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The functionalisation of decalin by means of an “aliphatic Friedel–Crafts” reaction was reported over fifty years ago by Baddeley et al. 

This protocol is of current relevance in the context of C–H activation and here we demonstrate its applicability to a range of other 10 

saturated hydrocarbons. Structural elucidation of the products is described and a mechanistic rationale for their formation is presented. 

The “aliphatic Friedel–Crafts” procedure allows for production of novel oxygenated building blocks from abundant hydrocarbons and as 

such can be considered to add significant synthetic value in a single step. 

Introduction 

C–H activation is currently of great interest to the synthetic 15 

community.1 In contrast to conventional functional group 

interconversions, C–H activation represents an alternative 

paradigm whereby functionality may be introduced where none 

was present before. Such methodology enables the use of wholly 

new retrosynthetic approaches to complex molecule synthesis.2  20 

 Applications of C–H activation in synthesis may be broadly 

subdivided into those reactions carried out on substrates with 

extensive existing functionality and those carried out on 

substrates that have minimal functionality or are entirely 

unfunctionalised. In the former category, desirable characteristics 25 

are chemo- and regioselectivity as well as functional group 

compatibility, which can restrict the reaction conditions that may 

be employed.3 These transformations often employ expensive 

transition metal catalysts4 for this “late stage” C–H activation, 

which can be considered to be justified in terms of the high value 30 

products that can be produced.2b In contrast, in the latter category, 

the absence of functionality potentially allows a wider range of 

reaction conditions to be used without unwanted side reactions. 

However, since the C–H functionalisation of a saturated 

hydrocarbon will almost certainly be the first step of a synthetic 35 

sequence, it is harder to justify the use of expensive transition 

metal catalysts. Rather, if the reaction is to be carried out on a 

significant scale, the cost of the reagents for C–H activation and 

also the cost of the substrate itself are key considerations if the 

transformation is to be synthetically useful.  40 

 In this latter context, reports from Baddeley on the reaction of 

decalin with aluminium trichloride and acetyl chloride are 

noteworthy. When an excess of aluminium trichloride is 

employed, the reaction furnishes multiple products5a,c (Scheme 

1a). However, when an excess of acetyl chloride is employed at a 45 

lower temperature, tricyclic enol ether 6 is formed cleanly5b-f 

(Scheme 1b). 

 
Scheme 1. C–H Activation of decalin with aluminium trichloride and 

acetyl chloride 50 

Such “aliphatic Friedel–Crafts” acetylations have been reported 

for other unfunctionalised alkanes6 and alkenes;7 the products 

have been used in synthesis and the field has been reviewed.8 

However, the decalin case is uniquely attractive from the 

standpoint of C–H functionalisation, since not only are the 55 

substrate and reagents inexpensive bulk commodity chemicals, 

but also the product is formed in reasonable yield (30-46%)5c,6l 

and has a boiling point which is distinct from that of the starting 

material (which constitutes most of the mass balance) and from 

the boiling points of any byproducts. This permits large-scale 60 

purification without recourse to chromatography; we have 

prepared pure 6 by distillation on a 70 g scale.† Functionalised 

decalins are key building blocks for terpenoid9 and steroid10 

natural products and are also important in the fragrance 

industry;11 indeed, 6 has seen diverse synthetic applications.12 65 

Other examples of the functionalisation of decalin with 

aluminium trichloride include the use of benzenesulfonyl chloride 

to form several mono substituted chlorodecalins.13 We identified 
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several saturated hydrocarbon substrates for which such aliphatic 

Friedel–Crafts reactions have not been reported and from which 

synthetically valuable products might be accessed. Products that 

were obtained from these substrates are described in this paper. 

Results and Discussion 5 

Mechanistic rationalisation of Baddeley’s transformation is 

important to aid in the structural elucidation of any products that 

form from its application to other substrates. Baddeley’s original 

proposal5b invoked an oxonium intermediate incorporated into a 

4-membered ring (8, Scheme 2). Such an intermediate would be 10 

exceedingly strained; subsequently, Santelli et al. were the first to 

propose6m a variant on this mechanism which did not include 

such a strained oxonium. Our mechanistic proposal (Scheme 3) 

has several features in common with the previous proposals. In 

the absence of unsaturation for the acylating agent to react with, it 15 

instead acts as a hydride sink (such reactivity is precedented8), 

leading to the formation of a tertiary cation at the decalin ring 

junction. Loss of a proton affords Δ9,10-octalin 7. A second 

equivalent of acylating agent reacts with the newly introduced 

unsaturation to give cation 13. Rather than formation of a 4-20 

membered ring, we propose a [1,2]-hydride shift and attack of the 

oxygen at the position α- to the ring junction, as in Santelli’s 

proposal. Such a process may be concerted or stepwise. Finally 

on work up, loss of a proton affords enol ether 6. Overall, our 

proposal differs from Santelli’s in that 13 and 9 possess an sp2 25 

carbon (Santelli proposes this carbon to be sp3 with a bond to a 

chlorine, cf. 10 and 11). In situ reaction monitoring by NMR 

spectroscopy shows formation of 9 prior to work up.  Key proton 

Ha is observed at 6.08 ppm in the 1H-NMR spectrum, a 

comparable shift to similar compounds in the literature.14 30 

 
Scheme 2. Baddeley’s and Santelli’s mechanistic proposals. 

 

Scheme 3. Our mechanistic proposal.  35 

The proposal that the initial C–H activation step proceeds by 

hydride abstraction guided our choice of other hydrocarbon 

substrates for Baddeley’s protocol. Specifically, we selected only 

those able to form tertiary carbocations by hydride abstraction, 

i.e. those possessing (non-bridgehead) methines. In the first 40 

instance, we sought commercially available and inexpensive 

substrates. Bicyclohexyl meets these criteria,15 being produced by 

hydrogenation of the kerosene fraction of coal distillate.16 Thus, 

in the first instance, bicyclohexyl was subjected to the reaction 

conditions determined by Baddeley to be optimal for production 45 

of 6 from decalin. Gratifyingly, 13C-NMR analysis of the crude 

reaction mixture after workup indicated the presence of a single 

product in addition to unreacted bicyclohexyl (Scheme 4).  

 
Scheme 4. C–H Activation of bicyclohexyl. 50 

Structural elucidation of 15 was by means of DEPT and 2D NMR 

experiments in conjunction with crystallographic studies on 

derivatives (vide infra). The observations that both sp2 carbons 

and one sp3 carbon in 15 were quaternary and that a methyl group 

was present (3H singlet in the 1H spectrum) led to the proposal of 55 

the structure shown, on the basis of the mechanism given in 

Scheme 5. Abstraction of the tertiary hydride gives cation 16, 

from which two isomeric alkenes are accessible. In contrast to the 

decalin case (where the tetrasubstituted alkene is formed), we 

propose that loss of a proton from 16 leads to trisubstituted 60 

alkene 18 as opposed to 17. Regioselective reaction with a second 

acylium ion gives the second tertiary cation intermediate 19. 

Attack of the oxygen and [1,2]-hydride shift, analogous with the 

decalin case, forms the spiro-centre and gives oxonium 20. Of the 

two isomeric enol ethers available from deprotonation of 20, it is 65 

15 that is formed in preference to 21. That neither cyclohexyl ring 

undergoes ring contraction is noteworthy, as AlCl3-mediated 

formation of 2,2’-dimethylbicyclopentyl from bicyclohexyl (in 

the absence of acetyl chloride) has been reported.17 
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Scheme 5. C–H Activation of bicyclohexyl. 

DFT modelling studies (M06/6-31G(d) basis set)18 support the 

contention that in the bicyclohexyl case, formation of 5 

trisubstituted alkene 18 is favoured over tetrasubstituted alkene 

17. The transition state for formation of 18 via deprotonation of 

cation 16 by a chloride anion was calculated to be lower in 

energy by 10.8 kJ mol–1 than the corresponding transition state 

for formation of 17 (Figure 1a). Alkene 18 is also the 10 

thermodynamic product, lower in energy than 17 by 2.4 kJ mol–1. 

In contrast, the situation is reversed for decalin, wherein the 

transition state for formation of Δ9,10-octalin 7 from cation 12 was 

found to be lower in energy by 31.6 kJ mol–1 than the 

corresponding transition state for formation of its trisubstituted 15 

alkene isomer, Δ1,9-octalin (Figure 1b); Δ9,10-octalin 7 was also 

calculated to be lower in energy than Δ1,9-octalin by 6.7 kJ mol–1. 

This quantitation of ΔΔG‡ for the divergent elimination pathways 

from cations 12 and 16 supports the mechanistic proposals in 

schemes 3 and 5; only few experimental data on directly 20 

comparable eliminations have been reported previously.19,20 

 Complete separation of 15 from unreacted bicyclohexyl 14 

proved problematic – complete removal of bicyclohexyl (b.pt. 

227 °C / 1 atm) under vacuum distillation required elevated 

temperatures which induced rearrangement of 15. The 25 

rearrangement product was identified as 22, with the relative 

configuration being assigned on the basis of Karplus analysis21 of 

the 3JHH coupling constants for the ketone α-methine (Scheme 6). 

The identity of 22 was further confirmed by formation of a 2,4-

dinitrophenylhydrazone derivative 23 and its x-ray 30 

crystallographic analysis (Figure 2).  

 

 
Figure 1. a) Energy profile for formation of bicyclohexylidene 17 (left) 35 

and 1-cyclohexylcyclohexene 18 (right) from cation 16. b) Energy profile 

for formation of Δ1,9-octalin (left) and Δ9,10-octalin 7 (right) from cation 

12.  

 
Scheme 6. Rearrangement of 15 to 22. 40 
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Figure 2. Solid state structure of 23. Ellipsoids are represented at 50% 

probability. H atoms are shown as spheres of arbitrary radius. Only one of 

two molecules in the unit cell is shown for clarity. 

Separation of enol ether 15 from unreacted bicyclohexyl 14 was 5 

also attempted by chromatography. In the event, 15 proved 

hygroscopic, undergoing quantitative incorporation of 

adventitious moisture upon contact with silica to give hydrate 24 

(Scheme 7). This hydrate was amenable to x-ray crystallographic 

analysis, which confirmed the relative stereochemistry as shown 10 

in Figure 3. 

 
Scheme 7. Hydration of 15 upon chromatography. 

 
Figure 3. Solid state structure of 24. Ellipsoids are represented at 50% 15 

probability. H atoms are shown as spheres of arbitrary radius. Only one of 

two molecules in the unit cell is shown for clarity. 

Encouraged by the ease and selectivity with which 15 may be 

transformed into functionalised products, we sought to examine 

the analogous reaction of other bicycloalkyls. Bicyclopentyl 2522 20 

was subjected to Baddeley’s conditions with the expectation of 

obtaining a product analogous to 15. In fact, 25 instead furnished 

the same product 6 originally observed by Baddeley (Scheme 8). 

In addition, both cis- and trans-decalin were recovered. We 

rationalise the formation of 6 by a skeletal rearrangement of 25 

bicyclopentyl cation 26 occurring to give decalin cation 12 prior 

to any loss of a proton (formation of 6 then proceeds as per the 

decalin case). The observed formation of decalin itself in the 

reaction of 25 is also suggestive of this sequence of events. It 

should also be noted that AlCl3-mediated isomerisation of 30 

bicyclopentyl to decalin (in the absence of acetyl chloride) is in 

fact a known process.23 

 
Scheme 8. C–H Activation of 25 and its transformation into 6 by skeletal 

rearrangement. 35 

We next examined substrates that shared the 

bicyclo[m.n.0]alkane skeleton of decalin. Hydrindane, the ring 

contracted bicyclo[4.3.0]nonane analogue of decalin, has been 

reported6n to undergo the Baddeley reaction, albeit less cleanly, 

furnishing ring contracted analogues of 6. Thus, we instead 40 

examined the reactivity of bicyclo[5.4.0]undecane 28.24 Upon 

exposure to Baddeley’s conditions, 28 gave a mixture of an 

acylated species 29 and various enol ether products, of which 

only 29 proved to be isolable in pure form. Unambiguous 

assignment of 29 required extensive characterisation by NMR 45 

spectroscopic means at high frequency, to minimise overlap of 

resonances. The structure was assigned as follows. The presence 

of a ketone as the sole sp2 carbon in the 13C spectrum and a clear 

3H singlet (δ 2.02 ppm) in the 1H spectrum implied a structure 

analogous with 2 (i.e. a monoacylated species having only 3 50 

double bond equivalents in total, confirmed by mass 

spectrometry). Secondly, the existence of a quaternary sp3 carbon 

environment (present in the 13C spectrum but absent in the HSQC 

spectrum) implies the acyl group is located on a ring junction. 

Thirdly, a characteristic 3H doublet (δ 0.82 ppm, J 6.3 Hz) in the 55 

1H spectrum was indicative of the presence of a methyl group 

adjacent to a methine, which we ascribe to a (precedented) ring 

contraction of the seven-membered ring.6l Establishing which 

ring position bears the methyl group was more complex. An 

H2BC spectrum was acquired,25 in which both tertiary carbon 60 

environments (the carbons bearing Ha and Hb, see Scheme 9) 

showed clear coupling to Hc. As the H2BC experiment only 

shows 2-bond H-C correlations, this served to establish 

unambiguously which ring carbon bears the methyl group. The 

gross structure of 29 having been assigned, the final elucidation 65 

of relative stereochemistry was by means of a NOESY spectrum. 

Specifically, a clear through-space coupling between Ha and Hb 

was observed, indicating that they are 1,3-diaxially disposed and 

finally confirming the structure of 29. 
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Scheme 9. Baddeley reaction of bicyclo[5.4.0]undecane 28. 

We also examined the reactivity of bicyclo[5.3.0]decane 30,26 

isomeric with decalin. As per our other C10 substrate, 25, the sole 

product was once again Baddeley’s original enol ether 6 (Scheme 5 

10).  

 
Scheme 10. C–H Activation of 30 and its transformation into 6 by 

skeletal rearrangement. 

For each of the substrates described above, all the methines are 10 

equivalent. In contrast, isopropylcyclohexane 31 (available from 

reduction of cumene or α-methylstyrene) has two inequivalent 

sites of possible hydride abstraction. Whilst this increases the 

number of possible products that may be formed from 31 under 

Baddeley conditions, we nevertheless undertook to explore its C–15 

H activation chemistry as it is commercially available and 

inexpensive.27 Application of the standard conditions gave a 

reaction mixture in which a single product predominated. NMR  

spectroscopic data indicated both sp2 carbons to be quaternary 

and as such 32 was assigned the structure shown, analogous with 20 

the product derived from reaction of bicyclohexyl28 (Scheme 11). 

This functionalisation of 31 in the cyclohexane 2-position is 

regiocomplimentary to the functionalisation of 31 with GaCl3 

which reportedly exhibits a preference for the 3- and 4-

positions.29 Unreacted 31 could be removed by cold trap vacuum 25 

distillation at room temperature, but attempted distillation of 32 

itself resulted in decomposition to an intractable mixture. 

 
Scheme 11. C–H Activation of isopropylhexane 31. 

Conclusions 30 

We have demonstrated the applicability of Baddeley’s “aliphatic 

Friedel–Crafts” procedure to a range of saturated hydrocarbon 

substrates. A variety of novel oxygenated structures have been 

produced, identified and, in the case of bicyclohexyl, have been 

further elaborated. A mechanistic explanation has been proposed 35 

that rationalises Baddeley’s original results and also the 

formation of the products described here. We anticipate that the 

products described here will serve as useful building blocks in a 

variety of synthetic contexts. 

Experimental 40 

General 

Reactions which required the use of anhydrous, inert atmosphere 

techniques were carried out under an atmosphere of nitrogen. 

Solvents were dried and degassed by passing through anhydrous 

alumina columns using an Innovative Technology Inc. PS-400-7 45 

solvent purification system. Petrol refers to petroleum ether, bp 

40-60 °C. TLCs were performed using aluminium-backed plates 

precoated with Alugram®SIL G/UV and visualized by UV light 

(254 nm) and/or KMnO4 followed by gentle warming. Flash 

column chromatography was carried out using Davisil LC 60Å 50 

silica gel (35-70 micron) purchased from Fisher Scientific. IR 

spectra were recorded on a Perkin-Elmer 1600 FT IR 

spectrometer with absorbances quoted as ν in cm-1. NMR spectra 

were run in CDCl3 (unless otherwise specified) on Bruker 

Avance 250, 300, 400 or 500 MHz instruments at 298 K. Mass 55 

spectra were recorded with a micrOTOF electrospray time-of-

flight (ESI-TOF) mass spectrometer (Bruker Daltonik). 

Aluminium trichloride (98%, #206911), Acetyl chloride (98%, 

#11,418-9) and 1,2-dichloroethane (99.8%, anhydrous, #284505) 

were purchased from Sigma-Aldrich. Caution was taken when 60 

using large quantities of possibly carcinogenic chlorinated 

solvents; reaction workup, product isolation and purification was 

performed in a fume hood with appropriate personal protective 

equipment employed. 

 65 

3’-Methyl-5’,6’,7’,7a’-tetrahydro-4’H-spiro(cyclohexane-1,1’-
isobenzofuran) 15 

AcCl (28.3 g, 0.361 mol, 2.4 eq.) was added over 15 min to a 

suspension of AlCl3 (30.0 g, 0.223 mol, 1.5 eq.) in CH2ClCH2Cl 

(70 mL) and stirred for 20 min. The resulting yellow solution was 70 
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then cooled to 0 °C. Over 20 min, bicyclohexyl (25.0 g, 0.150 

mol, 1.0 eq.) was added, and the reaction mixture stirred for a 

further 3 h. The resulting orange solution was gradually added to 

a vigorously stirred slurry of ice-water (500 mL); a cherry-red 

colour was observed. The reaction mixture was transferred to a 5 

separating funnel and extracted with CH2Cl2. Organic extracts 

were combined and washed with ice-water (2 × 250 mL), dried 

over MgSO4 and filtered. The filtrate was concentrated under 

reduced pressure on a rotary evaporator to give crude product. 

Bicyclohexyl (19.9 g, 80%) was recovered by fractional 10 

distillation (64-66 °C, 1.6-1.7 torr), and the orange residue 

identified as 3’-methyl-5’,6’,7’,7a’-tetrahydro-4’H-

spiro(cyclohexane-1,1’-isobenzofuran) 15 (2.19 g, 33% based on 

recovered starting material) and bicyclohexyl mixture as an oil. 

δH (250 MHz) 2.33-0.80 (19H, m [including 1.67 (3H, s, -CH3)]) 15 

ppm; δC (75MHz) 141.7 (=C(CH3)-O, 4o), 108.4 (C=C-C, 4o), 

84.4 (-C-O, 4o), 53.6, 38.3, 31.8, 27.8, 26.8, 26.7, 25.5, 24.2, 

22.6, 22.5, 11.0 (-CH3) ppm; vmax (film) 2924, 2852, 1447, 1353, 

1265, 1221, 1180, 1143, 1088, 1034, 953, 928, 890, 839, 815, 

737 cm-1; HRMS (ESI+) m/z calcd for (C14H22O+H)+ 207.1743; 20 

found 207.1710. 

trans-Methyl 2-(cyclohex-1-enyl)cyclohexyl ketone 22 

The above procedure for formation of 15 was carried out using 

AcCl (226 g), AlCl3 (240 g) and bicyclohexyl (200 g). 

Purification of the crude by vacuum distillation (64-66 °C, 1.6-1.7 25 

torr) led to recovery of bicyclohexyl (101 g, 50%); an increase in 

temperature (104-108 °C, 1.5 torr) led to the isolation of trans-

methyl 2-(cyclohex-1-enyl)cyclohexyl ketone 22 (9.38 g, 7.6% 

based on recovered starting material). δH (300 MHz) 5.34-5.31 

(1H, m, =CHR), 2.46 (1H, app td, J 11.1, 2.7 Hz, C(O)-CH<), 30 

2.18-0.72 (20H, m [including 1.99 (3H, s, -CH3)]) ppm; δC (75 

MHz) 212.4 (C=O), 139.9, 121.8, 55.1, 48.1, 31.5, 29.2, 28.5, 

26.0, 25.8, 25.4, 25.0, 22.9, 22.4 ppm; vmax 2923, 2854, 1705, 

1447, 1355, 1244, 1220, 1161, 920, 882 cm-1; HRMS (ESI+) m/z 

calcd for (C14H22O+H)+ 207.1743; found 207.1765. 35 

trans-Methyl 2-(cyclohex-1-enyl)cyclohexyl 2-(2,4-
dinitrophenyl)hydrazone 23 

Ketone 22 (1.70 g, 8.24 mmol, 1.0 eq.) was dissolved in ethanol 

(20 mL) and the solution stirred. (2,4-dinitrophenyl)hydrazine 

(2.50 g, 12.4 mmol, 1.5 eq.) was added, resulting in a red/orange 40 

mixture. H2SO4 (conc, 0.40 g, 4.12 mmol, 0.5 eq.) was added 

over 10 min, then the solution was heated to reflux for 2.5 h. 

Additional (2,4-dinitrophenyl)hydrazine (0.80 g, 4.12 mmol, 0.5 

eq.) was added and reflux continued until reaction complete; 

orange precipitate observed in red solution. The precipitate was 45 

filtered and air-dried overnight. Pure product was obtained by 

dissolving the precipitate in 95:5 petrol:EtOAc and removing 2,4-

DNP (red crystals) by vacuum filtration. The filtrate was then 

concentrated under reduced pressure to give the product 23 as 

yellow crystals (2.56 g, 81%); a portion was re-crystallised from 50 

hot ethanol to form crystals for x-ray analysis. m.p. 121-122 °C; 

δH (250 MHz) 10.96 (1H, s, -NH), 9.12 (1H, d, J 2.5 Hz, aryl 

CH), 8.29 (1H, dd, J 9.5, 2.5 Hz, aryl CH), 7.93 (1H, d, J 9.5 Hz, 

aryl CH), 5.36 (1H, s, =CHR), 2.54, (1H, td, J 11.0, 2.8 Hz), 

2.21-1.22 (20H, m [including 1.93 (3H, s, -CH3)]) ppm; δC (75 55 

MHz) 161.6, 145.2, 140.2, 137.5, 129.9, 128.9, 123.6, 122.3, 

116.3, 50.2, 49.7, 31.6, 30.5, 26.2, 25.6, 25.5, 24.6, 22.9, 22.6, 

13.1 ppm; vmax 3636, 2981, 1619, 1518, 1139, 1074, 955 cm-1; 

TOF-MS (ESI+) m/z calcd for (C20H26N4O4+Na)+ 409.1852; 

found 409.1868. 60 

(3’S*,3a’R*,7a’R*)-3’-Methylhexahydro-3’H-
spiro(cyclohexane-1,1’-isobenzofuran)-3’-ol 24 

A mixture of 3’-Methyl-5’,6’,7’,7a’-tetrahydro-4’H-

spiro(cyclohexane-1,1’-isobenzofuran) 15 and bicyclohexyl 14 

was subjected to column chromatography (2.5:97.5 EtOAc:pet). 65 

(3’S*,3a’R*,7a’R*)-3’-Methylhexahydro-3’H-spiro(cyclohexane-

1,1’-isobenzofuran)-3’-ol 24 was identified as a white crystalline 

solid. m.p. 46-47 °C; Rf 0.35 (2.5:97.5 EtOAc:petrol); δH (500 

MHz, C6D6) 2.10 (1H, s, -OH), 1.98-1.88 (1H, m), 1.88-1.80 (1H, 

m), 1.80-1.66 (5H, m), 1.63-1.57 (1H, m), 1.57-1.38 (8H, m) 1.35 70 

(3H, s, CH3), 1.31-1.19 (2H, m), 1.14-1.03 (1H, m) ppm; δC (500 

MHz, C6D6) 105.9, 83.7, 45.8, 44.2, 38.8, 34.3, 29.1, 26.3, 25.2, 

24.1, 24.0, 23.9, 23.9, 23.0 ppm; vmax 3389, 2928, 2850, 1444, 

1404, 1374, 1197, 1171, 1160, 1151, 1092, 1074, 946, 890, 875 

cm–1; HRMS (ESI+) m/z calcd for (C14H24O2+Na)+ 247.1669; 75 

found 247.1691. 

1-((2R*,4aS*,8aR*)-2-Methyldecahydronaphthalen-4a-

yl)ethanone 29 

AcCl (11.6 g, 0.236 mol, 2.4 eq.) was added over 5 min to a 

suspension of AlCl3 (19.7 g, 0.148 mol, 1.5 eq.) in CH2ClCH2Cl 80 

(60 mL), with stirring. The resulting pale yellow solution was 

cooled to 0 °C and bicyclo[5.4.0]undecane, 28, (15.0 g, 0.099 

mol, 1.0 eq.) was added over 20 min. The reaction mixture was 

left to stir at 0 °C for 5 h. The deeper yellow solution was slowly 

poured into a stirred ice-water slurry, turning orange and back to 85 

yellow. The organic layer was extracted with CH2Cl2 (3 × 100 

mL), washed with brine and dried over MgSO4, then filtered. The 

filtrate was concentrated under reduced pressure. Crude product 

purified by vacuum distillation (2.1-2.3 Torr, 76-90 °C) gave a 

mixture of enol ethers and 1-((2R*,4aS*,8aR*)-2-90 

methyldecahydronaphthalen-4a-yl)ethanone 29 (9.55 g) as the 

major product. This was purified further by column 

chromatography (100% pentane to 1:99 EtOAc:pentane) to give 

29 as a single isomer (Rf 0.22 in 1:99 EtOAc:pentane) as a 

colourless oil (4.46 g, 23%). δH (400 MHz) 2.02 (3H, s, COCH3), 95 

2.01-1.96 (2H, m), 1.91-1.80 (1H, m), 1.75-1.68 (1H, m), 1.59-

1.49 (3H, m [including 1.54, 1H, app q, J 11.9 Hz, Hc]), 1.48-

1.36 (1H, m, Hb), 1.32-1.04 (7H, m [including 1.25-1.22, 1H, m, 

Ha]), 0.84 (3H, d, J 6.3 Hz, CHCH3), 0.81-0.70 (1H, m) ppm; δC 

(100 MHz) 213.3 (C=O), 53.0 (4° C-C=O), 46.0 (3° HC-C-C=O), 100 

37.9, 37.9, 37.8, 33.6 (CH-CH3), 32.0, 29.0, 26.9, 26.0 (COCH3), 

23.5, 22.4 (CH-CH3) ppm; vmax  2922, 2856, 1700, 1453, 1352, 

1299, 1209, 1184, 1164, 1135, 1113, 940, 914 cm-1; HRMS 

(ESI+) m/z calcd for (C13H22O+Na)+ 217.1563; found 217.1564. 

1,1,3-Trimethyl-1,4,5,6,7,7a-hexahydroisobenzofuran 32 105 

AcCl (300 g, 3.82 mol, 2.4 eq.) was added over 20 min to a 

suspension of AlCl3 (319 g, 2.39 mol, 1.5 eq.) in CH2ClCH2Cl 

(500 mL) and stirred for 20 min. The resulting yellow solution 

was cooled to 0 °C. Over 90 min isopropylcyclohexane 31 (200 

g, 1.59 mol, 1.0 eq.) was added, and the reaction mixture stirred 110 

for a further 3.5 h. The resulting orange solution was gradually 

added to a vigorously stirred slurry of ice-water (500 mL); a 

cherry-red colour was observed, then orange. The reaction 
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mixture was divided into 5 portions; each one in turn was 

transferred to a separating funnel and extracted with 1,2-

dichloroethane (2 × 100 mL). Organic extracts were combined 

and washed with ice-water (2 × 100 mL), dried over MgSO4 and 

filtered. The filtrate was concentrated under reduced pressure to 5 

give the crude product. Distillation was performed at room 

temperature under reduced pressure – unreacted 

isopropylcyclohexane was collected in a cold trap, as a mixture 

with a byproduct identified as 1-chloroethylacetate.  The residue 

was shown by NMR to contain 1,1,3-trimethyl-1,4,5,6,7,7a-10 

hexahydroisobenzofuran 32 as the major product. δH (250 MHz) 

2.33-0.69 (18H, m) ppm; δC (75 MHz) 141.6 (=C(Me)-O, 4o), 

108.2 (-C-O, 4o), 83.3 (C=C-C, 4o), 53.6, 29.6, 28.5, 26.6, 25.7, 

24.2, 22.9, 11.2 ppm; TOF-MS (ESI+) m/z calcd for 

(C11H18O+H)+ 167.1436; found 167.1440. 15 
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