most easily interpreted. It is
nearly as simple and as sparse as Ŝ1. It has a comparable corrected sum
of variances to the optimized S̃RG fit (94.1% compared to 94.5%), achieved
despite having lower variances associated with the last two components,
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Table 12

Integer representations for the alate adelges data

Ŝ1 S̃1 S̃RG

Variable ẑ1 ẑ2 ẑ3 ẑ4 ẑ1 ẑ2 ẑ3 ẑ4 ẑ1 ẑ2 ẑ3 ẑ4

Length 1 2 1 3
Width 1 2 1 3 1
Forwing 1 2 1 1
Hinwing 1 2 1 3
Antseg 1 1 2 1 1
Antseg 2 1 2 1 1
Antseg 3 1 −1 2 −1 1 3 3 1
Antseg 4 1 2 1 3
Antseg 5 1 2 1 3
Tarsus 3 1 2 −1 1 1 3 1
Tibia 3 1 2 1 1 3 1
Femur 3 1 2 1 1 3 1
Rostrum 1 2 1 3
Ovipositor 1 1 1 2 1 −4 1
Spiracles 1 1 2 1 −2 1 −4 −11 −3
Ov-spines 1 1 2 1 −4 −11 1
Anal fold 1 −1 −1 2 2 −1 −3 3
Ant-spines 1 1 −2 −1 −1 −3 11 −1
Hooks 1 2 −1 −2 1 3 3 −3

Accuracy 0.93 0.87 0.93 0.90 0.97 0.95 0.92 0.96 0.98 0.94 0.75 0.96

Variance (%) 63.5 9.7 5.3 9.8 69 11.6 6 2.7 70.2 11.3 7.8 3

Optimality (%) 86.9 94.1 94.5
Max correl 0.83 0.63 0.63

Note: Empty entries mean zeroes.

consistent with their suggestion of underlying regularities. Compared to Ŝ1,
its dominant component gains accuracy and variance explained, but is less
easily interpreted. Finally, the pattern of zeroes in its other components is
consistent with thresholding at yet lower levels with only one exception (for
Tarsus 3 on α̂2), this nonzero loading ensuring orthogonality.

A b = 1 solution such as S̃RG comes from fitting the following assumed
form of two star solution to the (sign reversed) data: a simple arithmetic
mean, plus a set of contrasts in each of which the nonzero elements comprise
m times a value n, and n times a value −m. As happens here, these contrasts
need not be orthogonal, so that S̃RG cannot appear among our solutions.
Its dominant component fits well, having the highest accuracy and variance
explained, while the zeroes in its second component are, without exception,
consistent with the same lower thresholding as in Ŝ1. However, the other fits
seem poor, α̂3 having a particularly low accuracy, while α̂4 is considerably
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less sparse than in S̃1 but without improving accuracy. Overall, despite drop-
ping the orthogonality constraint, S̃RG comes third in terms of simplicity,
accuracy and sparseness. A likely reason for this is that its assumed model
seems, at most, appropriate to the first two components.

3.3. Larger data sets. In this section we use simulated examples to give
an idea of how our method behaves when the number of variables p grows.
These examples also illustrate the secondary, initially surprising, fact that
certain simple structures in the population principal components can be
recovered using only information from the sample. Such behavior has been
observed, for small dimensions, in one other simplification method: see Sun
(2006).

For p = 8, 16, 32, 64, 128 and 256, we simulated 100 data sets of size n
from a p-variate, zero mean, normal distribution with covariance matrix of
the following form. Its matrix Qpop of population eigenvectors is the particu-
lar integer matrix with orthogonal columns Zpop detailed below, normalized
to unit column length. Its spectrum has four reasonably well-separated dom-
inant eigenvalues (16,8,4,2), the rest being equal with sum 1. Thus, for each
p, the first four population components explain 30/31 ∼ 97% of total vari-
ability, the corresponding four sample components being used as input data
here in each case. Sampling variability was kept constant across different
values of p in the sense that the ratio of the number of degrees of freedom
in the centered data to that in Qpop was kept fixed at 8, giving n= 4p− 3.

We use the following two star structure for the population eigenaxes gener-
ated by Zpop. A so-called Hadamard matrix of order p= 2m can be obtained
inductively using

Zpop(2) =

(
1 1
1 −1

)

and

for m> 1 Zpop(2
m) =

(
Zpop(2

m−1) Zpop(2
m−1)

Zpop(2
m−1) −Zpop(2

m−1)

)
.

For example, this gives

Zpop(4) =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




(axis-equivalent to that found in the blood flow data of Section 1.3.2). This
structure is the opposite of sparse, having no zeroes. Instead, it has what
Chipman and Gu (2005) call ‘homogeneity.’ At the same time, it is ex-
tremely simple. For any m, the λ part of our overall complexity measure
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Fig. 6. Mean computation times relative to the time for p= 8.

(Section 2.4.1) takes its maximum value 1/2, so that compl (Spop) = 1.5 if
and only if Zpop has this Hadamard form.

Figure 6 shows that the computation time required grows roughly linearly
in p, which gives a good indication that the method is relatively quick when
p≤ 256 and there is a simple structure in the sample eigenvectors.

Figure 7 is an accuracy–simplicity scatterplot for the 100 simulated values
of Ŝ1 obtained with p= 32. The percentage of simulations with compl (Ŝ1) =

1.5, corresponding to Ŝ1 having a Hadamard structure, is substantial. Over-
all, this percentage was found to increase with p, as was the minimum ac-
curacy attained.

4. Discussion. Combining principles with pragmatism, a new approach
and accompanying algorithm to interpret (a subset of) principal components
have been presented and shown to work well on a range of examples. The
key idea is to approximate each eigenvector involved by an integer vector
close to it in angle terms, while keeping the size of its maximum element as
low as possible. Requiring orthogonality, attractive visualization and dimen-
sion reduction features of principal component analysis are retained. Being
essentially exploratory, alternative views of the same data are provided in a
clear, principled order. The user is then free to choose the set of solutions
that best match his or her trade-off between simplicity and accuracy. Again,
other things being equal, explicit models can be checked by seeing if their fits
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Fig. 7. Accuracy and complexity for solution to simulated data when p= 32.

occur in our exploratory analysis (Sections 2.5 and 3.1.2), while alternatives
can be provided where preconceived models appear inappropriate (Section
3.2). Although not directly targeted, sparsity can emerge where appropri-
ate, as in the example in each of the three Sections just cited. Section 3.3
gives some idea of our algorithm’s performance in larger data sets, while also
illustrating that sparsity is not always appropriate. Overall, this new tool
adds to the applied statistician’s armoury, effectively combining simplicity,
retention of optimality and computational efficiency, while complementing
existing methods.

Although the examples given establish that our approach is useful in
practice, an extensive simulation study is required to more fully explore its
performance and to compare it with other simplification methods, such as
those proposed by Rousson and Gasser, Chipman and Gu, and Vines. Such a
simulation study would also provide further information about appropriate
default values for the tuning parameters employed and help to identify pos-
sible alternative measures of interpretability, simplicity and accuracy that
both highlight the best solutions and most effectively indicate situations
where simple structures are perhaps not there to be found.

Any approach to interpreting principal components involves making spe-
cific choices and an overall compromise between conflicting objectives. Vari-
ants and extensions of the approach presented here meriting future study
include:
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• exploring the potential usefulness of sequences of approximation other
than the four employed here (Section 2.1); more radical is the possibility
of simplifying two or higher-dimensional subspaces of eigenvectors at each
step;

• varying the minimum accuracy required across eigenaxes, for example, to
reflect situations where it is more important for some components to be
approximated accurately than others (in particular, this may be useful in
connection with the variant discussed next);

• adapting it to reflect scientific contexts in which interest centers solely on,
say, explaining variability;

• trading off the benefits of orthogonality against the advantages of sepa-
rately approximating each eigenaxis;

• applying its ideas in other contexts, including Linear Discriminant Anal-
ysis and Canonical Correlation Analysis.

APPENDIX A: DISTANCE INTERPRETATION OF
THE MINIMUM ACCURACY ATTAINED

We show here that the minimum accuracy attained is a known, strictly de-
creasing, function of a natural measure of distance between any two ordered
sets of axes.

For any two vectors x and y in R
p with unit length, define the angle

0≤ θ ≤ π between them by cos(θ) = xTy and the following measure of dis-
crepancy between the axes ±x and ±y which they generate:

δ(±x,±y) := min{‖u− v‖/
√
2 :u ∈ {x,−x},v ∈ {y,−y}}.

Then, omitting the straightforward proof, we have that

δ(±x,±y) =min{‖x− y‖/
√
2,‖x+ y‖/

√
2}=

√
1− | cos(θ)|

is a distance function on the set of all axes in R
p (i.e., is nonnegative, zero

only when ±x = ±y, symmetric and obeys the triangle inequality), the
angle-accuracy attained measure being thus a strictly decreasing function
of it, namely,

| cos(θ)|= 1− δ2(±x,±y).

For any two ordered sets of axes ±X := (±x1| · · · |±xm) and ±Y := (±y1|
· · · |±ym) in R

p, with ‖xr‖ = ‖yr‖ = 1 and corresponding angles 0 ≤ θr ≤
π given by cos(θr) = xT

r yr (1 ≤ r ≤ m), define now the following overall
discrepancy measure between them:

∆(±X,±Y) := max{δ(±xr ,±yr) : 1≤ r ≤m}.
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Then, using the properties of δ(·, ·) just established, and again omitting the
straightforward proof, we have that

∆(±X,±Y) =
√

1−min{| cos(θr)| : 1≤ r≤m}
is a distance function on the set of all ordered sets of axes in R

p, the minimum
angle-accuracy attained measure being thus a strictly decreasing function of
it, namely,

min{| cos(θr)| : 1≤ r ≤m}= 1−∆2(±X,±Y).

APPENDIX B: IMPLEMENTATION

In Section B.1 we define a key approximation to the solution of the prob-
lem of minimizing accuracy without orthogonality restrictions, for a given
complexity. In Section B.2 we outline approaches to the search for α̂r(θ).

A set of R routines implementing our approach is available from the au-
thors upon request.

B.1. N -ratio simplification. For a given vector u ∈R(l) (l≥ 2) and given
complexity N , we describe here an approximation to the solution of the
problem of maximizing accu(ℓ(u), ℓ(z)) over z ∈ Z

(l) subject to compl (z) =
N .

A necessary condition for z to be optimal is that u and z have the same
signs, while the rank vector of |z| coincides with that of |u|. Thus, subsuming
sign changes and a permutation as required, there is no loss in taking u1 ≥
u2 ≥ · · · ≥ ul ≥ 0 and restricting attention to integer vectors z such that z1 ≥
z2 ≥ · · · ≥ zl ≥ 0, the corresponding inverse permutation and sign changes
being applied at the end.

The N -ratio simplification of u is defined as ẑ(N) = (N, ẑ
(N)
2 , . . . , ẑ

(N)
l )⊤

in which the {ẑ(N)
r }lr=2 are chosen so that each ξr := tan−1(ẑ

(N)
r /N) is as

close as possible to ψr := tan−1(λr) where λr := ur/u1 (a final division by
hcf(|ẑ(N)|) being left implicit). Explicitly, for each r = 2, . . . , l, defining lr as
the integer part of λrN and 0 ≤ αr ≤ ψr < βr ≤ π/4 by αr := tan−1(lr/N)
and βr := tan−1((lr + 1)/N), we put

ẑ(N)
r :=

{
lr, if ψr ≤ (αr + βr)/2,
lr +1, if ψr > (αr + βr)/2.

(B.1)

The accuracy of this approximation comes from the fact that ℓ(ẑ(N)) =

ℓ(u) if and only if ẑ
(N)
r /N = ur/u1 for each r = 2, . . . , l. This is a very fast

approximation since, reordering of elements apart, the computational effort
involved is linear in l.
N -ratio simplification has the additional advantage that neighboring solu-

tions close to ẑ(N) can also be obtained easily. Before permuting back to the
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original order and restoring the signs, l− 1 alternative neighboring approx-
imations z̃ can be obtained by adjusting the entries of ẑ(N) in the following

way: z̃r = ẑ
(N)
r +1 if ẑ

(N)
r = lr and z̃r = ẑ

(N)
r − 1 if ẑ

(N)
r = lr + 1.

B.2. Search for α̂r(θ). For the first axis to be simplified, α̂1(θ) is ap-
proximated by the N -ratio simplification of q1 with the smallest N that
satisfies the minimum accuracy required cos(θ). For r ≥ 2, the orthogonality
restrictions need to be taken into account. Here, we search for α̂r(θ) using
a hybrid approach which takes the best solution out of the three different
procedures described below (two in Section B.2.1 and one in Section B.2.2),
as ranked first by the smallest value of Nr(θ) found, and then by accuracy.

We denote by Hr−1 the matrix representing orthogonal projection onto
N (Z⊤

r−1), the null space of Z⊤
r−1, where Zr−1 is any p × (r − 1) matrix

whose columns are integer representations of the axes already simplified,
α̂1, . . . , α̂r−1. As detailed in Section B.2.4 below, Hr−1 = H̃r−1/Nr−1 for

some known integer matrix H̃r−1 and positive integer Nr−1.

B.2.1. Algorithms based on convergence to orthogonality. We describe
here two versions of an iterative algorithm to find an axis of minimal com-
plexity that satisfies the orthogonality and minimum accuracy restrictions.
Starting with N = 1, the algorithm works by first obtaining the N -ratio
simplification of q⊥

r =Hr−1qr and then modifying it, directly controlling its
complexity, while aiming to maintain accuracy and improving the degree to
which the orthogonality conditions are met.

The algorithm is based on the function 0 < ω(z) := accu(z,Hr−1z) ≤ 1
which measures the closeness of ℓ(z) to N (Z⊤

r−1), the orthogonality condi-
tions being met if and only if ω(z) = 1.

The algorithm has three stages:

Stage 1. [1] Compute ẑ(N), theN -ratio simplification of q⊥
r . [1

∗] If ω(ẑ(N)) =
1 and ẑ(N) satisfies the minimum accuracy required, we take α̂r(θ) to be
ℓ(ẑ(N)) and the algorithm stops. If ω(ẑ(N)) = 1, but ẑ(N) does not satisfy
the minimum accuracy required, we update N ←N +1 and return to [1].
Otherwise, ω(ẑ(N))< 1 and we move on to Stage 2.

Stage 2. Construct a set of neighbor vectors Z ⊂ Z
(p) by increasing and

decreasing one of the entries of ẑ(N) by one unit (see Section B.1), identi-
fying its (possibly empty) subset Z1 of vectors with ω(z) = 1. If there is a
z ∈ Z1 satisfying the minimum accuracy required, we take α̂r(θ) to be the
most accurate such vector and the algorithm stops. If there is a z ∈ Z1,
but no such vector satisfies the minimum accuracy required, we update
N ←N + 1 and return to [1]. Otherwise, ω(z) < 1 for all z ∈ Z and we
identify its (possibly empty) subset Z(θ) of vectors satisfying the mini-
mum accuracy required. If Z(θ) is the empty set, we move on to Stage 3.
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Otherwise, we set z′ to be arg max{ω(z) :z ∈ Z(θ)}. If ω(z′) ≤ ω(ẑ(N)),
we again move on to Stage 3. Otherwise, if ω(z′) > ω(ẑ(N)), we update
ẑ(N)← z∗ (defined below) and return to [1∗]. We have two variants of this
algorithm, corresponding to two different choices of z∗:

1. z∗ = z′: this hungrily pursues orthogonality, at a potential loss of ac-
curacy.

2. z∗ = argmax{accu(q⊥
r ,z) :ω(z) > ω(ẑ(N)),z ∈ Z(θ)}: this retains ac-

curacy as much as possible, while improving the extent to which the
orthogonality conditions are met.

Stage 3. We construct a set of higher order neighbor vectors Z by moving
more than one entry of ẑ(N) in the direction defined by the integer vector
H̃r−1ẑ

(N) −Nr−1ẑ
(N). We then follow the same procedure as in Stage 2

except that, if Z(θ) is empty or ω(z′) ≤ ω(ẑ(N)), we now update N ←
N +1 and return to [1].

Remark 1. If we obtain a vector of complexity strictly bigger than
the current of N , we do not consider it at that stage, but keep it for later
feasibility, provided its complexity is not bigger than N∗.

Remark 2. It is easy to show that, for any z ∈ Z(p) with Hr−1z 6= 0p,

accu(q⊥
r ,z)

accu(q⊥
r ,Hr−1z)

=
‖Hr−1z‖
‖z‖

= accu(z,Hr−1z)≤ 1,

so that accu(q⊥
r ,Hr−1z) ≥ accu(q⊥

r ,z), equality holding if and only if z
obeys the orthogonality conditions z=Hr−1z. For any other z, projection
strictly increases accuracy. Given the general trade-off between accuracy and
simplicity, this suggests that projection tends to increase complexity. Ac-
cordingly, there is a premium on algorithms, such as the one just described,
which avoid projection per se.

B.2.2. Algorithm based on exact orthogonality. The following algorithm
ensures exact orthogonality at every step by restricting attention to axes
of the form ℓ(Or−1y), y ∈ Z

(p−r+1), where Or−1 is a p× (p− r+1) integer
matrix whose columns form a basis of N (Z⊤

r−1). The particular matrix Or−1

used, which appears to work well, mitigates the fact that the complexity and
accuracy of z=Or−1y are indirectly controlled; see Section B.2.3.

Putting y∗ := (O⊤
r−1Or−1)

−1O⊤
r−1qr, Or−1y

∗ = q⊥
r is the closest point to

qr in N (Z⊤
r−1). Whereas the elements of y∗ will not in general be integers,

we may obtain an approximation α̃r(θ) to α̂r(θ) as follows:



38 K. ANAYA-IZQUIERDO, F. CRITCHLEY AND K. VINES

1. Compute the set of integer vectors Y ⊂ Z
(p−r+1) obtained by N -ratio

simplification of y∗, together with their angle neighbors, for all N ≤N∗.
2. Obtain the set ℓ(Or−1Y) of all axes ℓ(Or−1y) with y ∈ Y , and find the

minimum complexity Ñr(θ) over all axes in this set which satisfy the
minimum accuracy requirement cos(θ).

3. Call α̃r(θ) the most accurate axis in ℓ(Or−1Y) with complexity Ñr(θ).

B.2.3. Choice of Or−1. The choice O0 = Ip is clearly optimal. For r > 1,
the choice of Or−1 depends on an initial permutation of the rows of Zr−1—
defined below—such that the first r− 1 are linearly independent, forming a
nonsingular matrix Za in the corresponding partition Z⊤

r−1 = (Z⊤
a Z

⊤
b ). This

permutation is inverted at the end to maintain the identity of the variables.
Conformably partitioning u ∈ R

p as u⊤ = (u⊤
a u

⊤
b ), u ∈ N (Z⊤

r−1) when

Z⊤
a ua+Z⊤

b ub = (0, . . . ,0)⊤. Equivalently, det(Za)ua =− cof(Za)Z
⊤
b ub, where

cof(Za) is the matrix of cofactors of Za. Thus,

Or−1 :=

(
− cof(Za)Z

⊤
b

det(Za)Ip−r+1

)

is an integer matrix whose columns form a basis of N (Z⊤
r−1).

For any y ∈ Z
(p−r+1), conformably partitioning z=Or−1y as z⊤ = (z⊤a z

⊤
b )

gives ℓ(zb) = ℓ(y). We choose the initial permutation of the rows of Zr−1 so
that the elements of q⊥

r corresponding to zb have the largest possible set
of absolute values, these contributing most to angle-accuracy. Specifically,
we proceed as follows. First, permute the elements of q⊥

r so that the ab-
solute values of its elements are in increasing order, permuting the rows of
Zr−1 accordingly. Find the first set of r − 1 rows of Zr−1 having nonzero
determinant in the lexicographical ordering of such sets by their row labels.
Finally, maintaining the internal ordering of these rows (and of their p−r+1
complementary rows), make them the first r− 1 rows, Za, of a new matrix
Zr−1.

B.2.4. Construction of the projector Hr−1. The matrix Hr−1 is propor-

tional to an integer matrix, so that Hr−1 = H̃r−1/Nr−1 for some integer

matrix H̃r−1 and positive integer Nr−1. Simple updates are available to
construct this matrix.

PuttingN0 = 1 andH0 = H̃0 = Ip, for each r ≥ 1,Hr =Hr−1− ẑrẑ⊤r /‖ẑr‖2,
so thatHr = H̃r/Nr with H̃r = [‖ẑr‖2H̃r−1−Nr−1ẑr ẑ

⊤
r ]/hr andNr = [Nr−1,×

‖ẑr‖2]/hr , in which hr = hcf(Nr−1‖ẑr‖2). The simplicity of these updates is
another advantage of requiring orthogonality.
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