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Abstract 

The cancer stem cell hypothesis postulates that a single stem-like cancer cell is able to 

produce all cancer cell types found in a tumour. These cells are also thought to be the 

causative agents of relapse following therapy. In order to confirm the importance of 

cancer stem cells in tumour formation and patient prognosis, their role in prostate 

cancer must be comprehensively studied. This review describes current methods and 

markers for isolating and characterizing prostate cancer stem cells – including assays 

for self-renewal, multipotency and resistance to therapy. In particular the advantages 

and limitations of these approaches are analysed.  The review will also examine novel 

methods for studying the lineage of cancer stem cells in vivo using transgenic mouse 

models. These lineage tracing approaches have significant advantages and, if a number 

of challenges can be addressed, offer great potential for understanding the significance 

of cancer stem cells in human prostate cancer. 
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Introduction 

The cancer stem cell (CSC) hypothesis postulates that tumour masses may arise from a 

single cancer cell with stem-like characteristics. These CSCs are thought capable of self-

renewal and differentiation to regenerate the tumour mass and all tumour cell types 

found within. Such cancer cells were first identified in leukemia in the 1990s (1,2) 

followed by discoveries in breast cancer (3), and subsequently in other solid tumours 

(4,5) including prostate cancer (6). CSCs appear to be rare within tumours as only a 

small proportion of all prostate cancer cells are able to reliably form large clones in vitro 

(6) and xenograft prostate tumours in vivo (7,8). Another feature attributable to cancer 

stem cells is their resistance to conventional treatment regimens, particularly 

chemotherapy (9) and the continued survival and self-renewal of CSCs is potentially an 

enticing explanation for relapse, metastasis and therapy failure in prostate cancer. A 

concerted effort is underway to isolate, characterise and target this critical cell 

population in order to produce more effective therapies. 

 

In addition to the excitement surrounding CSCs there is also a great deal of controversy 

concerning their study. The putative CSC subpopulations isolated from prostate cancer 

cell lines and patient tumours vary considerably in their expression patterns and 

phenotypes. This heterogeneity complicates the identification of distinct cancer stem 

cell markers and impedes efforts to target the cells therapeutically. The hierarchy of cell 

fate in the normal prostate is also incompletely understood. For instance, the origin and 

ontogeny of normal adult prostate stem cells remains controversial (10), with some 

suggesting that there is a common progenitor of basal and luminal cells  (11,12); that 

basal cells differentiate to produce luminal epithelium (12); or that basal and luminal 
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cells have separate progenitors to maintain their lineages (13). The origins of prostate 

cancer are also poorly understood, and there is evidence that prostate cancer may arise 

from both basal cells (14) and luminal cells (15) in murine models and in humans. 

Likewise, it is unclear whether cancer stem cells are transformed stem cells; or 

differentiated cancer cells that reactivate stem cell-associated self-renewal programs 

(10). Therefore, methods to probe both stem cell phenotypes and cancer cell fate are 

crucial to identify and characterise prostate cancer stem cells. 

 

This review will focus on the markers and methods used to characterise cancer stem 

cells in the prostate (summarized in Figure 1). Methods to measure self-renewal, 

multipotency and resistance to therapy will be covered and the advantages and 

limitations of these methods examined. We will also consider recent novel approaches 

using in vivo lineage tracing that are beginning to be applied to the study of prostate 

cancer stem cells. These offer significant advantages over traditional methods, but there 

are still challenges that need to be overcome in the search for the ideal model to study 

prostate CSCs.   

Biomarkers for Prostate Cancer Stem Cells 

In this context, biomarkers are RNAs or proteins whose expression levels - either alone 

or in combination with other proteins – indicate the presence of cancer stem cells. 

Although there are many potential CSC markers, this review will cover some of the 

frequently used markers. Cell surface biomarkers are especially versatile because they 

can often be used to purify and analyse cancer stem cell populations by fluorescence-

activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). Expression of 

markers can also be analysed by immunohistochemistry and reverse-transcriptase 
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polymerase chain reaction (RT-PCR), often in combination with the above cell sorting 

methods. 

Cell Surface Markers 

 

Cell surface markers may be used to isolate cancer stem cells from a cell line or 

dissociated primary tumour. CD44 is a hyaluronan-binding cell-surface glycoprotein 

that is often used to purify cancer stem cells by FACS. CD44 has recently been the basis 

for the isolation of putative cancer stem cells in many tissues, including the prostate. 

When characterizing prostate cancer stem cells, CD44 is often complemented by a 

variety of other markers (Table 1).  

 

CD44 and other cancer stem cell markers also help to verify that isolated populations 

are likely to be cancer stem cells. CD44 was found to be highly expressed in 

tumourspheres derived from four different prostate cancer cell lines (16). CD44+/CD24- 

purified DU145 (17) and LNCaP (8) prostate cancer cell lines form prostatospheres (see 

self-renewal) with the potential to differentiate. Stem-like PSA-/low cells sorted for the 

antigenic profile ALDH+/CD44+/ α2β1+ had higher tumorigenicity than ALDH-/CD44-/ 

α2β1- cells and PSA- cells, with ten cells being sufficient to induce a xenograft tumour in 

NOD/SCID mice (18). Similarly, tumorigenic prostate cancer stem cells, comprising 

0.1% of the total cells, have been isolated from primary human prostate tumours using 

the antigenic profile CD44+/α2β1high/CD133+ (6). Immunofluorescent staining may be 

employed to investigate the expression of markers such as CD44, CD24 and α2β1 

integrin for confirmation of stem-like phenotypes in tumourspheres, such as those 

generated from the DU145 cell line (19). Tumoursphere cells in this case were 
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CD44+/CD24+/ α2β1+, in contrast to the CD44+/CD24- profile mentioned previously. This 

suggests that there may be more than one group of stem-like cells to be found in cancer 

cell populations, and a single antigen - or panel of antigens - may be insufficient for 

isolating all cancer stem-like cells of interest. This has recently become apparent in an 

in vivo model of prostate cancer, where only CD133- basal-enriched human prostate 

epithelial cells were vulnerable to transformation, despite its use as a marker for CSCs 

(14). Similarly in head and neck squamous cell carcinoma, CD44- cells had CSC-like 

properties despite its use as a marker for CSCs (20). However, it is clear that CD44 and 

other cancer stem cell markers may be more useful when combined with other markers 

of interest. 

Markers of Resistance 

The ABC transporter ABCG2 can be used to identify populations of putative stem cells in 

many tissues, and is thought to be the molecular basis for the Hoechst side population, 

which is commonly used to select for chemoresistant cancer stem-like cells from many 

tumour types (21,22) (see Resistance to Therapy). ABCG2 may be involved in resistance 

to therapy, both from chemotherapy (22) and from androgen deprivation (23). 

However, as with many putative CSC markers the use of ABCG2 remains controversial. 

ABCG2- and ABCG2+ prostate cancer cell line subpopulations can interconvert and are 

similarly tumorigenic, which makes it difficult to isolate distinct populations in vitro 

(24). Patrawala and colleagues propose that the ABCG2+ population actually marks 

highly proliferative progenitor cells, while the ABCG2- cells represent cancer stem cells. 

Given this information, ABCG2 alone may not be the ideal marker for isolating cancer 

stem cells directly, but it is useful for identifying cells with probable therapeutic 

resistance phenotypes. Recently, ABCG2 has been used in a panel of markers 
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(CD133+/CD44+/ABCG2+/CD24-) to isolate cancer stem cells in prostate cancer explants 

and prostate cancer tissue (25), suggesting that its use as a marker may be improved 

when used in tandem with other markers. 

Markers of Pluripotency 

Many embryonic stem (ES) cell pluripotency factors – such as Nanog, Oct4 and Sox2 - 

are known to be expressed in both adult stem cells and CSCs, and an embryonic stem 

cell gene expression signature was found to identify poorly differentiated tumours from 

several types of human cancer (26). Such factors may be useful for the identification of 

stem-like cells in prostate cancer, as they underpin important cancer stem cell 

phenotypes such as self-renewal. DU145 prostate tumoursphere cells express the ES 

pluripotency factors Nanog, Oct4 and Sox2 (19), as do immortalized prostate cancer 

epithelial cell cultures (27). Expression of Nanog and Oct4 is also enriched in primary 

tumours of gleason grade 5, an indicator of poor prognosis (28). In xenograft prostate 

tumours, rare CD44+ stem-like cells have also been found to express Nanog (29). This 

evidence suggests that the presence of stem cell markers is a common feature of poor-

prognosis tumours. However, Sox2 expression was recently found to be regulated by 

signaling through the Androgen Receptor (30), but was not associated with a CSC 

population. In addition both Oct4 (31) and Nanog (32,33) have multiple pseudogenes 

and splice variants which could  have differing importance to prostate cancer stem cells 

and complicate analysis. Therefore, caution should be used when treating expression of 

these markers in isolation as evidence of cancer stem cells.   

Biomarkers of Prostate Cell Lineage 

Markers that identify specific cell types of the prostate are useful to characterise 

candidate prostate cancer stem cells. This is important  as the normal prostate cell type 
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that prostate cancer stem cells most resemble remains controversial. For example, 

populations of castration resistant stem-like cells persist in cell lines in vitro (23,27) and 

in prostate cancer xenografts in vivo (29). Germann et al. have suggested that the CSCs 

found in the xenograft model are of luminal or possibly neuroendocrine cell origin, 

detecting elevated expression of the luminal marker Cytokeratin 18 and 

neuroendocrine cell marker Chromogranin A following castration (29). Conversely, 

another group observed upregulation of basal-specific cytokeratin 5 in DuCaP cell lines 

under androgen deprivation, but could not detect expression of the neuroendocrine 

marker Nestin (23). However, when comparing expression profiles of castration 

resistant and non-resistant human prostate tumours by microarray, the group found 

that both basal (Cytokeratin-5) and neuroendocrine (Nestin) markers were upregulated 

along with the putative cancer stem cell markers CD44 and c-Kit. Immortalised prostate 

cancer epithelial cells generated by Gu et al. (27) also express Nestin along with 

embryonic stem cell markers, consistent with a neuroendocrine-like CSC phenotype. 

The variability of expression patterns in multiple models of prostate cancer suggests 

that cancer stem cells may be more than one distinct subpopulation. It could also be a 

reflection of the phenotypic plasticity of cancer stem cells that has been recently 

indicated in vitro and in vivo (24,34,35). Regardless, determining the cell type of origin – 

and the heterogeneity thereof - is important in order to further establish the identity of 

prostate cancer stem cells.   

 

Overall, biomarkers are useful for probing all aspects of cancer stem cells but given the 

apparent heterogeneous nature of cancer stem cells, no single marker is ideal and 

combinations of markers should be analysed in tandem for effective phenotypic 
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characterization. In addition these markers should be used in combination with 

functional assays which are considered below.  

Self-Renewal 

A defining property of both stem cells and cancer stem cells is their self-renewal 

capacity. There are two main types of in vitro assays used to probe self-renewal in 

isolated cell populations: clonogenicity assays and sphere formation assays. Both assays 

involve the culture of isolated cells in conditions that preferentially maintain stem cells, 

thus selecting for those cancer cells with more stem-like properties in vitro. They may 

also be considered proliferation assays, as self-renewal and proliferation are not 

distinct in this context. As most cancer cells are expected to have some self-renewal 

capacity, these assays are comparative in nature, and rely on the isolated CSCs being 

significantly different from a control population of cells for a tested phenotype. In vitro 

assays are not standalone tests for cancer stem cells and should be used in conjunction 

with other functional assays and marker analyses.  

 

The clonogenicity assay involves seeding a single cell or a small number of cells onto 

culture plates, and monitoring colony formation after a defined time period. This assay 

is based on the assumption that small titres of cells will only form large colonies if they 

have the ability to self-renew (36). The number of colonies present is then treated as a 

correlate of self-renewal capacity. This assay can be done serially with a single cultured 

cell, making it possible to further demonstrate a clone’s self-renewal capacity over 

multiple passages in vitro (6). There are some disadvantages with this assay; one being 

that an arbitrary threshold must be assigned to determine which colonies are too small 
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to count. More significantly the assay may not provide a complete representation of self-

renewal capacity in vivo.  

 

Another important tool is the sphere formation assay. The method was originally used 

to study adult neural stem cells in vitro (37) and has now been applied to isolate CSCs. 

Low adherence culture in defined serum-free medium produces clonal multicellular 

spheroid aggregates called tumourspheres (prostatospheres in prostate cancer), which 

are enriched for cells displaying cancer stem cell phenotypes. Anchorage-independent 

growth is a malignant phenotype in itself, suggesting that isolated CSCs are selected by 

their innately malignant phenotypes. This method is now widely-used for the 

enrichment of cancer stem cells from many types of cancer, including prostate cancer. 

The assay is versatile, and may be used in prostate cancer cell lines (16,38,39) and 

explanted primary prostate tumour tissue (25,39,40), or to further characterize cells 

isolated by other methods (41-43). Prostatospheres form at low efficiency, originating 

from a small fraction of the tumour cell population (40) and can be serially cultured 

(40,44-46), allowing for additional probing of self-renewal capacity and further 

enrichment of CSCs. Prostatosphere cells tend to possess CSC-associated phenotypes, 

such as self-renewal in long-term culture and expression of putative cancer stem cell 

markers such as CD44 and integrin α2β1 (19,47). However, sphere formation may not 

always select for cancer stem cells in vitro.  α2β1+ prostate cancer stem cells isolated 

from prostate xenograft tumours had high clonogenicity and sphere-forming capacity, 

but did not have the high tumorigenicity in xenografts expected of cancer stem cells 

(48). Similarly, when Matilainen et al. (49) attempted to isolate breast cancer stem cells 

using this method, the result was an unexpected reduction in CSC-associated gene 

expression and a loss of metastatic phenotypes. Prostatospheres may not consist purely 
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of CSCs, but contain some differentiated and dying cells (17) - and there are concerns 

that sphere generation is not being sufficiently validated – for example, to ensure that 

sphere formation is a result of cell proliferation and not cell aggregation (50). These 

conclusions highlight the need to verify all findings in vivo before any conclusions are 

made.  

 

A well-established test for in vivo self-renewal comes from xenograft transplantation 

assays. Low titres of CSCs – isolated from cell lines (7) or from dissociated primary (7) 

and xenograft (40) prostate tumours are injected into immunodeficient mice. Cells that 

reliably form primary tumours (7,38,40,51) or metastases (7) at this limiting dilution 

are proposed to have a cancer stem cell phenotype. To provide more evidence for the 

CSC identity of the cells, xenograft tumour formation assays can be done serially using 

purified dissociated cells from xenograft tumours (51). The ability to serially generate 

tumours at limiting dilution is an indicator of self-renewal in vivo. Large tumour size 

and high tumour-forming capacity are indicators of an aggressive subpopulation of cells 

in vivo. Although this does not fully represent tumour formation in situ, it is a versatile 

and commonly used model for tumorigenesis and self-renewal in vivo. In fact this 

approach was perhaps the gold standard model for studying CSCs, until the advent of in 

vivo lineage tracing approaches, which are considered below. 

Multipotency 

Another defining characteristic of cancer and normal stem cells is their ability to 

differentiate. Differentiation can be induced in vitro by culturing cells in Matrigel™ (BD 

Biosciences), and multipotent prostate cancer cells may produce glandular structures 

that recapitulate prostate cancer architecture in vivo (27).  Alternatively, CSCs may 
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differentiate in standard mammalian cell culture with added serum (6,8), which can be 

verified by the loss of expression of stem cell markers, and increased expression of 

differentiated cell markers. 

 

Quantitative matrigel assays have been developed specifically for the study of prostate 

stem cell differentiation in vivo (52). Matrigel induces differentiation, causing putative 

prostate stem cells to form glandular structures. The group injected a single cell 

suspension of digested murine prostate in matrigel into the flank of BALB/c mice in 

order to assay for prostate reconstitution in vivo. Different proportions of EGFP-labeled 

transgenic mouse prostate cells and unlabeled mouse prostate cells were used to trace 

their respective contribution to reforming individual prostate ducts. No mosaicism was 

observed in the ducts, allowing them to propose that single prostate stem/progenitor 

cells are able to reconstitute entire prostate ducts, thus demonstrating the self-renewal 

and differentiation potential of the cells. In a similar tissue recombination assay, 

prostate cancer cells can be recombined with inductive rat urogenital mesenchyme and 

grafted under the renal capsule of immunodeficient mice. Gland-like structures form 

that recapitulate the structures and cell types found in the original prostate (53) or 

prostate tumour (27), thus demonstrating a stem-like capacity for differentiation. The 

renal graft model can also be used to assay for malignant transformation capacity, by 

recombining selected prostate epithelial cells with cancer-associated fibroblasts (14). 

The main advantage of these xenograft models is that the supporting stroma can also  

be altered to suit experimental needs. These approaches are beginning to elucidate the 

cellular origin of prostate cancer and the role that stromal interactions play in it. 
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Resistance to Therapy 

The segregation of cancer stem cells from a cell population may be achieved by selecting 

for their resistance to standard cancer treatments. This is based on the observation that 

cancer stem cell populations tend to survive exposure to chemotherapeutic agents in 

vitro.  Similarly, cancer stem cells have been proposed to be resistant to radiation and 

androgen withdrawal. If a resistant cancer stem cell population exists within prostate 

cancer then it could contribute to relapse from multiple treatments and is thus an 

enticing therapeutic target worthy of further analysis. Where possible, all aspects of 

therapeutic resistance must be characterized. 

Prostate CSCs and Castration Resistance 

Androgen deprivation is commonly used to treat metastatic prostate cancer, under 

which the majority of cancer cells will die, producing a remission. However, castration 

resistance inevitably follows in the period of months to years, resulting in relapse and 

metastasis. In an androgen-sensitive human xenograft model, Germann et al. have 

recently identified subpopulations of cancer cells that repopulate the tumour following 

a cycle of androgen deprivation and replacement (29), implying a potential role for 

cancer stem cells in the development of castration-resistant prostate cancer. Miki et al. 

have shown that inducing differentiation in culture can cause stem-like AR- 

prostatosphere cells to become AR+ (39), suggesting that lack of AR expression may be 

an important cancer stem cell phenotype. Therefore, testing for ‘castration resistance’ 

and AR expression are important characterization steps for any prostate cancer stem 

cell population. 
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Prostate CSCs and Chemoresistance 

One method of isolating cells that are potentially chemoresistant and stem-like is the 

well-established Hoechst Side Population sorting protocol. In this method, live cells are 

stained with the dye Hoechst 33342. Cells stained with this dye fluoresce at blue and 

red wavelengths that can be detected by Flow Cytometry. In contrast, stem-like cells 

efflux this dye and fluoresce poorly in channels, allowing for their separation from the 

rest of the population by cell sorting (22), and further characterization. The ability to 

efflux cytotoxic Hoechst dye is linked to the expression of ABC transporters such as 

ABCG2 (21), which may also be involved in the efflux of chemotherapeutic drugs (22). 

Because of this, the method is able to identify chemoresistant stem-like cancer cells 

without prior knowledge of CSC expression profiles in the tumour type (54). One 

disadvantage of this approach is that the Hoechst dye is cytotoxic, so cells may not be 

amenable for further analysis. 

 

Enzymes of the Aldehyde Dehydrogenase (ALDH) group are associated with poor 

prognosis in a number of cancers (55). Some aldehyde dehydrogenases catalyse the 

biosynthesis of retinoic acid, which is an important molecule involved in differentiation 

(55). They also participate in aldehyde and alcohol metabolism. Thus, ALDH enzymes 

may be functionally involved in self-renewal and resistance to alkylating agents such as 

cyclophosphamide (56). In the presence of the dye ALDEFLUOR® (STEMCELL 

Technologies), stem-like cells with high total ALDH activity will fluoresce green and can 

be sorted by flow cytometry. This method successfully isolates cancer stem cells from 

several human cancer types (54,55,57,58) including prostate cancer cell lines (36,44). 

ALDH1A1 and other stem cell markers are upregulated in castration resistant prostate 

cancer compared to noncastrated metastatic disease (23), suggesting a role for 
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ALDH1A1 in the response to androgen deprivation. Indeed, high ALDH1A1 expression 

in prostate cancer specimens has been associated with cancer stem-like phenotypes, 

higher gleason scores and stages, as well as a poor prognosis (51). 

Prostate CSCs and Radiation Resistance 

Some isolated cancer stem cells show resistance to ionizing radiation treatment. Cancer 

stem cells have been found to be radiation resistant in breast cancer cell lines (59,60) 

and glioblastoma (61). Currently this phenotype has not been widely characterized in 

prostate cancer stem cells. In the two prostate cancer cell lines that have been 

investigated, the radiation responses are variable (38), with LNCaP CSCs showing 

increased survival compared to total cells, and DU145 CSCs showing no difference. 

Although this work suggests a role for prostate CSCs in long term recovery from 

radiation, the mechanisms for this resistance are unknown. Therefore, more work is 

required to determine whether radiation resistance is a distinguishing characteristic of 

prostate cancer stem cells. 

Novel Approaches In Vivo 

Lineage tracing has recently been used to explore the nature of cancer stem cells in vivo.  

Lineage tracing is a crucial method for demonstrating the ability of a cell to give rise to 

progeny of different cell types and, when combined with mouse models of cancer, 

provides a powerful tool to study CSCs  in a representative model of carcinogenesis.  

 

Transgenic mouse models have the benefit of being more representive of 

carcinogenesis, as transformed cells can be investigated in situ – as opposed to 

xenograft models, where the tumour must be studied in a foreign tissue 
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microenvironment that has been disrupted. A comprehensive lineage tracing study by 

Wang et al. (12) employed  lineage tracing to study stem cells in the murine prostate 

and prostate cancer. These mice expressed a tamoxifen-inducible Cre-recombinase 

under the control of a CK5 promoter. Upon administration of low doses of tamoxifen, 

recombination occurs – causing small numbers of basal cells to express YFP under the 

control of a CK5 promoter. This allows cell fate to be analysed at a single cell resolution. 

Using this method, they showed that some bipotential basal cells are capable of giving 

rise to luminal cells during repeated cycles of prostate regression and regeneration, as 

well as during normal prostate homeostasis. Using Ptenflox/flox mice in this lineage 

tracing system, they were able to induce basal and luminal-derived prostate cancers – a 

finding that has been previously observed in similar  lineage tracing studies of the 

murine prostate (13). Although these studies do not elucidate the exact lineage 

relationships underlying prostate cancer, they show that basal and luminal cells can act 

as targets of cellular transformation. Importantly, their results suggest that the cell type 

of origin may influence the latency and aggressiveness of the tumour - and potentially 

impact on clinical outcome of prostate cancer patients. Furthermore, they demonstrated 

that the progenitor cells were much more abundant in prostatospheres and renal grafts 

grown in vitro than in the transgenic prostate in situ. These findings exemplify the 

importance of high-quality in vivo models for the study of prostate cancer stem cells. 

 

Lineage tracing can be further refined to resolve the changes of fate that occur 

throughout cancer development. Schepers et al traced Lgr5+ intestinal adenoma stem 

cells in Apc-null mice (62), using a tamoxifen-inducible multicolour Cre reporter system 

that allowed them to follow the clonal development of each adenoma from single 

adenoma stem cells. Recombination was then induced a second time to follow the 
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dynamics of adenoma stem cell proliferation, dubbed lineage re-tracing. The re-tracing 

revealed that intestinal adenoma stem cells are associated with adenoma Paneth cells, 

as in the normal intestinal crypt, along with assumed transit-amplifying cells. Re-tracing 

thus allows for the observation of cancer stem cells in their resident niches, and might 

also enable the study of phenotypic plasticity in cancer stem cells in vivo. This technique 

has yet to be utilized in the study of prostate cancer. 

 

Sophisticated lineage tracing analyses such as these allow for the study of cancer cell 

population dynamics to be studied at the level of single cancer stem cells, allowing the 

existence of cancer stem cells to be demonstrated in well-characterised in vivo models 

of a cancer. The approaches also have the advantage of interfering minimally with 

tumour development,  eliminating potential artifacts caused  by growing tumours in 

heterotopic positions or in vitro.  

 

Hopefully, lineage tracing in vivo will become the gold standard for demonstrating the 

existence of cancer stem cells and validating cancer stem cell markers in the prostate. 

Encouragingly, transgenic mouse models have been successfully employed to trace the 

lineages of both luminal (63) and basal cells in the murine prostate and prostate cancer 

(12). Lineage tracing studies in the prostate are gradually discerning the cells of origin 

in prostate cancer and the nature of stem cells in the prostate. However, there are 

currently limitations to this approach. Mice do not spontaneously develop benign 

hyperplasia or prostate cancer and require transforming agents or genetic manipulation 

(such as deletion of Pten) to stimulate the tumorigenesis (64). There are also some 

discrepancies between human and transgenic murine prostate cancers. For example, 

murine models of prostate cancer are very unlikely to undergo metastasis to bone, 
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which is a common feature of the human disease (65). Anatomical dissimilarity between 

murine and human prostates is an additional obstacle - it has been previously shown 

that transgenic murine models of prostate cancer can vary in phenotype between 

prostate lobes (13). Nevertheless, transgenic mouse models are superior to xenografts 

for modeling the early stages of prostate cancer and are highly likely to facilitate 

significant future advances.  

 

The ideal method for identifying cancer stem cells would allow for the examination of 

cancer stem cells in real time as the tumour develops. Non-invasive imaging methods 

allow for live tumour imaging and thus provide a wealth of data that would not be 

available through conventional marker analyses. Fluorescent imaging of the putative 

CSC marker CD133 has been achieved in subcutaneous xenograft tumours (66), using 

intravenous administration of fluorescently labeled anti-CD133 antibodies. When 

implanted subcutaneously, bioluminescent imaging of Balb/c mice has also successfully 

detected single luciferase-expressing cancer cells (67). There is the potential to adapt 

this for imaging of cancer stem cells, where detecting small numbers of cells is crucial. 

Imaging of deeper tissues is complicated by light scattering, which may limit its 

usefulness for live imaging of prostate cancer stem cells. However, the group were able 

to detect micrometastases, which demonstrates the ability of the technique to image at 

least some deep tissues. If this could be improved then the potential to combine single 

cell in vivo lineage analysis and live imaging offers great potential for future analysis of 

CSCs. 
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Conclusion 

Cancer stem cells in the prostate are still poorly understood despite concerted efforts to 

identify and characterize them. There are established prostate cancer stem cell 

expression profiles, but heterogeneity and phenotypic plasticity hinder the use of a 

defined panel of markers in this manner. There are also well established in vitro and in 

vivo xenograft methods that can be extremely useful in the study cancer stem cells. 

However, these are not without limitations and it is perhaps the advent of in vivo 

lineage tracing methods which provides the most exciting opportunity to characterise 

prostate cancer stem cells in ever more innovative ways. 
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Table 1 

 

 

 

 

Expression Profile Cells/Tissues 
Studied 

Evidence for Cancer 
Stem Cell Identity 

Sourc
e 

CD44+/CD24- Prostate 
Cancer Cell 
Lines, 
Prostate 
Cancer 
Xenografts 

Anchorage-
independent growth; 
Increased 
clonogenicity; 
Prostatosphere 
Formation; 
Expression of stem 
cell markers; Tumour 
formation in mice at 
low titres. 

(8) 

CD44+/CD133+/  α2β1high Explanted 
Primary 
Human 
Prostate 
Tumour 

Anchorage-
independent growth; 
Increased 
clonogenicity; Cells 
differentiate upon 
culture with serum. 

(6) 

CD44+/CD133+/ABCG2+/CD
24- 

Explanted 
Primary 
Human 
Prostate 
Tumour 

High clonogenic 
potential; 
Prostatosphere 
formation; 
Immunohistochemist
ry for CD133, CD44 
and ABCG2 in 
prostate cancer 
biopsies. 

(25) 

PSA-/low/ALDH+/CD44+/  
α2β1+ 

Prostate 
Cancer Cell 
Lines, Prostate 
Cancer 
Xenografts 

Tumour formation in 
mice at low titres. 
Increased cell 
frequency following 
castration. 

(18) 
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Figure Captions 

 

Figure 1. Summary of the covered methods and markers used to characterise prostate 

cancer stem cells. 

Table 1. Examples of expression profiles recently found to identify putative human 

prostate CSCs. 

 


