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Glossary 

 

Parental Effects: Occur when genes expressed in the mother or father have a causal influence on 

their offspring’s phenotype  

 5 

Quantitative Trait Locus (QTL): A region of the genome in which genetic variation at a marker 

locus is significantly correlated with phenotypic variation for a complex trait. 

 

Parental Imprinting: Occurs when either only the maternally or only the paternally inherited allele 

affects the phenotype. In a two-allele system, genotypes will group into two phenotypic classes 10 

based on the maternally or paternally expressed allele (Box 1) 

 

Dominance Imprinting: A complex imprinting pattern where parent-of-origin of alleles affects 

dominance at a locus. For example, bi-polar dominance imprinting occurs when one heterozygote 

shows overdominance and the reciprocal shows underdominance (Box 1).  15 

 

Advanced Intercross: The result of continued random mating of a population derived from a cross 

between inbred lines. Advanced intercrosses provide higher resolution for QTL than traditional 

(e.g., F2) mapping approaches because of the accumulation of  recombination through each 

generation of random mating. 20 

 

Allele-Specific Bias: Occurs when the two alleles in a heterozygote are not functionally equivalent. 

Can arise from expression bias wherein one allele is expressed at a higher rate than the other (the 

null expectation being that both alleles will be expressed at approximately the same rate). There can 

also be methylation biases, wherein one allele is preferentially methylated (or unmethylated), which  25 

can underlie allele-specific expression biases. 

 

Epigenetic:  A difference in phenotype resulting from variations in DNA chemistry rather than 

DNA sequence. Epigenetic changes can be cell specific, modified by environmental factors,  affect 

gene expression, and may underlie some parent-of-origin effects on complex traits.  30 

 

Complex Trait: A quantitative trait that is influenced by many genetic, epigenetic, and 

environmental factors and their interactions.  

 

Differentially Methylated Region (DMR): Genomic region where the pattern of methylation (the 35 

ratio of methylated to unmethylated sequence) is different between two alleles at the same locus. 

 

Line-cross design: An approach to QTL mapping in which two non-inbred lines are crossed to 

produce a mapping population.  The approach assumes that the two lines are fixed for different 

QTL alleles, but there is variation at marker loci segregating within lines (Figure 1).  40 
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Online Key Points 

 Parent-of-origin effects likely contribute to the genetic architecture of complex traits, yet 

they are rarely included in studies of genetic architecture 

 It is critical to distinguish between reciprocal heterozygotes when identifying parent-of-5 

origin effects, but several phenomena besides genomic imprinting can potentially produce 

phenotypic differences between reciprocal heterozygotes. 

 In human studies, large-scale samples that incorporate pedigree information will be 

important for developing models and tools that can accommodate parent-of-origin effects 

into analyses. 10 

 Animal studies will be essential for developing a framework of DNA sequence–imprinted–

function relationships, particularly because parent-of-origin effects can be context 

dependent. 

 Research that integrates complex trait mapping results with next-generation sequencing data 

to identify patterns that have predictive power will be essential to advance the field. 15 
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Abstract 

Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is 

inherited from an individual’s mother or father. Several phenomena can cause parent-of-origin 

effects, with the best characterized being parent-of-origin dependent gene expression associated 5 

with genomic imprinting. Imprinting plays a critical role in a diversity of biological processes and 

in certain contexts it structures epigenetic relationships between DNA sequence and phenotypic 

variation.  The development of new mapping approaches applied to the growing abundance of 

genomic data has demonstrated that imprinted genes can be important contributors to complex trait 

variation.  Therefore, to understand the genetic architecture and evolution of complex traits, 10 

including complex diseases and traits of agricultural importance, it is crucial to account for these 

parent-of-origin effects.  Here we discuss patterns of phenotypic variation associated with 

imprinting, evidence supporting its role in complex trait variation, and approaches for identifying its 

molecular signatures.  

 15 

 

Introduction 

Parent-of-origin effects are epigenetic phenomena that appear as phenotypic differences between 

heterozygotes depending on allelic parent-of-origin.  Genomic imprinting occurs when two alleles 

at a locus are not functionally equivalent and is considered the primary epigenetic phenomenon that 20 

can lead to the manifestation of parent-of-origin effects
1
. Imprinted loci show parent-of-origin 

dependent gene expression and have been observed in mammals, flowering plants and insects
2
. 

However, the taxonomic distribution and the breadth of genomic imprinting (hereafter referred to as 

‘imprinting’) are open questions. Imprinting appears to play an important role in modulating sets of 

complex traits, notably in early development (including embryonic, placental and seed 25 

development) and behavior (especially social behavior)
1, 3-5

. Much of our understanding of the 
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phenotypic consequences of imprinting comes from gross genetic anomalies such as uniparental 

disomies, translocations, loss of function mutations, and loss of imprinting epimutations, some of 

which are associated with complex disorders (e.g., Prader-Willi, Beckwith-Weidemann, and 

Angelman syndromes)
1
. Genes (or more generally, loci) associated with these disorders show the 

signature of imprinting manifested as parent-of-origin dependent effects
6
, with the anomalous 5 

phenotype depending on which parent the causal allele(s) is inherited from, rather than an 

individual’s diploid genotype.  

 

Parent-of-origin effects are often considered synonymous with imprinting but there are other 

scenarios that can lead to the appearance of a parent-of-origin effect in the absence of imprinting 10 

(see below). Here we review recent developments in understanding the role of imprinting as a 

parent-of-origin effect underlying complex trait variation and provide a primer on approaches that 

can be used to identify and examine the contribution of imprinted loci to aspects of genetic 

architecture. Studies suggest that imprinted loci may be important contributors to phenotypic 

variation
7-10

, despite the fact that imprinting per se has been confirmed in a relatively small 15 

proportion of all genes (<1% in humans or mice
11

 and an even smaller number in plants
12

). 

However, most studies of complex traits have not implemented models that allow for the non-

equivalence of parental alleles (i.e., allow for a parent-of-origin effect), thus the number and effects 

of imprinted genes remain important open questions. Studies that consider genetic and epigenetic 

variation at imprinted loci as a source of natural variation in complex traits can not only potentially 20 

identify additional imprinted genes, but can also reveal an important component of heritable 

variation that remains 'hidden' in traditional complex trait studies.   

 

Other parent-of-origin effects 

In this review we focus on imprinting, so first it is useful to consider other scenarios that can lead to 25 

the appearance of a parent-of-origin effect in the absence of imprinting. One scenario is the 
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possibility that the reciprocal heterozygotes actually have a genetic difference. For example, gene-

specific tri-nucleotide expansions can have sex-specific biases in occurrence and therefore 

transmission, and parent-of-origin effects resulting from such expansions have been associated with 

disorders such as myotonic dystrophy type-1
13, 14

. Genetic differences between reciprocal 

heterozygotes are particularly problematic for discovery research using a “line-cross design”
15

 5 

where individuals from two variable parental populations are intercrossed to produce an 

experimental population
16, 17

, as illustrated in Figure 1. In this scenario, spurious imprinting effects 

can arise when the assumption that the parental strains are fixed for QTL differences but have 

segregating marker variation is violated. Most problematically, the same conditions making a 

marker locus informative to detect a parent-of-origin effect (segregating variation at marker loci in 10 

parental lines) are the same conditions that can lead to spurious results (segregating variation at 

linked quantitative trait loci, QTL, in parental lines). The assumptions of the line-cross design are 

unlikely to be made in studies of natural variation (such as most human studies), and hence the 

problem of spurious results produced by this phenomenon are unlikely to apply to most approaches 

used to study parent-of-origin effects. Another confounder is parental genetic effects
18

. In 15 

mammals, studies of parental effects have focused on maternal-effects, however paternal-effects are 

equally plausible (but presumably less common). From a single locus perspective, parental genetic 

effects occur when a locus expressed in mothers (or fathers) has some causal influence on the 

phenotype of her (his) offspring
19

. For example, maternal effects have been observed in a mouse 

model of anxiety, where offspring born to mothers that were heterozygote for a knockout of the 20 

serotonin A1 receptor, Htr1a, but who did not inherit the mutation themselves, displayed an 

anxiety-like phenotype
20

.  Maternal effects can lead to the appearance of a parent-of-origin effect 

when mothers that are homozygous for different alleles have distinct phenotypic effects on their 

offspring.  Because these homozygous mothers can each only produce one type of reciprocal 

heterozygote, such a maternal effect is expected to lead to a difference in the average phenotypes of 25 

the reciprocal heterozygote offspring. Other phenomena that can result in differences between 
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reciprocal heterozygotes include random monoallelic expression and environmentally mediated 

epigenetic silencing. However, these processes are not expected to produce parent-of-origin 

dependent patterns and are not considered here. 

 

Identifying phenotypic signatures of imprinted loci 5 

Our understanding of the genotype-phenotype relationship is largely conceptualized through the use 

of a single locus with two alleles. Within this framework, there are three genotype classes, with the 

reciprocal heterozygotes grouped into a single class because they are genetically equivalent. 

However, to understand the contribution of imprinting to the genotype-phenotype relationship we 

need to characterize the genetically equivalent, but potentially phenotypically non-equivalent, 10 

reciprocal heterozygotes as distinct genotype classes
7, 21

. This increase in the number of genotype 

classes provides the critical extra degree of freedom required to test for the presence of imprinting. 

If a locus is imprinted, we expect these two classes to express different alleles (Box 1).  Imprinting 

will manifest as genotype classes that vary phenotypically according to allelic parent-of-origin, 

forming the foundation of studies aimed at identifying imprinting effects on complex traits (Box 2). 15 

 

Assigning parent-of-origin to alleles 

 The critical first step in analyzing imprinting effects is assigning parent-of-origin to alleles. The 

earliest studies used the “line-cross design”
15

 based on F2 intercross populations in which non-

inbred parental lines were crossed
17,7, 17, 21, 22

. Parent-of-origin of marker alleles is assigned by 20 

identifying the grandparent-of-origin of an allele (which requires genotyping founders). This 

approach has been used to identify imprinting effects on body composition in pigs, but it has been 

criticized because it can lead to the appearance of imprinting when there are QTL segregating in the 

parental strains (Figure 1)
16

. Further, this approach cannot be used to study imprinting effects using 

biallelic loci, so many genomic regions are uninformative
21

.   25 
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Studies in mice have used a backcross design
23

 where F1 heterozygotes from an inbred line cross 

(which have the unordered genotype A1A2) are backcrossed to either parental strain. The parent-of-

origin of alleles in all heterozygotes produced in each backcross can be directly inferred. For 

example, if an A1A2 male is backcrossed to a female from the A1A1 parental line, then all 

heterozygous offspring will have received the A1 allele from their mother and A2 from their father. 5 

Such a design, while intuitive, fully confounds maternal effects with imprinting effects
18

 and 

restricts patterns of variation across the genome (since backcrossed populations are necessarily 

missing subsets of possible multilocus allelic combinations).  

 

Other studies have used an F2 generation of intercrosses between inbred strains, where individuals 10 

are produced by genetically identical F1 parents (and hence the pedigree contains no information 

about allelic parent-of-origin)
23

. Allelic parent-of-origin in such a population can be inferred if there 

are sex differences in recombination rates and sufficient marker information to determine the 

number of recombination events on each chromosomal haplotype. This approach has been used in 

mice, relying on the fact that females have higher recombination rates than males, which is common 15 

in mammals 
24

. However, this approach can only be implemented in systems where there is a large 

sex difference in recombination rates and where it is possible to accurately determine the number of 

recombination events present on each haplotype. This approach lacks power due to high error rates 

because sex differences in recombination rates can be small. 

 20 

In samples where parents are genetically variable (such as an advanced intercross), one can simply 

genotype parents and their offspring and then directly infer allelic inheritance. Allelic parent-of-

origin can be determined for all heterozygous offspring produced by all matings between a 

heterozygote and a homozygote parent or between two opposite homozygote parents. In a 

population with genotypes in Hardy-Weinberg proportions, this approach can be used to assign the 25 

parent-of-origin to alleles in at least three-quarters of all heterozygotes (the proportion of 

uninformative heterozygotes under random mating is approximately pq, where p and q are the 
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frequencies of the two alleles at a locus). The only families in which parent of origin of alleles 

cannot be directly inferred are those families where both parents are heterozygotes at the locus in 

question. Studies in human populations have used family-based genotype information (parent/ 

offspring trios) to assign parent-of-origin to offspring alleles, and Transmission Disequilibrium 

Tests (TDT) can be used to identify biased transmission of the parental alleles 
25, 26

. TDT methods 5 

are robust to the confounding effects of population admixture and stratification, however they are 

generally underpowered because they do not account for between family variation in human 

samples 
27

.  

 

Although matings between two heterozygous parents do not allow direct inference of parent-of-10 

origin of alleles, it is possible to use linkage information to infer allelic parent-of-origin in some or 

all cases (depending on marker density). That is, if allelic parent-of-origin at a locus cannot be 

determined directly, but the locus is linked to informative loci, the linked marker information can be 

used to infer allelic parent-of-origin at the ambiguous locus (or assign a conditional probability that 

each allele came from each parent
7, 17

). This process can be efficiently achieved through haplotype 15 

reconstruction approaches wherein entire chromosomal haplotypes are assigned a parent-of-origin 

based on algorithms that determine the most likely haplotype configuration in a population 
8, 28

, or 

through approaches that more generally use linkage information to assign parent-of-origin 

probabilities to alleles.  Recently, extended pedigree information was used to assign parent-of-

origin of haplotypes using a likelihood based framework in >38,000 Icelanders 
29

. 20 

 

Imprinting effects on complex traits 

Do imprinted QTL map to known imprinted regions? 

Studies assigning parent-of-origin to alleles and subsequently mapping QTL with parent-of-origin 

dependent effects in model organisms have had mixed success in linking loci to known imprinted 25 

regions. For example, results from one of the first analyses of imprinted QTL (using a porcine 

intercross for body composition
7
) found that three of the four imprinted QTL identified fell outside 
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known imprinted regions. Another study
8
 mapping body weight and growth in a murine intercross 

found little overlap between known imprinted genes and imprinted QTL (only 2 of 10 loci 

overlapped confirmed imprinted genes) but all imprinted QTL contained multiple genes predicted to 

be imprinted by bioinformatic approaches (discussed below in the Identifying molecular 

signatures of imprinted loci section)
30

. Similar patterns, where most QTL map to regions that do 5 

not contain known imprinted genes but do contain bioinformatically predicted imprinted genes, 

were found in a study of bovine growth and body composition 
31

.  

 

As discussed above, most known imprinted genes are associated with gross genetic anomalies and 

QTL studies identify genomic regions associated with normally distributed phenotypic variation. 10 

While some candidate imprinted QTL may be due to other parent-of-origin effects (see 

Introduction), these mapping results suggest that there may be more imprinted genes than have 

been characterized to date, and that imprinted genes are likely associated with normal phenotypic 

variation. Indeed, recent studies from an F16 generation of a randomly-mated advanced intercross of 

the LG/J and SM/J inbred mouse lines found imprinted genetic effects to be almost as prevalent as 15 

additive genetic effects for multiple metabolic traits: 40 QTL were found associated with variation 

in adiposity
32

, 64 with variation in diabetes-related traits
33

, and 23 with variation in serum lipid 

levels
34

; almost all of these QTL have additive effects and about 60% have imprinted effects. 

Although these candidate imprinted QTL have yet to be validated, simulation studies in an earlier 

generation of this intercross indicate the distribution of false positives for imprinting effects is the 20 

same as that for additive and/or dominance effects
8
 (i.e., there is no bias for the appearance of 

parent-of-origin effects)  Thus, as with all QTL, loci showing imprinted genetic effects should be 

treated as candidates that require validation. Such caution is especially critical for QTL mapping to 

regions with no known imprinted genes.  

 25 

Studies analyzing known imprinted genes for association with phenotypic variation 
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When studies have specifically targeted known imprinted genes for association with normal 

variation rather than with gross genetic anomalies, results indicate that these genes play important 

roles in complex traits. For example, a study in cattle
35

 targeted a series of SNPs in eight candidate 

imprinted genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) and 

found six had significant associations with a variety of traits. However, it should be noted that only 5 

PEG3 has been shown to be imprinted in cattle, and the associations were not examined with regard 

to allelic parent-of-origin.   

 

Other studies have honed in on the contribution of IGF2 to traits such as variation in meat quality 

characteristics in pigs after a QTL mapping study identified a locus containing this gene was 10 

strongly associated with variation in muscle mass
36-39

. This paternally expressed locus was found to 

have major effects on lean meat content in ham, accounting for 30% of the phenotypic variance in 

this trait
38

. The QTL was fine-mapped 
36

 and an intronic SNP affecting IGF2 expression in 

postnatal muscle was identified
39

. This SNP was found to abate ZBED6 repressor binding, leading 

to an increase in IGF2 expression and elevated muscle mass
40

. Other SNPs in IGF2 have been 15 

associated with milk quality traits in dairy cows
41

. It is hypothesized that breeding schemes 

focusing intensive selection on males could potentially favor such variation at paternally expressed 

loci
38

.   

 

Human complex traits 20 

In human studies, parent-of-origin effects have been implicated in many complex disorders 

including: Alzheimer’s disease
42

, autism
43

, bipolar disorder and schizophrenia
44, 45

, cancer
29

, 

adiposity and type-2 diabetes
29, 46, 47

, and type-1 diabetes
26

. Although most of these results have not 

been validated, they do indicate that imprinting effects underlie some of the variation observed in 

these traits. Unfortunately human samples often do not have data available to determine parent-of-25 

origin of alleles, and/or are underpowered to incorporate this information into their analyses due to 

small sample sizes. However, recent large-scale studies have found interesting parent-of-origin 
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effects associated with variation in multiple complex disorders
26, 29, 47

, with the implication that 

incorporating parent-of-origin of alleles into mapping models will increase a study’s power to 

account for a trait’s heritable variation. Large-scale studies with pedigree information will be 

important for developing models and tools that can accommodate the extra degrees of freedom 

resulting from distinguishing among heterozygote classes. 5 

 

Complex imprinting patterns 

In addition to implying that there are more imprinted genes than are currently characterized and that 

allelic parent-of-origin contributes to complex trait variation, studies that identify imprinted genetic 

effects have revealed that imprinting patterns can be complex. Complex imprinting patterns (Box 1) 10 

can arise when a locus contains multiple genes that can differ in their imprinting status. Imprinted 

genes tend to have a clustered distribution
11

, and within imprinted gene clusters there can be both 

maternally and paternally expressed genes regulated by the same imprint control region (for 

example at the H19/IGF2 locus associated with Beckwith-Weidemann, H19 is expressed from the 

maternal allele while IGF2 is expressed from the paternal allele
48

).  15 

 

The first example of a locus with a complex imprinting pattern is the callipyge locus (CLPG) in 

sheep 
49, 50

, which shows polar overdominance (Box 1). Polar overdominance has also been 

described at the DLK1 gene in humans which is associated with juvenile obesity
51

. Early work 

hypothesized that the complex pattern results from a mutation that switches parent-of-origin 20 

specific expression from paternal to maternal (or vice-versa)
52, 53

. The CLPG mutation is an AG 

transition in the intergenic region flanked by the paternally expressed DLK1 protein-coding gene 

and the maternally expressed GTL2 noncoding RNA gene. Focused studies of the CLPG mutation 

show it affects molecular marks including local DNA hypomethylation and DNase-1 

hypersensitivity, and long-range bidirectional transcription throughout the intergenic region
54

. 25 

Additionally, RNA interference of the paternally expressed PEG11 by miRNAs processed by the 
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maternally expressed antiPEG11 has been described. Both PEG11 and antiPEG11 expression are 

affected by the CLPG mutation
55

. Precise details of how the polar overdominance phenotype is 

achieved remain unclear, however the predominant model is that it is the result of up-regulation of a 

paternally expressed ‘effector’ and a maternally expressed ‘repressor’ 
50, 56

, which may be linked to 

the molecular mechanisms described at the locus (Figure 2.A). We have described an analogous 5 

‘effector/repressor’ model to explain the appearance of bipolar dominance imprinting, where 

homozygotes are phenotypically identical but heterozygotes have different phenotypes (Box 1; 

Figure 2.B). An implication of a bipolar dominance effect, in a disease context, is that the same 

allele can be both protective and a potential risk factor in the heterozygote depending on parent-of-

origin. Kong et al. 
29

 recently identified a pattern consistent with bipolar dominance in a large 10 

genotyped human population. Here the same SNP variant associated with type-2 diabetes risk when 

paternally inherited was found to be protective when maternally inherited. 

 

Context dependent imprinting effects 

Studies identifying imprinted genetic effects on complex traits strongly suggest that these effects 15 

can be context dependent, and imprinting patterns are not consistent among traits, environments, or 

between sexes. Our mapping results of multiple metabolic parameters in mice (adiposity, serum 

lipids, glucose and insulin levels) found context dependency to be prevalent at candidate imprinted 

QTL
57

. For example, a locus associated with free-fatty acids levels (DMetS1b) showed imprinted 

effects in females, but high-fat fed females showed maternal expression while low-fat fed females 20 

showed paternal expression
57

. This result indicates that imprinted genetic effects may occur at many 

levels. Due to the complexity of the genotype-phenotype relationship, it can be difficult to 

systematically study these effects in human samples. This constraint may be especially true for 

more ‘plastic’ complex traits such as obesity where the genetic architecture results from multi-

dimensional interactions among genes and environment as well as from inter-organ cross talk (see 25 

Box 3 for a discussion of epistasis and genomic imprinting).  



14 

 

 

Further confounding is the fact that the trait being studied may be a composite that combines tissues 

or developmental stages that include both imprinted and non-imprinted expression. For example, 

many genes are imprinted only in the placenta
58

, likewise UBE3a in Angelman syndrome is 

biallelically expressed in most tissues but is maternally expressed in most neurons
59

 and the 5 

imprinted IGF2 gene is biallelically expressed in some tissues
11

. This can result in a phenotypic 

difference between reciprocal heterozygotes, but the difference is not as pronounced as the 

difference between the homozygotes. This scenario is called partial imprinting and has been 

observed both in the phenotypic manifestation at imprinted QTL
8, 16, 23

 and in gene expression 

differences
60

.  10 

 

Thus animal models can be important complements to human studies because developmental stage, 

genetics and environment can be controlled and monitored. Imprinted patterns and genes identified 

in animal studies can be translated to human studies and the unit of translation is the imprinted 

‘locus’ or the pathway containing the imprinted gene(s). It is unclear how often genes imprinted in 15 

one species are also imprinted in another. Studies comparing sets of predicted imprinted genes in 

humans and mice have suggested from 32%
61

 to 87%
62

 of imprinted genes are imprinted in both 

species. However, much work is required to validate such estimates, let alone to determine if 

conserved imprinted genes are also conserved in their phenotypic effects and/or underlying 

molecular mechanisms (not to mention tissue, developmental or environmental contexts)
63, 64

.  20 

 

Identifying molecular signatures of imprinted loci 

The ultimate support for an imprinted effect comes from molecular characterization of a locus. Such 

support is especially important when imprinted genetic effects are mapped to genomic regions that 

do not contain confirmed imprinted genes. Advances in whole-genome sequencing technologies can 25 

facilitate molecular characterization of candidate loci using DNA sequence features that, in some 

contexts, distinguish imprinted from non-imprinted genes. Features including the concentration and 
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orientation of SINE repetitive elements and local CG content in conjunction with epigenetic 

features such as histone modification sites have been used to train algorithms that bioinformatically 

predict imprinted loci from whole-genome sequence
65

. Some of these predictions have been 

integrated with data from genes with known parent-of-origin allelic expression biases and used not 

only to further classify a predicted imprinted gene as maternally or paternally expressed, but also to 5 

identify potential patterns (and hence molecular mechanisms) that may distinguish between parent-

of-origin of alleles
61, 66

. Using such computational predictions, Luedi et al.
61

 identified two novel 

imprinted genes in humans, KCNK9, which is maternally expressed in fetal brain and DLGAP2, 

which is paternally expressed in testes. It has been hypothesized that different mechanisms control 

maternal versus paternal expression biases
67, 68

, and identification of patterns associated with allele-10 

specific regulation can provide a framework for clarifying DNA sequence/ gene expression 

relationships underlying the phenotypic signatures of imprinting.  

 

Phenotypic variation at imprinted loci can be directly linked to genomic variation through analysis 

of parent-of-origin dependent gene expression. RNA-sequencing is the gold standard for 15 

quantifying whole-genome allele-specific biases in transcription (in which there is an unequal 

number of transcripts from the maternally and paternally derived alleles of a gene) and several 

studies have made use of this technology in an effort to identify novel imprinted genes in reciprocal 

crossings of inbred model organisms
69-71

. Inconsistent criteria for ascertaining parent-of-origin 

dependent biases has led to substantial discrepancies among results and failure to validate most 20 

predictions
72

. Further confounding factors include evidence that parent-of-origin dependent effects 

are context dependent, as discussed above.  

 

A potential mechanism underlying allele-specific expression is DNA methylation. The addition of a 

methyl group to DNA nucleotides can occur in an allele-specific manner, and allele-specific 25 

methylation in imprint control regions (referred to as differentially methylated regions, DMR) is 

associated with parent-of-origin dependent gene expression. For example at the DMR at the 
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H19/IGF2 locus, the maternal allele is unmethylated allowing CTCF transcription factor binding 

and preventing IGF2 promoter activation. The methylated paternal allele prevents CTCF binding 

and the downstream enhancer is able to activate IGF2 transcription
73, 74

. Next-generation 

sequencing technologies that specifically target methylated DNA have been used to identify DMRs 

that may associate with imprinted genes
75-77

. A promising avenue of research is to integrate RNA 5 

sequencing data with whole-genome methylation data and identify regions where both allele-

specific expression and methylation correlate in a parent-of-origin dependent manner that associates 

with phenotypic variation. In addition to DMRs in imprint control regions, imprinted gene clusters 

often contain non-coding RNAs that have regulatory roles. Hence the phenotypic manifestation of a 

particular ‘locus’ can be determined by the joint action of multiple imprinted (coding) genes and 10 

non-coding elements. Thus characterizing genomic context, such as identifying clusters of non-

coding RNA elements that may affect local gene expression in potentially complex interacting 

combinations, can be a tool for identifying loci that that show complex imprinting patterns such as 

polar overdominance or bipolar dominance. 

 15 

Concluding remarks 

Recent empirical research indicates that parent-of-origin effects are an important component of the 

genetic architecture of complex traits, and that complex patterns of imprinted genetic effects are 

prevalent. In animal research, there is a need to develop and incorporate models that consider 

developmental stage, tissue-specificity and context dependency into models of discovery research. 20 

In human association studies, there is a need to develop and incorporate models that allow parental 

alleles in heterozygotes to be functionally non-equivalent. Most studies of complex traits in both 

model organisms and human samples are underpowered (or the data are just not available), and 

there is currently no way to predict these complicated epigenetic effects from DNA sequence alone. 

What is lacking is a framework of DNA sequence–imprinted function relationships. There is a clear 25 

need for further research integrating complex trait mapping results with next-generation sequencing 

data to understand how imprinted genes contribute to the patterns of phenotypic variation seen in 
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both natural and experimental populations. Studies that consider how and when imprinted genetic 

effects are conserved among species and/or are modified by environmental factors or genetic 

background will be particularly relevant for advancing the field of complex trait research. 
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BOX 1: Classification of imprinting patterns 

 

We expect that parent-of-origin dependent monoallelic expression of a single gene will produce a 

pattern of phenotypic variation in which the phenotypic effect of a locus is determined entirely by 

the single allele that is expressed (i.e., by the paternally inherited allele for a paternally expressed 5 

locus and the maternally inherited allele for a maternally expressed locus). Thus, monoallelic 

parent-of-origin dependent expression leads to what has been called ‘parental imprinting’
8, 9

, where 

the canonical patterns of maternal versus paternal expression depend on whether genotypes group 

by the maternally versus the paternally inherited allele.  

 10 

The patterns of phenotypic variation expected for paternal and maternal expression are illustrated in 

the top two figures, which show the expected phenotypic value for the four possible ordered 

genotypes at the A locus (with the first allele listed being inherited from the father and the second 

from the mother).  In both cases the A1 allele leads to a larger phenotypic value than the A2 allele 

and one allele is silenced (appears faded to grey). In each case genotypes group phenotypically by 15 

allelic parent of origin, as indicated by the shared color of their shading.  

 

Although most studies have constrained their analysis to parental forms of imprinting, those that 

have not have generally identified loci showing ‘dominance’ imprinting patterns
8-10, 78

, where the 

pattern of effect depends on the combination of alleles.  Dominance imprinting occurs in the polar 20 

overdominance phenotype associated with the callipyge mutation in sheep
49

 and has also been 

observed in humans
51

 and mice
32, 33, 78

. Polar overdominance shows the signature of an imprinted 

locus manifested as a difference between the phenotypes of the reciprocal heterozygotes, but lacks 

the expected difference between the two homozygotes that should occur under parent-of-origin 

dependent monoallelic expression.  With polar overdominance, the phenotype of the heterozygote is 25 

larger than that of the other genotypes, but there is ‘polarity’ because the dominance only appears in 

one of the two heterozygote configurations (see figure).  By analogy, it is also possible for a locus 
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to show a pattern of polar underdominance where one of the heterozygotes has a smaller phenotypic 

value than the other genotypes (see figure).  For both polar over- and underdominance the two 

homozygotes group phenotypically with one of the heterozygotes (emphasized by the color shading 

in the figure), but the phenomena differ in the pattern of the grouping.  

 5 

Finally, it is possible for a locus to show both under- and overdominance at the same time, with one 

heterozygote having a phenotypic value larger than the two homozygotes and the other 

heterozygote having a value that is smaller (see figure).  This pattern of ‘bipolar dominance’
8
 

reflects the opposing polarity of the heterozygotes.  

 10 
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BOX 2: Genetic effects and mapping models 

 

There are several different statistical frameworks used to identify imprinting effects, but the vast 

majority are built on the approach pioneered by Knott et al.
21

 (which was formalized by Mantey et 

al. and refined by others 
7, 8, 22

). This framework is an extension of the single-locus two-allele model 5 

underlying most mapping studies. Using unordered genotypes, the simplest mapping model is a 

regression model built on the classic quantitative genetics model with additive and dominance 

effects. The additive effect (a) corresponds to a contrast between the two homozygotes, while the 

dominance effect (d) measures the deviation of the heterozygote from the midpoint (unweighted 

average) of the two homozygotes
79

. This model can be expressed as a linear equation wherein the 10 

mean phenotypes of the three genotypes at a locus (indicated by the genotype ID with the overbar)
22

 

are decomposed into additive and dominance effects: 
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 15 

where r is the reference point (intercept) for the model (in this case, the midpoint between the two 

homozygotes,   2/2211 AAAAr  ). Under this model, the additive effect estimated corresponds to 

half the difference between the means of the two homozygotes ( 2/][ 2211 AAAAa  ) and the 

dominance effect corresponds to the deviation of the mean heterozygote phenotype from the 

midpoint between the two homozygotes ( 2/][ 221121 AAAAAAd  ).  To estimate imprinting 20 

effects this model uses ordered genotypes
21

, allowing the estimation of an additional parameter, the 

imprinting effect (i)
8, 22

.  
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This model has the same reference point (intercept) and yields identical definitions of the additive 

and dominance effects as the unordered genotype model (except that the mean heterozygote in the 

unordered model is replaced by the mean of the reciprocal heterozygotes,   2/1221 AAAA  ).  Under 5 

this model, the imprinting effect is defined as half the difference in the mean phenotypes of the 

reciprocal heterozygotes (   2/1221 AAAAi  ). If there is complete silencing of an allele we expect 

a locus showing paternal expression to have a = i, while maternal expression would correspond to a 

= −i. 

 10 
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BOX 3: Epistasis and genomic imprinting 

 

Analyses of interactions among imprinted genes suggest that they may be particularly ‘interactive’, 

being enriched in complex networks that include both imprinted and non-imprinted genes
80, 81

. 

Effects of epistatic interactions involving imprinting effects on complex traits occur when:  the 5 

effect of one locus depends on the parent-of-origin of alleles at another locus; and/or the imprinting 

effect of a locus changes as a function of the alleles present at another locus (or loci). This latter 

scenario can potentially include cases where one locus modifies the imprinting status of another 

locus. Here we briefly discuss the contribution of these types of epistatic interactions involving 

imprinting effects to variation in complex traits and to the evolution of imprinting patterns. We 10 

provide a formal framework for dissecting epistatic interactions involving imprinting effects 

elsewhere
81

.  See also Li et al.
82

 for methods to identify epistatic interactions involving imprinted 

genes in a Bayesian framework.   

 

From a statistical perspective, epistatic interactions involving imprinting effects appear logically as 15 

interaction terms in the multi-locus extension to the mapping model framework presented in Box 

2
81

.  For example, there may be a statistical interaction between the additive effect of one locus and 

the imprinting effect of another locus (‘ additive-by-imprinting’ epistasis), meaning that the additive 

effect of one locus depends on the type of heterozygote present at another locus, while the 

imprinting effect of that other locus depends on the type of homozygote present at the first locus. 20 

More generally, epistasis involving imprinting occurs whenever one must consider the parent-of-

origin of alleles to understand how effects at one locus change as a function of the genotype present 

at another locus (and vice versa).  In some scenarios, the change in the effect of a locus as a 

function of the genetic background provided by another locus can correspond to a change in the 

pattern of imprinting.  For example, a locus may show a pattern of maternal expression on one 25 

genetic background and a pattern of paternal expression on a different genetic background.  

Consequently, the status of imprinting at the locus could evolve as genetic background changes.  
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Few studies have considered epistatic interactions between imprinted genes in the context of 

quantitative genetic variation, but there have been studies that have shown that epistatic interactions 

in the broad sense can involve imprinted genes.  For example, Reilly et al.
83

 found that the 

development of neural tumors in a mouse model is influenced by epistatic interactions involving an 5 

imprinted locus and tumor suppressor genes.  Studies of the effects of various combinations of 

uniparental disomies containing imprinted regions in mice have shown that the combinations often 

have non-additive effects on developmental traits
84

. Studies have also shown that trans acting 

factors can change the imprinting status of a locus.  For example, imprinting of the gene MEDEA in 

Arabidopsis endosperm is controlled by antagonism between at least two other genes and hence 10 

changes at those other genes can disrupt the presence of imprinting at MEDEA.  
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Figure 1.  The line cross-design and the appearance of pseudo-imprinted loci.  Genetically variable 

individuals from two parental populations, X and Y, are intercrossed to produce an F2 population.  

Haplotypes are composed of a marker locus (M) and a linked QTL (Q). Haplotypes originating from 

population X appear in red and from population Y in blue.   The marker locus has two alleles in 

each population, with markers M1 and M2 from population X and M3 and M4 from population Y.  5 

The F1 intercross contains four possible unordered genotypes.  The F2 population resulting from a 

random intercross of these F1 genotypes would produce 16 possible ordered genotypes, but for 

simplicity only the cross between the M1M3 and M2M4 F1 genotypes are illustrated.  This cross 

produces four ordered F2 genotypes, with the paternally inherited allele appearing above the 

maternally inherited allele.  The two genotypes that contain a marker allele from the X and Y 10 

parental populations (M1M4and M3M2) contribute to the parent-of-origin effect contrast.  A) In the 

first scenario the parental populations are fixed for alternative QTL alleles (Q1 and Q3).  The parent-

of-origin effect contrast therefore represents a comparison between the phenotypes of the Q1Q3 and 

Q3Q1 genotypes that are genetically equivalent at the QTL but differ in the parent-of-origin of 

alleles. B) In the second scenario population X has segregating variation at the QTL locus, with 15 

alleles Q1and Q2, which are linked to markers M1 and M2 respectively.  As a result, the parent-of-

origin effect contrast represents a comparison between the phenotypes of the Q1Q3 and Q3Q2 

genotypes that are not genetically equivalent and hence the contrast confounds parent-of-origin of 

alleles and allelic differences at the QTL locus.  
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Figure 2. Molecular mechanisms that generate complex phenotypic patterns associated with 

genomic imprinting.  In each figure the locus is composed of two imprinted genes, one showing 

maternal expression and the other paternal expression.  The imprinted copies appear with a cross 

through them. Genes in grey are not expressed, either because they are imprinted or because they 5 

are inactive.  Genes in blue are paternally expressed while those in red are maternally expressed. A) 

A working model for polar overdominance following Georges et al.
50

 (for simplicity the long range 

control element is not included).  A.1) Individuals homozygous for the wild-type allele (W) do not 

express the effector or repressor and show the wild-type phenotype, A.2) Heterozygotes that inherit 

the active effector (CLPG allele) from their fathers and the inactive (wild-type) repressor from their 10 

mothers manifest the callipyge phenotype, A.3) Heterozygotes that inherit the active repressor 

(CLPG allele) from their mothers but the inactive effector from their fathers have a wild-type 

phenotype (the repressor is expressed but has no effect if there is no effector to block in trans). A.4) 

The CLPG homozygote expresses the effector from the paternally inherited copy and the repressor 

from the maternally inherited copy.  The repressor blocks the effector in trans and results in a wild-15 

type phenotype.   B) Hypothetical model for the origin of bipolar dominance imprinting
8
.  The A1 

allele has a positive effect on the phenotype when paternally inherited (because of a paternally 

expressed gene) but a negative effect when maternally inherited (because of a maternally expressed 

gene) while the A2 allele has the opposite pattern of effect.  The effect of the two genes are summed 

together to determine the influence of the A locus on the phenotype.  B.1) In the A1A1 homozygote 20 

the paternally inherited positive effect cancels out the maternally inherited negative effect to result 

in a net effect of zero B.2) in the A2A1 heterozygote both the paternally inherited (A2) and 

maternally inherited (A1) alleles have a negative effect, resulting in a net negative phenotypic effect, 

B.3) In the A1A2 heterozygotes both the paternally inherited (A1) and maternally inherited (A2) 

alleles have a positive effect, resulting in a net positive phenotypic effect, B.4) In the A2A2 25 
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homozygote the paternally inherited negative effect cancels out the maternally inherited positive 

effect to result in a net effect of zero 
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