

Citation for published version:
Balke, T, De Vos, M & Padget, J 2013, 'I-ABM: combining institutional frameworks and agent-based modelling
for the design of enforcement policies', Artificial Intelligence and Law, vol. 21, no. 4, pp. 371-398.
https://doi.org/10.1007/s10506-013-9143-1

DOI:
10.1007/s10506-013-9143-1

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

The final publication is available at link.springer.com

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10506-013-9143-1
https://researchportal.bath.ac.uk/en/publications/iabm(38727a3a-f839-45d6-b62f-45d7a9885e9c).html

I-ABM: Combining Institutional Frameworks and Agent-
based Modelling for the Design of Enforcement Policies

Abstract. Computer science advocates institutional frameworks as an effective tool for mod-
elling policies and reasoning about their interplay. In practice, the rules or policies, of which
the institutional framework consists, are often specified using a formal language, which allows
for the full verification and validation of the framework (e.g. the consistency of policies) and
the interplay between the policies and actors (e.g. violations). However, when modelling large-
scale realistic systems, with numerous decision-making entities, scalability and complexity
issues arise making it possible only to verify certain portions of the problem without reducing
the scale.

In the social sciences, agent-based modelling is a popular tool for analysing how entities
interact within a system and react to the system properties. Agent-based modelling allows the
specification of complex decision-making entities and experimentation with large numbers of
different parameter sets for these entities in order to explore their effects on overall system
performance.

In this paper we describe how to achieve the best of both worlds, namely verification of a
formal specification combined with the testing of large-scale systems with numerous different
actor configurations. Hence, we offer an approach that allows for reasoning about policies,
policy making and their consequences on a more comprehensive level than has been possible
to date. We present the Institutional Agent-Based Model (I-ABM) methodology to combine
institutional frameworks with agent-based simulations). We furthermore present J-InstAL, a
prototypical implementation of this methodology using the InstAL institutional framework
whose specifications can be translated into a computational model under the answer set se-
mantics, and an agent-based simulation based on the JASON tool. Using a simplified contract
enforcement example, we demonstrate the functionalities of this prototype and show how it
can help to assess an appropriate fine level in case of contract violations.

Keywords: Policies, Institutional framework, Agent-based model, Logic programming, En-
forcement

1. Introduction

The focal point of this paper is the combination of the best of both institu-
tional frameworks (as a mechanism for formalizing a collection of policies)
and agent-based models (as a mechanism for empirically studying the inter-
action of a large number of participants, referred to as agent) to both formally
and empirically explore policy outcomes.

This brief introduction demands qualification and clarification with re-
spect to the several concepts which it brings together:

− In line with the substantial literature (see for example Noriega (1997),
North (1994), Ostrom (1990) and Vázquez-Salceda (2003)) and for the

c© 2013 Kluwer Academic Publishers. Printed in the Netherlands.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.1

2

purposes of this paper, an institutional model (collection of norms and/or
policies) serves to express normative constraints over individual actions.

− Following Vickers (1973), we view policies as instruments to implement
norms, which are used by policy makers to encourage members of soci-
ety to modulate their behaviour with respect of norms. In other words,
norms are a precise specification of what society expects and what its
participants are permitted and/or obliged to do. Consequently, policies
are the combination of norms and enforcement mechanisms that aim to
bring about adherence to the said norms.

The I-ABM methodology and the J-InstAL prototype presented in this paper
address the evaluation of policy outcomes in two stages:

− The formal modelling of policies underpinned by the construction of
a mathematical or logical foundation for the formal model, making it
amenable to formal analysis, including correctness, completeness and
computational complexity. This subsequently enables formal verifica-
tion, through the translation of the mathematical model into an equiv-
alent computational model, that permits the testing of static properties.
The application of this process to a different scenario is presented in Balke
et al. (2011), but is not pursued further here.

− An ABM, on the other hand, allows for an empirical validation in terms
of policy requirements by enabling the study of the effects (the reac-
tion of the target audience of the policies) in a variety of realistic set-
tings, possibly with minor variations of the policies. The experiments
should for example take into account different reactions to and inter-
action with the policies of the target audience. Hence, the testing of
dynamic properties is also achievable.

The modelling of institutional frameworks has been subject to research
for several decades (a comprehensive discussion appears in Jones and Sergot
(1993) and more recently in Grossi (2007)). Looking at the literature on the
computational implementation of policies and institutional frameworks, one
finds that they are often encoded as formulas in some logic language, where
some components of the formula represent notions of obligation, permis-
sion and prohibition, which are linked by rules (Alberti et al., 2012). The
advantages of this form of implementation are three-fold:

Intuitive formulation: Rules correspond intuitively to conditional statements,
such as that some consequence (e.g. the obligation to perform an action)
follows from a state of affairs.

Verification: If an institutional framework is so represented, the properties
of the framework can often be verified (e.g. the consistency of policies)
or possible institutional states reasoned about (e.g. violations).

ai_law_clean_header.tex; 5/04/2013; 22:18; p.2

3

Comprehensive background literature: The underlying properties of logic
languages and the (computational) implementation and verification of
systems, have been widely studied, providing comprehensive resources
for modelling purposes as well as mature implementations (Ligeza, 2006).

There are however drawbacks too, specifically with respect to scalability
and model complexity: although it is theoretically possible to model large
scale complex systems with many different decision entities, verifying ev-
ery possible state is an exponential task (Ågotnes et al., 2007). Institutional
frameworks typically focus on the institutional properties and abstract away
the decision making entities. Modelling this decision making – especially
when taking into account complex human behaviour – in order to analyse
the impact of policies in more detail, though feasible, seems at least difficult
to achieve with logic language models. Furthermore, running experiments
with several different settings for the different decision entities in the system
to test and analyse the policies under different circumstances requires new
models for each experimental setting, again increasing the complexity of the
approach. Finally, an additional problem is that policy formulations are often
expressed in quantitative and narrative form which is difficult to represent in
logic programming.

One research area that addresses directly the interpretation of quantita-
tive and narrative information, as well as the modelling of complex large
scale systems with different decision entities, is that of agent-based modelling
(ABM) (also often referred to as agent-based simulation) (Bonabeau, 2002).
In broad terms, an agent-based model describes how a computational repre-
sentation of a scenario is constructed in terms of the agents that populate it,
their behaviours and the policies that govern them, for the purpose of explor-
ing the empirical properties of the parameters that characterise the setting. In
ABM the actors of a system (which could for example be individuals, firms or
even larger entities), are each represented by a software agent that acts, and
interacts, within a simulation or computational setting, and whose actions
are determined by some internal decision procedure, typically depending on
internal state, including a memory of past interactions. The traditional focus
of ABM is to model the individual decision making of the system entities on
a micro level in the agents, and then to let the agents engage or interact with
one another to observe the macro results of this interaction at a system level.
There are many approaches to the encoding of agent decision making, such
as (i) rule-based designs, (ii) BDI or BOID architectures (Rao and Georgeff,
1995; Broersen et al., 2001), which are conceptually more similar to human
decision making, (iii) extensions of those incorporating cognition and emo-
tion (Andrighetto et al., 2007), or (iv) Jager’s Consumat model (Jager, 2000).

ai_law_clean_header.tex; 5/04/2013; 22:18; p.3

4

The two main advantages of ABM with respect to modelling and analyz-
ing the impact of policies on human entities are that it (i) supports represent-
ing human decision making, and (ii) is typically designed for testing with
different parameter settings. This allows hypotheses about whether, why and
how the represented system behaves in certain circumstances.

Thus, the purpose of ABM is not to focus on the formal verification of the
system, but on representing the behaviour and decision making of entities in
order to observe the system behaviour as these interact. This makes it difficult
using an ABM on its own to reason about the consistency of the policies of
an institutional framework or the states of the framework represented. For
an efficient and effective modelling and analysis of policies and institutional
frameworks, the logic language representation and the ABM are important.
That is why in this paper we advocate the I-ABM methodology for combining
of these two approaches to bring together the advantages of both and reason
about policies and policy making on a more comprehensive level than so far
feasible. We present the J-InstAL prototype combining an institutional frame-
work whose specifications can be translated into a computational model under
the answer set semantics (Gelfond and Lifschitz, 1991), and an ABM. Using
a simple contract enforcement example, we demonstrate the functionalities
of this prototype.

The remainder of the paper is structured as follows. In the next two sec-
tions we outline the foundations of our work by presenting the concepts
of institutional frameworks and agent-based simulations and their comple-
mentary advantages and disadvantages. In Section 4, we present the main
contribution of this paper: the I-ABM methodology and the InstAL pro-
totype to combine agent-based simulations and institutional frameworks In
Section 5, we demonstrate the functionalities of our methodology and proto-
type by applying it to a simple contract enforcement case study. Afterwards
we compare our approach to related work in Section 6. The paper ends with
a short summary and conclusions.

2. Institutional Frameworks

The usual product of a modelling process, in which the focus is on capturing
and defining the behaviour of its various components, is a specification of
how each kind of component shall act and interact. In contrast, an institutional
modelling process focuses on capturing the forces (physical, social, legal, as
desired) that affect the elements and hence regulate their behaviour.

Institutional models are specified using a number of formalisms, depend-
ing on which aspects modellers consider important, but in essence there are
two perspectives: states (that identify institutional positions) and events (that
bring about changes in institutional positions). For example, Opera (Okouya

ai_law_clean_header.tex; 5/04/2013; 22:18; p.4

5

and Dignum, 2008) uses boolean combinations of facts to express institu-
tional states while InstAL (Cliffe, 2007) and its underlying formal model use
events to bring about updates to an institutional state. These aspects are in-
extricably linked in the sense that we can write down a (institutional) system
trace as:

s0
e0−→ s1

e1−→ s2
e2−→ s3 . . . su

where si denotes an (institutional) system state and ei an (institutional) event
at time-step i.

The objective of much research on institutional system concerns the es-
tablishment of properties in the limit—using such traces—such as whether
a particular state is ever (or never) reachable and which sequences of events
can precede or succeed a particular state (Clarke et al., 1986). Clearly this is
very useful but only establishes static properties, whereas it is also critical to
verify dynamic characteristics arising from specific traces, leading to better
understanding of policies and their consequences in practice.

More realistically, the designer wants to discover properties such as which
(type of) participants are not adhering to the policies prescribed by the system
(e.g. not satisfying an obligation or carrying out a prohibited action or reach-
ing an undesired institutional state). Policy compliance can be achieved by
using appropriate enforcement mechanisms, like penalties that are imposed
on those participants that deviate from the policy. These enforcement mech-
anisms often come at a cost (e.g. police, courts of law), indicating that with
respect to the dynamic properties of an institutional system a balance has to
be found between full normative compliance and enforcement costs.

2.1. INSTAL

We use InstAL (Cliffe et al., 2007) for the specification of the institutions
that govern the agents in our simulation. InstAL specifications are written
in terms of events (rather than states), which permits the establishment of
a connection between the violation of a norm and the participant causing
this violation. Furthermore, this approach has a computational model de-
rived from a mathematical foundation. We provide a brief introduction to the
formalism but refer the interested reader to Cliffe (2007) and De Vos et al.
(2011). An example of formalism can can be found in Section 5.

2.1.1. Syntax
InstAL is based on a set-theoretic model, and thus is expressed through sets
and relations between their elements. The formalisation is given in Figure 1,
the elements of which we now describe in more detail, followed by the se-
mantics, and which together provide a mathematical alternative to the logic-

ai_law_clean_header.tex; 5/04/2013; 22:18; p.5

6

based approaches such as Opera (Okouya and Dignum, 2008) or deontic logic
(Governatori and Rotolo, 2004).

In the terminology used for an institutional framework (I), we distinguish
two types of events (E): exogenous (Eex) and institutional (Einst) events. From
the perspective of a policy domain, the first represent events external to the
institutional framework, such as the actions of the participants: e.g. signing
a contract; while institutional events are a mechanism for the legal interpre-
tation of these actions. Events, both exogenous and institutional, may trigger
institutional events in a direct reflection of “counts-as” (Jones and Sergot,
1996), to allow for events to be interpreted differently according to context.
For example, raising your hand in class counts as indicating you want to ask
a question while raising a hand during an auction indicates you wish to bid.

Events change the state of the institutional system by initiating and ter-
minating fluents (F). Fluents are properties of the state that can be initiated
(become true) and remain true until they are terminated (made false). A state
is represented by the fluents that are true in this state. Fluents not in the
state are considered false. The institution starts with an initial state ∆. Two
types of fluents exist: domain (D) and institutional fluents. For the latter
we distinguish three types of institutional fluents: power (W) (pow(e) indi-
cates that the event e is currently recognised by the institution and can bring
about institutional state), permission (P) (perm(e) denotes that the event e
is permitted to occur) and obligation fluents (O) (obl(e, d, v) indicates that
the event must occur before the deadline event d otherwise a the violation
event e occurs). Empowerment indicates that the institutional framework is
able to interpret the occurrence of an exogenous event in the institutional
context and possibly generate corresponding institutional events (based on
count-as). A typical example is the marriage institutional framework: only an
individual with power vested in him/her can marry two people, otherwise the
marriage is not legally recognised. An event which is not permitted will still
occur within the framework but will also raise a violation event. Events are
empowered/permitted if their associated pow/perm fluent is true in the current
state. Various interpretations of obligations exist in the literature (Governatori
and Rotolo, 2004; Prakken and Sergot, 1996). In our model, obligations are
used to indicate that an event should occur before a second event otherwise
a violation is raised. An obligation is terminated as soon as the obligation is
fulfilled or violated. In other works, obligation remain valid (Governatori and
Rotolo, 2004; Prakken and Sergot, 1996). In the InstAL model, permission
needs to be granted, i.e. events are only permitted if its permission is part of
the state. Deontic prohibition is through the absence of permission.

Institutional frameworks are interested in tracking violations to their norms.
In InstAL this is done through violation events (Eviol). They can occur in two
ways: either they are explicitly specified by the designer or are generated by

ai_law_clean_header.tex; 5/04/2013; 22:18; p.6

7

I = 〈E ,F , C,G,∆〉, where

1. E = Eex ∪ Einst with Einst = Eact ∪ Eviol
2. F =W ∪P ∪O ∪D
3. C : φ× E → 2F × 2F where

C(X, e) = (C↑(φ, e), C↓(φ, e)) and where

(i) C↑(φ, e) initiates a fluent
(ii) C↓(φ, e) terminates a fluent

4. G : φ× E → 2Einst

5. State Formulae: φ = 2F∪¬F

6. Initial State: ∆

Figure 1. Formal specification of the institutional framework

the institution (see the later text on the InstAL’s semantics) by the system with
the occurrence of a non-permitted event or an unsatisfied obligation.

Changes in an institutional state are achieved by two relations: (i) the
generation relation (G), which implements counts-as by specifying how the
occurrence of one (exogenous or institutional) event generates another (in-
stitutional) event, subject to the empowerment of the institutional event and
the conditions on the state, and (ii) the consequence relation (C), which spec-
ifies the initiation and termination of fluents, subject to the performance of
some action in a state matching some condition. Conditions on a state (φ) are
expressed by a set of fluents that should be true or false.

2.1.2. Semantics
The semantics of an institution is defined over a sequence, called a trace,

of exogenous events. Starting from the initial state (∆), each exogenous event
is responsible for a state change, through initiation and termination of fluents.
This is achieved by a three-step process: (i) the transitive closure of G with
respect to a given exogenous event determines all the generated (institutional)
events, (ii) to this, all violation events corresponding to the occurrence of
event which was not permitted are added, and (iii) the specified violation
event v for an obligation obl(e, d, v) for which the deadline event d has
occurred. (iv) resulting in the set of all events whose consequences deter-
mine the new state, (v) the application of C to this set of events identifies all
fluents that are initiated and terminated with respect to the current state, so
determining the next state. For each trace, the model can therefore compute
a sequence of states that constitutes the model of the institutional framework
for that trace.

While a formal specification is useful for verification purposes, it does not
offer the designer any tools to support the verification. Manual verification is

ai_law_clean_header.tex; 5/04/2013; 22:18; p.7

8

difficult, tedious and error-prone. To provide better support for the designer,
an institutional specification language using semi-natural language was cre-
ated and a computational model of the formal specification was developed
(Cliffe et al., 2007). The computational model is expressed using answer
set programming, which generates all the traces of the institutional model
as solutions of the program. Constraints can be added to the computational
model to select those traces that are relevant. Using the approach the specifi-
cation can be analysed and verified. In the next paragraphs we give a brief
overview of the specification language and the computational model. For
specific details, we invite the reader to look at (Cliffe et al., 2007).

2.1.3. InstAL
An InstAL specification starts with declarations of types and of the events

and fluents (parameterized by types) that comprise the model. The next part
defines the rules that make up the generation relation (using the keyword
generates) and the consequence relation (using the keywords initiates
and terminates). Finally comes the specification of the initial state of the
institution. An example of an InstALspecification is given in Section 5.
2.1.4. Answer Set Programming
Both the formal model and the InstAL specification are realised by a transla-
tion to AnsProlog (Baral, 2003), a declarative non-monotonic programming
language that uses logic programs under the answer set semantics (Gelfond
and Lifschitz, 1991) to represent the problem as a logic program and derive
the solutions as its answer sets. Declarative programming languages have
the advantage that the problem being modelled and the requirements for the
solution can be described without the need to provide an algorithm to solve
the problem. The interpreter/compiler finds the solutions to the problem that
meet the specified requirements. The basic components of the language are
atoms, elements that can be assigned a truth value. An atom can be negated
using negation as failure, something is false unless it is proven to be true.
Literals are atoms a or negated atoms not a. Atoms and literals are used to
create rules of the general form: a ← b1, ..., bm, not c1, ...,not cn, where a,
bi and cj are atoms. Intuitively, this means if all atoms bi are known/true and
no atom cj is known/true, then amust be known/true. We refer to a as the head
and b1, ..., bm, not c1, ...,not cn as the body of the rule. Rules with empty
body are called facts. Rules with empty head are referred to as constraints,
indicating that no solution should be able to satisfy the body. A program is
a set of rules. The semantics of AnsPrologis defined in terms of answer sets,
i.e. assignments of true and false to all atoms in the program such that the
rules are satisfied in a minimal and consistent fashion. A program may have
zero or more answer sets, each corresponding to a solution of the problem
being modelled. An AnsProlog program is given to a so-called answer set

ai_law_clean_header.tex; 5/04/2013; 22:18; p.8

9

solver which returns the answer sets of the program. For our implementation
we use CLINGO (Gebser et al., 2007), a state-of-the-art answer set solver.

The implementation of an institution consists of three parts: a base com-
ponent which is independent of the institution being modelled, a time compo-
nent and the institution-specific component. The base component deals with
inertia of the fluents (i.e. making sure that initiated fluents remain true un-
til they are terminated), the generation of violation events of non-permitted
actions and unfulfilled obligations. Furthermore it terminates fulfilled and
violated obligations. The time component defines the predicates for time
and is responsible for generating a single exogenous event at every time
instance. The mapping uses the following atoms: ifluent(p) to identify
fluents, evtype(e, t) to describe the type of an event, event(e) to denote the
events, instant(i) for time instances, final(i) for the last time instance,
occurred(e, i) to indicate that the exogenous or empowered institutional
event e took place at time i, observed(e, i) that the exogenous event e was
observed at time i, holdsat(p, i) to state that the normative fluent p holds
at i, and finally initiated(p, i) and terminated(p, i) for fluents that are
initiated and terminated at time i.

The full details of the translation of the institutional specification to AnsPro-
log can be found in Cliffe et al. (2007), including a proof of the soundness
and completeness of the translation. The result of the translation is a com-
putational model that can generate all traces of a specified length and their
corresponding sequence of models of all possible states of the institutional
framework as the answer sets of the program. If desired, this computational
model can be supplemented by a so-called trace program that specifies the
specific exogenous events that need to take place at a certain time. The pro-
gram will then only generate those traces that have these events occurring. If
a complete – an exogenous event for each time instance – trace is provided, a
single answer set is produces that specifies the sequences of states that are a
consequence of this sequence of events.

3. Agent-based Simulations for Policy Analysis

Computational models in the natural sciences, engineering and legal research,
typically rely on either equation- or logic-based modelling. This makes it
hard to transfer them to the study of the interaction of human actors in a
system, as human behaviour is complex and difficult to formalize mathe-
matically (Helbing and Balietti, 2011) and poses severe issues in terms of
computational complexity. However, when analysing the impact of policies
on humans in a system, representing these humans appropriately in order
to get a realistic picture of their interaction with the system is critical. One
approach, that has become very popular in the social sciences, is to model

ai_law_clean_header.tex; 5/04/2013; 22:18; p.9

10

human behaviour using agent-based modelling (ABM) (Epstein and Axtell,
1996; Gilbert and Troitzsch, 2005; Macy and Willer, 2002) with “agents”
representing the actors of the system to be modelled.1.

In the next paragraphs we discuss the advantages and disadvantages of
ABM in the context of modelling human behaviour, given the focus of this
a paper is on policy modelling. Most of these are also valid comments in
different contexts.

By using ABM for computational experiments, one may test in a sys-
tematic way different hypotheses related to attributes of the agents, their be-
havioural rules, and the types of interactions, and their effect on macro-level
stylized facts about the system.

To understand better what is understood by the term agent and as a conse-
quence by ABM, we will now look more closely at the definition of the term
agent in the computer science context2. In this context agents are referred
to as reactive systems (e.g. pieces of software) that exhibit some degree of
autonomy in the sense that if being delegated a task or goal, the system deter-
mines how to achieve this goal. An important difference with other modelling
approaches is that, rather than being given low-level detail on how to fulfil
a task, the agents pursue goals actively and decide themselves how best to
accomplish their goals with the (possibly limited) amount of resources they
possess.

When looking at the properties of agents, agents are systems that are con-
sidered to be situated in some environment. Agents are capable of sensing
their environment via sensors and have a number of possible actions that,
based on their internal reasoning and decision making (with regard to their
multiple and possible conflicting goal(s)), that they can decide to perform in
order to affect the environment. This environment that the agents populate
and interact with can be physical (e.g. robots that inhabit a physical world) or
a software environment such as a computer simulation.

Besides being situated in and interacting with an environment, further
properties are attributed to agents (Wooldridge and Jennings, 1995), which
facilitate thinking of agents in terms of the human decision makers that they
represent, interacting in a given policy setting.

Autonomy As mentioned earlier, agents operate independently in order to
achieve goals being delegated to them by their principals. Thereby, they
make independent decisions on how to achieve these delegated goals.

1 The computational modelling technique corresponding to agent-based modelling is
typically referred to as agent-based simulation or multi-agent simulation (Gulyás, 2005).

2 The explanation of the terms agent and ABM in this paper follows that of Balke (2011)
to a large extent.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.10

11

Proactiveness Proactiveness is very closely linked to goal delegation. It im-
plies that agents exhibit goal-directed behaviour. Hence, given a goal, an
agent is expected to actively work to achieve this goal.

Reactivity Agents respond to changes in the environment. This also implies
that if conditions on which they based their earlier decision change, they
can adapt to these changes and change their plans for how to achieve
their goals accordingly.

Social Ability This refers to the property of agents to be able to cooperate
and coordinate activities with other agents (including a communication
at knowledge level where agents are able to communicate their goals,
beliefs and plans).

Humans act in the environment which is governed by different institutions
and interact with other users, each being driven by their own objectives (e.g.
financial gains) as well as being constrained by limitations (e.g. their physical
limitations). The actions that the users perform are on the one hand based on
their perception of their environment, (e.g. policies and institutions, or of the
other users and their actions), and on the other hand on their resources, as
well as considerations of how their actions could reflect on their own goals.

So far in this section we have mainly discussed single agents and their
properties. However, what makes agents and ABM particularly relevant for
policy modelling is their social ability, which allows us to analyse situations
in which agents interact with each other. An ABM describes a system from
the bottom-up, i.e. from the perspective of its constituent (possibly hetero-
geneous) units. The macro result on the global systems level is perceived as
a result of the interaction of the constituent entities on the micro level. The
overall aim is to observe emergent global system behaviour resulting from
the sum of the individual actions of the units (Holland, 1992).

Although it might be theoretically feasible to model human behaviour
with the help of formal methods, humans (and their behaviour) exhibit certain
features that can more suitably modelled with ABMs (Bonabeau, 2002):

− Human behaviour tends to be complex and non-linear. For example,
it exhibits memory effects, forms of learning and adaptation, path de-
pendence, temporal correlations and non-Markovian components. As a
result, for modelling purposes it is difficult to capture human behaviour
in a purely analytical form. One particular problem is that the complexity
of this analytical model increases exponentially as the complexity of
behaviour increases.

− Human behaviour is characterised by stochasticity. Looking how the
different approaches address this stochasticity, logic (programming) ap-
proaches do not tend to account for this, but rather focus on proving

ai_law_clean_header.tex; 5/04/2013; 22:18; p.11

12

properties assuming “ideal” conditions and agent behaviour. Mathemat-
ical equation-based approaches tend to use a “noise term” that is added
to an aggregate equation. Finally ABM simulations allow one to add
sources of randomness at specific and appropriate points in the agent’s
reasoning process, thereby allowing for more heterogeneity of the agents
and a better representation of human decision making.

− Humans tend to act and base decisions on local information and their
limited knowledge. Formal solutions (i.e. logic (programming) and math-
ematical solutions) very often assume global knowledge, whereas ABM
can easily represent this local focus.

− Finally, humans and their interactions are heterogeneous. The hetero-
geneous interaction can generate network effects that may deviate a
lot from predicted aggregate behaviour, based on the emergent network
topology of the individuals interacting. Representing a system from the
agent’s perspective takes this into account. In contrast, purely mathe-
matical systems typically assume global homogeneous mixing which
mainly portrays aggregate behaviour and does not account for any net-
work topology, etc.

In addition to these advantages, when trying to represent humans and their
decision making process, ABM simulations offer further advantages with re-
gard to the flexibility of the analysis. In an ABM simulation it is easy to add
more (or take away) agents, i.e. scaling the system up (or down) as required.
But not only is the number of agents easy to scale, the complexity of the
agents (e.g. their degree of rationality or their ability to learn and evolve) as
well as the level of description and aggregation of the system are also flexible.
Thus, one can easily analyse a system with certain groups of agents or single
agents, and work with different facets of the system description.

Despite all these advantages with respect to modelling human behaviour,
due to the focus on bottom-up features, incorporating a top-down institutional
perspective is difficult in a pure ABM. As a result, we integrate institutional
frameworks, which offer the possibility to reason about top-down norms, with
ABM in order to be able to form “institutional agent-based models”.

4. I-ABM: Combining Institutional Frameworks and Agent-based
Simulations

Summing up from the previous section, ABM combined with an institutional
framework, offers three advantages: (i) the agents participate in the institu-
tional framework, enabling the investigation of its dynamic properties, (ii) the

ai_law_clean_header.tex; 5/04/2013; 22:18; p.12

13

institutional framework regulates the behaviour agents, enabling the explo-
ration of dynamic individual behaviours, and (iii) the combination of both
allows an easier analysis of large scale complex settings (with different sys-
tem and agent settings). Thus, we argue that institutional agent-based models
open up new possibilities both for institutional framework research and for
ABM research, which we seek to demonstrate by means of the contract law
example in Section 5. We refer to the combination of agent based modelling
techniques with institutional models as Institutional Agent-Based Modelling
(I-ABM).

Following the presentation of the components of an I-ABM in the preced-
ing sections, we now describe how they fit into the overall architecture of the
I-ABM, explaining the interplay of the individual components. The next sec-
tion addresses the case study. Our prototype I-ABM , using the InstAL insti-
tutional framework and the JASON multi-agent environment as our simulation
environment is referred to as J-InstAL.

The UML component diagram in Figure 2 shows the components of an
I-ABM, which consists of three components:

1. The institutional framework that contains the policy specifications and
a mechanism to translate the specification into a computational model.
In J-InstAL, we use InstAL as our specification language and use the
program PYINSTAL3 to translate the specification into AnsProlog.

2. The ABM that represents the actors and their behaviour, and we use
JASON4 as our simulation environment.

3. An institutional monitor, that monitors the actions of the participants,
updates institutional state(s), keeps track of the different instantiations of
the institutional framework and helps to translate the institutional speci-
fications for the agents. For updating or querying institutional states, the
J-InstAL’s Java based monitor uses CLINGO5.

Each of these three components has distinct tasks in our architecture.
When analysing and verifying the effect of policies from a formal perspective
the object both agent behaviour and institutional framework are considered
together. Now, for the purpose of simulation, we need to separate agents
and institution. The purpose of the institutional framework is to encapsulate
the policy component and to observe and keep track of institutional state,
not whole system behaviour. Thus, it only monitors the external events re-
sulting from agents’ actions and does not pre-determine agent behaviour.
That is why in the context of simulation, we no longer are concerned with
modelling agents and their decision making in the institutional framework,
because that has now become the task of the ABM. For J-InstAL we have
chosen the JASON agent platform (Bordini et al., 2007) as the basis of our

3 http://instsuite.cs.bath.ac.uk/
4 http://jason.sourceforge.net/
5 http://potassco.sourceforge.net/

ai_law_clean_header.tex; 5/04/2013; 22:18; p.13

14

<<component>>
Jason ABM

AgentEnvironment

percepts

<<component>>
Institutional Framework

<<file>>
policies

<<service>>
Institutional

Monitor

<<specifications>>
domain, concretisation &

event information<<query and inform>><<translate, book-keeping>>

Figure 2. The institutional ABM architecture

ABM. Our architecture is not tied to JASON specifically: we chose it because
it allows us to define BDI-agents using an extended version of AgentSpeak
– a logic-based agent-oriented programming language – and because the im-
plementation language is Java, which we could easily extend to communicate
with the institutional framework.

In order to decouple the institutional framework and the ABM and to
maintain the institutional state in the former, we introduce a special type of
agent or entity, which is the institutional monitor. This component acts as
a kind of gatekeeper between the ABM and the institutional framework. It
(i) handles all the instantiations of the institutional framework, (ii) stores the
institutional states and the respective grounding information, and (iii) helps
to decouple the institutional framework and the agents. Because of the in-
stitutional monitor, the agents do not need to know any specifications of the
internal structure, the semantics nor the syntax of the institutional framework,
but can pass on information to the institutional monitor which then translates
it into a form usable in the institutional framework component.

In Section 5 we present a simple contract case study to demonstrate our
approach. In the case study agents can form contracts with one another and
decide to live up to the contract or violate it. Using this example, the inter-
action between the three components just described works as follows: The
ABM models the agents with their respective decision making processes
and simulates their interaction with one another in the environment. When
agents agree to interact (e.g. form a contract), they contact the institutional
monitor with the specification of their agreed interaction to establish a new
contract through a new instantiation of the institutional framework6. The
specification passed to the institutional monitor includes a unique identifier
that is used to distinguish the contract. The identifier is later used to iden-

6 We assume here that the institutional framework includes policies that specify the
procedure and the rules of contracting.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.14

15

tify the correct instantiation of the institutional framework to be affected by
the exogenous events generated from the agent’s actions. The institutional
monitor uses this specification to create an interaction-specific version of the
institutional specification (i.e. it takes the general policies formulated in the
institutional framework and replaces all the variables of the policies with the
corresponding specific values (e.g. agent names,. . .) supplied by the agents).
These specifications are then used to determine the initial state of the agents’
contract (i.e. the initial state of the contract specific instantiation of the in-
stitutional framework). When the state needs updating (a new exogenous
event takes place, such as for example a payment being made), using the
contract identification, the institutional monitor retrieves the current state of
the corresponding institutional framework. Using this as the initial state of the
institution and the agent’s action as a single event trace, the AnsPrologversion
of the institutional framework provides the next state, which the institutional
monitor stores for future use. In other words, the agents act, this action results
in a new state of for the contract institution and the new state is stored. The
role of ASP is to compute this new state.

Having the information for the initial contract as well as tracking the
institutional state of each contract by analysing the respective exogenous
events, the institutional monitor can act as a institutional query processor for
the agents. Contracting agents can query the current state and discover the
consequences of potential actions.

Possible queries include the following:
− queries about the current state, including the policies applying to that

state (e.g. “What policies affect my current situation?” or “Given the
current situation, following the policies, am I allowed to execute action
acX?”),

− queries about the possible impact of the agent’s own actions (e.g. “What
is going to happen if I take action acX”, and

− general queries on what might happen in the future (e.g. “What would
happen if a series of actions (e.g. events Eex(a),Eex(b),Eex(c) and Eex(d))
take place?”).

Using this query information obtained via the institutional monitor, the
agents can (but may not) incorporate the information into their decision mak-
ing. This makes it possible to analyse the reactions of agents to the policies of
the institutional framework (and the resulting effect of policies in a system).
As agents themselves can decide to query the institutional monitor for institu-
tional information, we are furthermore able to simulate policy awareness and
its effects (e.g. agent might decide not to query the institutional monitor and
make their decision without being aware of the exact institutional situation
applying to them).

ai_law_clean_header.tex; 5/04/2013; 22:18; p.15

16

5. A Case Study: Simplified Contract Law

To demonstrate the application of I-ABM, we present a case study that analy-
ses the effects of fines and detection probabilities on the fulfilment of con-
tracts. In our view, contracts and policies have concepts in common with
obligations, permissions, and prohibitions however they differ in terms of
their focus. Whereas contracts are specific to their content, policies are more
general and specify the procedure and rules of contracting. In the example,
we are interested in the cumulative result of agents executing actions with
respect to the deontic specifications (obligations, permissions,. . .). With re-
spect to the case study, the aim of the simulation is to determine a suitable
fine structure that maximizes the number of participants decide not to violate
existing contract agreements. The simulation is used to determine a suitable
fine, taking into account that only a certain number of violations will be
actively enforced.

The case study itself serves to demonstrate the prototype, therefore we use
a necessarily simplified example. We take our inspiration from contract law,
although we have omitted what we consider to be the extraneous intricacies.
We have also taken note of other work on optimal fine levels, such as that of
Morales et al. (2011) on fines in traffic scenarios.

The example we use is as follows: When a buyer and a seller agree on a
price for a good, both enter a contract binding one to pay and one to deliver
the good. However, subsequent to entering the contract, either of them might
receive a better offer. The seller could break the contract and sell to a buyer
with a higher offer, or the buyer could accept an offer from a seller offering the
good at a lower price intending not to pay for the first item bought. In either
case this leads to a contract violation for which the wronged party could go
to court in order to get compensation. Only a certain proportion of them will
do so.

Incentives to encourage/discourage going to court over a contract violation
are not part of this scenario. Furthermore, to keep the scenario simple, we
assume that taking another contract is the only way to violate a contract and
that when participants are committed to the contract they will pay and deliver
on time. See (De Vos et al., 2011) for how other violations can be detected
using an institutional framework. In the next sections, we first explain our
simulation setting and then the institutional model that underpins our contract
law example.

5.1. SIMULATION SET-UP

In our simulation we have a number of agents that can act as both buyer
and seller. The goods have no specific value and all agents have an “infinite”
supply of money and goods. Agents are only interested in relative gains and

ai_law_clean_header.tex; 5/04/2013; 22:18; p.16

17

losses. Agents are permitted to hold only one contract as a buyer and one as
a seller at any given time.

Encounters between agents take place in rounds. In each round (in random
order) each agent can make decisions and act upon these decisions, resulting
in events which are then interpreted by the institutional framework. It is a
random decision whether an agent acts as a buyer or a seller in a given round.
In the next step, a buyer and seller agent are randomly matched. A contract is
established when both the buyer and seller accept. The seller agent takes the
initiative. If it does not have a contract as a seller, it makes a random bid from
a list of valid bids. Bids are fixed between 50 and 140 with an increment of
10. If the buyer agent does not hold a buyer contract, it accepts the bid.

In the case of a pre-existing bid, the agents determines whether it is worth
violating this contract in favour of a new one. This decision is based the
perceived risk of enforcement, previous gains and penalties from violations
and the profit margin on the current bid.

Specifically, the seller agent with an existing contract randomly selects a
higher bid (if available). If it decides to violate the existing contract, it makes
an offer to the buyer agent. Only when the buyer accepts the offer, does it
become a violation.

As mentioned previously, we assume that each contract can only be vio-
lated by agreeing a new contract before honouring the existing one, we make
the indirect assumption that an agent can only hold one contract at a time. We
assume that every contract that is not violated is automatically honoured after
five simulation rounds.

In our simulation, the institutional monitor is not only responsible for
detecting contract violations but also acts as the enforcer. To simulate the
cost of enforcement we assume that only a certain number of the violations
will be penalised. Together with the level of the imposed fine, the number of
violations penalised is one of the simulation parameters.

Table I provides an overview of all simulation parameters. The primary
objective of this set-up is to analyse how the level of the fine for contract vio-
lations and the number of violations penalised (independent variables) affect
the cooperation behaviour and overall number of cheats (dependent variable).
We performed factorial experiments7 alternating the two (independent) vari-
ables whose impact we want to analyse. The simulation experiments consist
of running 50 experiments for each parameter combination given in Table I.
This means 50 simulation runs for 56 parameter combinations, making 2,800
runs in all.

7 That is, to run simulations with all possible combinations of the values of the subsets of
chosen input variables across all factors. Factorial experiments enable study of the effect of
each factor on the simulation output data, as well as the effects of interactions between factors,
while cancelling out influences of other factors on a particular setting.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.17

18

Table I. Simulation variables

Name Range/Type Simulation Parameter
| A | [2,∞] 100
Rounds [0,∞] 500
Max. Sanctioned Violation per
Round

[0,∞] 1, 2, 3, 5, 8, 10, 20

Fine-Level [0,∞] 10, 25, 50, 75, 100, 125, 150, 200

5.2. THE INSTITUTIONAL MODEL

For the specification of the institutional framework we use InstAL. Once writ-
ten and verified, it is translated to AnsProlog to be used in the institutional
monitor.

For the conceptual design of an institutional framework, we had two op-
tions: have one institutional framework that governs all the contracts within
the system or have one for each contract. The latter requires the institutional
monitor to be aware which participant is involved in which contract and insti-
tutional frameworks to share information. We have opted for the former as it
is easier to detect when a participant engages in a second contract as a buyer
or a seller, but our model could easily be adapted to the latter option using the
multi-institution framework (see Cliffe (2007)) that extends the framework
used here.

The institutional framework is structured in three phases:
1. Contract creation: buyers and sellers engage in contract formation during

a round of the simulation.
2. Violation handling: once all contracts of a given round are agreed, the

institutional framework knows which contracts have been violated.
3. Contract fulfilment: contracts that were successfully completed can be

deleted.
A schematic representation of the working of the institutional framework

is given in Figure 3. A contract is represented by an inertial fluent contract
(Seller,Buyer,Round) initiated in the first phase. The Round is used to
indicate to the institutional monitor when the contract was established, so it
can be terminated when the contract is satisfied. The contract creation phase
consists of a series of exogenous events of the type setUpContract(Seller,
Buyer,Round). At the start of the simulation, every agent has to have the
permission to act as a buyer and a seller. Regardless of whether or not both
Buyer and Seller have permission to engage in a new contract, a contract
fluent will be generated. But, when permission is absent, the correct violation
event will be triggered and the contract is scheduled for deletion, which will
take place at the end of the simulation round. It is then up to the enforcement
mechanism to deal with the violation. Agreeing to enter a contract takes away

ai_law_clean_header.tex; 5/04/2013; 22:18; p.18

19

Institutional
Monitor

Institutional
Framework

contract creation

contract creation

violation handling

setUpContract(seller1,buyer1,round1)
setUpContract(seller2,buyer2,round1)

setUpContract(seller1,buyer3,round2)

contract(seller1,buyer1,round1)
contract(seller2,buyer2,round1)

contract(seller1,buyer1,round1)
contract(seller2,buyer2,round1)
contract(seller1,buyer3,round2)

contractViolationSeller(seller1,buyer1,round1)
contractToBeDeleted(seller1,buyer1,round1) violation(seller1)

endOfRound

terminateCompletedContracts(round1)

contract(seller2,buyer2,round1)
contract(seller1,Buyer3,round2)

contract(seller1,buyer3,round2)

contract fulfilment

...

...

Figure 3. Schematic representation of the institutional framework over a period of time

the permission to enter further contracts until the current contract has been
satisfied.

Figure 4 contains a fragment of the InstAL specification of this phase,
while the full specification is provided in appendix A. At the end of each
round, when all potential buyers and sellers have decided whether they want
to enter a contract or not, the institutional monitor signals the institutional
framework that phase 2 can commence through the exogenous event endOfRound.
The occurrence of this event terminates all the contracts that were scheduled
for deletion due to a contract violation. Furthermore, it restores permission
for participating non-violating agents to engage in new contracts. The main
reason to make this a separate phase, rather than immediately deleting the
contract and restoring permissions, is to allow us to track violations of both
the buyer and seller of an existing contract rather than only penalising the first
offender. Hence, we do not allow for mutually-agreed annulment of contracts.

The start of Phase 3 is signalled by the occurrence of the exogenous event
terminateCompletedContracts(Round). It indicates that all existing
contracts created in the round have been successfully completed. Correspond-

ai_law_clean_header.tex; 5/04/2013; 22:18; p.19

20

setUpContract(Seller,Buyer,Round)
generates

intSetUpContract(Seller,Buyer,Round);

viol(intSetUpContract(Seller,Buyer,Round))
generates

contractViolationBuyer(Seller1,Buyer,Round1)
if contract(Seller1,Buyer,Round1);

contractViolationBuyer(Seller,Buyer,Round)
initiates

contractToBeDeleted(Seller,Buyer,Round);

intSetUpContract(Seller,Buyer,Round)
terminates

perm(intSetUpContract(Seller1,Buyer,Round1)),
perm(intSetUpContract(Seller,Buyer2,Round2));

Figure 4. InstAL specification of the initial contract phase

ing contracts are terminated and their participants’ permissions to engage in
a new contract are restored.

5.3. THE INSTITUTIONAL MONITOR

Recalling the explanation of the institutional monitor in Section 4, its primary
functions are (i) handling the instantiation of the institutional framework,
(ii) storage of institutional states and associated grounding information, and
(iii) decoupling the institutional framework from the agents. As a result of
the design choices that we have explained earlier, we use only one instanti-
ation of one institutional framework in our example. Thus, the institutional
monitor does not need to track which contract is assigned to which agent,
but instead tracks all agreements by all agents within the same instantiation
of the institutional framework. The institutional monitor thus focuses on the
latter two tasks. In the beginning of the simulation, the monitor determines
the start state of the institutional framework by solving using the ASP solver
CLINGO (Gebser et al., 2008). In the next step, whenever it perceives infor-
mation from the agents that is relevant for the institutional framework (e.g.
buyer(agent1),seller(agent2)) it determines the current round of the
simulation and translates this information into the appropriate external event
for the institutional framework setUpContract(agent2,agent1,round1)
appends this event to the current state of the institutional framework and runs
everything for one time-step with CLINGO in order to determine the new state
of the institutional framework. Once a round is finished and all agents have

ai_law_clean_header.tex; 5/04/2013; 22:18; p.20

21

determined whether to take up new contracts or not, it is the institutional
monitor which sends the terminateCompletedContracts(round) and
endOfRound events to the institutional framework in order to complete the
current round and receive a list of all agents that have violated the rules.
From this list of violators, it randomly picks agents, up to the maximum
number of punishable events, that are then fined8. In a classical setting, the
fine would be executed by enforcement agents (i.e. a kind of police force in
the system), who are told which agents to punish by the institutional moni-
tor. The number of punishable events would then correspond to the capacity
of this police force. For simplicity reasons we have not implemented these
enforcement agents directly, but instead we use the institutional monitor to
exact the punishment.

5.4. SIMULATION RESULTS

Figures 5 and 6 show the results of the simplified contract law example
simulation with the parameters given in Table I. For legibility and due to
space limitations, we only present a subset of results graphically and will
comment on the remaining results in text. Thus, we only show the results for
the first 150 rounds for example, as between the 150th and the 500th round
no significant changes in the results appear. In the figure, for each of the
fine levels, we plot the number of cheats per round for different maximum
numbers of punishable events (i.e. 1, 3, 5 and 8 events).

The first thing to notice is that due to the set-up, the behaviour in all of the
first few rounds is the same: there are no violations in the first round (as agents
do not have an alternative offer at this point) and cheats typically briefly peak
after that, as agents have not been fined before and therefore are more likely to
risk cheating. After these first rounds, the fines and the number of maximum
sanctioning events take their effect. Looking at the results more closely and
starting with the lowest fine-level of 10 (i.e. a fine level which is equal to or
lower then the gains an agent has from cheating), the clear result is that no
matter the maximum number of punishable events, no successful stimulus for
decreasing contract violation is in place. This changes once the fine increases.
At a level of fine of 25, for example, for a maximum of 8 punishable events,
a decrease in the number of cheats is clearly visible. This decrease increases
proportionally with the fine. Thus, at a fine level of 150 or 200 respectively,
for a maximum number of 3, 5 and 8 punishable events hardly any cheats
can be detected in the long run9. These comparatively good cheat-reduction
results of 3, 5 and 8 has significant practical value: if one considers that pun-

8 If fewer agents have violated than punishable events, all violators are fined.
9 The higher numbers of punishable events in our experiments (i.e. 10 and 20), that are not

depicted in Figures 5 and 6, yield the same results that followed the same trends as described
here, the decrease in cheating events produced by them was however faster.)

ai_law_clean_header.tex; 5/04/2013; 22:18; p.21

22

0
50

10
0

1
50

010203040
F

in
e

50

ro
un

d

cheats

0
50

10
0

1
50

010203040

F
in

e
10

ro
un

d

cheats
0

50
1
00

1
50

010203040

F
in

e
2
5

ro
un

d

cheats

1
S

an
ct

io
ni

ng
 A

ct
io

n
3
 S

an
ct

io
n
in

g
A

ct
io

ns
5
 S

an
ct

io
ni

n
g
 A

ct
io

ns
8

S
an

ct
io

n
in

g
A

ct
io

n
s

L
eg

en
d:

0
50

1
00

1
50

010203040

F
in

e
7
5

ro
un

d

cheats

Figure 5. Simulation results (selection) – part 1

ai_law_clean_header.tex; 5/04/2013; 22:18; p.22

23

1
S

an
ct

io
ni

ng
 A

ct
io

n
3
 S

an
ct

io
n
in

g
A

ct
io

ns
5
 S

an
ct

io
ni

n
g
 A

ct
io

ns
8

S
an

ct
io

n
in

g
A

ct
io

n
s

L
eg

en
d:

0
50

10
0

1
50

010203040
F

in
e

10
0

ro
un

d

cheats
0

50
1
00

1
50

010203040
F

in
e

12
5

ro
un

d

cheats

0
50

10
0

1
50

010203040
F

in
e

15
0

ro
u
nd

cheats

0
50

1
00

1
50

010203040
F

in
e

2
0
0

ro
un

d

cheats

Figure 6. Simulation results (selection) – part 2

ai_law_clean_header.tex; 5/04/2013; 22:18; p.23

24

ishment does not come for free, but at a cost (e.g. the fixed costs for the staff
employed to handle the legal procedures), achieving similarly good results
of enforcement at lower costs is highly attractive. Our analysis also shows
that it is risky to decrease the maximum number of punishable events too
far. In the case that only one violation was punished, many violations went
unpunished. As a result, the increase in fines does not help to reduce cheating
significantly, as a large number of violators do not have to pay the fine and
learn that cheating largely goes unpunished10. Other interesting observations
(which were not in the initial simulation setup) are that if the total number
of agents is decreased (as is the number of punishment agents, likewise), a
minor reduction in cheating events can be detected. This might be due to
the lower number of transaction partners (and thus alternative offers) agents
are able to choose from in this setting. Furthermore, although not part of
the initial research question of the simulation, an interesting side-effect is
that the model allows us to think about policy awareness. The policies in
our model, are stored within the institutional framework and not within the
agents. As a result the agents have to query the institutional framework (via
the institutional monitor) to learn about the policies affecting their contracts.
If we set up the agents not to query the institutional monitor about the policies
applying to their current state, etc.), more cheating takes place due to agents
possibly not being aware that they could cause a violation11. By using an
institutional ABM, we are consequently able to determine optimal combina-
tions of fine-levels and a maximum number of punishable events and analyse
their combined effects on the described contract-law case study.

6. Related Work

The related work that we discuss covers institutional frameworks as well as
the idea of linking them to agents and ABM. This section serves to point out
this related work and explain where the work presented in this paper differs
from previous work.

Starting with the formal work on the representation of institutional frame-
works, it has to be noted that its representation has been a subject of research
for several decades. Ever since the British Nationality Act was formalized
using Logic Programming by Sergot et al. (1986), it has been recognised
that non-monotonic formalisms are important to deal with many aspects of
rule-based systems in general and institutional frameworks, as well policies
and their analysis in particular (Alberti et al., 2011). Policies and norms,

10 For maximum 2 punishments effects the results are similar the single punishment effect.
11 An interesting line of research would be to analyse the learning or increase of awareness

of agents with respect to policies if they are punished repeatedly, but this is not the subject of
this paper.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.24

25

specifically, have received much attention using different formalisms, among
which defeasible logic (Governatori, 2005; Governatori and Rotolo, 2004)
is considered particularly appropriate, along with various executable repre-
sentations, such as RuleML in (Governatori, 2005). Herrestad (1991) argues
that Sergot’s formalisation of the library regulations is confronted with the
Christholm paradox and that therefore logic programming formalisms are ill-
suited for modelling this kind of knowledge. Herrestad’s claim is based on
the assumption that implication can be rewritten as a disjunction. However,
we use answer set programming for the computational model of our insti-
tutional framework and here, Herrestad’s claims are not valid, as answer set
programming uses negation as failure whose semantics differs from classical
negation (see Denecker (2004) for more information). Furthermore, with our
approach there is no need to express that no disciplinary action is taken when
books are returned on time. This is supported implicitly.

The idea of incorporating agents in institutional framework is not a new
one. Several frameworks exist that put forward such ideas, the most promi-
nent ones being Opera/Operetta, MOISE+ and Islander (an introduction to
these different frameworks can be found in Sierra et al. (2007).

In contrast to these approaches, we do not only include agents in the
framework, but link a complete ABM to it and allow for a full autonomy of
the agents, only checking the impact their decisions have on the institutional
framework as a whole. Other differences are listed below.

The focus in Opera (Okouya and Dignum, 2008) is the specification of
(valid) institutional states: how the states were achieved is not addressed, nor
is the matter of which agents are responsible for the actions that bring about
these states. The model on which our work is based (Cliffe et al., 2007) is
complementary to Opera, focusing instead on actions and whether agents are
empowered, permitted or obliged to execute actions, as well as maintaining
a complete trace of the institutional history. Furthermore, the computational
model described here enables a direct, model-checking approach, both for the
verification of the design-time model and in its utilisation by agents enquiring
about the institutional state as it evolves.
MOISE+ (Hübner et al., 2007) is potentially the most similar to what we

have set out: it is described as a middleware for organizational programming,
which like us uses an ABM environment as the agent framework and extends
this environment to allow agents to perceive their organization. However, it
would appear from Hübner et al. (2007), that agent autonomy is quite highly
constrained by the roles they take on at any one time, which on their part
are restricted by the domain being modelled. Furthermore, it is notable that
individual actions can be restricted by the group to which an agent belongs.
In contrast, the agents in our model are simply subject to the policies of the
institutional framework and can choose whether to observe them or not.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.25

26

Islander (Esteva et al., 2002) – and associated tools – offers a compre-
hensive environment for the specification of electronic institutions through
state diagrams labelled with speech acts, coupled with simulation via Ameli
(Esteva et al., 2004), supported by JADE. The agents are constructed from
the specification and are in essence regimented by speech acts, rather than
being autonomous, perceiving an illocution and then taking some action that
may or may not have meaning in the (single) pervading institutional context.
Although it would appear to be possible to author agents that can operate
in this environment, using an internal architecture of choice, they would be
without access to any formal model of the institutional framework in which
they act, and so are functionally blind.

The attraction of connecting BDI agents and norms and policies goes back
to at least Dignum et al. (2000), which discusses a form of deontic logic
to accommodate institutional concepts and a pseudo-code extension of the
BDI agent loop. However, practical connections appear to be few, and even
these do not appear to offer actual implementations. Meneguzzi and Luck
(2009) discuss how BDI agents may assimilate (changes in) permissions,
prohibitions and obligations, but unlike here, do not appear to address the
utilization of policies in the agent reasoning process. Criado, Argente and
Botti (2010) also describe a form of institution assimilation process via bridge
rules, so agents may recognize and acquire norms (and thereby also policies)
from their environment, but the recognition process is unclear, nor is it ap-
parent whether the norms are acquired from observation or supplied by an
institutional framework.

Summarizing, to address the shortcomings of the related work and to ful-
fil our goal to offer an approach that allows for reasoning about policies,
policy making and their effects on a more comprehensive level than has been
possible to date, we presented our approach which combines an institutional
framework and an agent-based simulation, uniting the best of both worlds,
namely verification of a formal specification combined with the testing of
large-scale systems with numerous different actor configurations.

7. Summary and Conclusions

We have demonstrated how institutional frameworks can be integrated into
ABM in order to reason about the impact of policies on a group of partici-
pants.The advantage of our prototype, J-InstAL, is that it allows both for the
formal verification of the institutional model, and the ability to run large scale
simulation tests with different set-ups of the individuals in the system without
facing complexity issues. In this paper, we focussed more on the integration
of the two approaches rather than the benefits arising from formal verification.
For a fuller explanation of this aspect, we refer to Balke et al. (2011). We de-

ai_law_clean_header.tex; 5/04/2013; 22:18; p.26

27

scribed in detail the architecture and the individual components of I-ABMand
our prototype J-InstAL and used a simplified contract-law example to show
the functionality of our methodology. The results of our simulation experi-
ments give an indication about an appropriate level of fine and a maximum
number of punishable events required for the scenario described.

From the perspective of simulation set-up, a possible extension of our
work is the analysis of a progressive fine (i.e. fining an agent more if it has
broken contracts repeatedly), the inclusion of more sophisticated agents, as
well as the obvious matter of the sophistication of our simplified contract
example.

In our simulation, one institutional monitor object manages one institu-
tional framework. We observe that often more than one institutional frame-
work is active within an application. Furthermore, some of these may interact
with one another. In (Cliffe et al., 2007), the authors present the concept of
multiple institutional frameworks where events in one institutional framework
cause events in another or change another institutional state. Extension of the
institutional monitor to accommodate reasoning about multiple institutional
frameworks is an important part of future work, along with the issue of using
conventional distributed systems techniques, such as replication, as a means
to avoid the institutional monitor becoming a bottleneck or single point of
failure.

Acknowledgements

The research of Tina Balke is partially supported by funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n◦ 288147.

References

Ågotnes, T., W. van der Hoek, J. A. Rodrı́guez-Aguilar, C. Sierra, and M. Wooldridge:
2007, ‘On the Logic of Normative Systems’. In: JCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007.

Alberti, M., M. Gavanelli, and E. Lamma: 2012, ‘Deon+: Abduction and Constraints for
Normative Reasoning’. In: A. Artikis, R. Craven, N. Kesim Çiçekli, B. Sadighi, and K.
Stathis (eds.): Logic Programs, Norms and Action, Vol. 7360 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, pp. 308–328.

Alberti, M., A. S. Gomes, R. Gonçalves, J. Leite, and M. Slota: 2011, ‘Normative systems
represented as hybrid knowledge bases’. In: J. Leite, P. Torroni, T. Ågotnes, G. Boella,
and L. van der Torre (eds.): Proceedings of the 12th international conference on Compu-
tational logic in multi-agent systems, Vol. 6814 of Lecture Notes in Computer Science. pp.
330–346.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.27

28

Andrighetto, G., R. Conte, P. Turrini, and M. Paolucci: 2007, ‘Emergence In the Loop: Simu-
lating the two way dynamics of norm innovation’. In: G. Boella, L. van der Torre, and H.
Verhagen (eds.): Normative Multi-agent Systems.

Balke, T.: 2011, ‘Towards the Governance of Open Distributed Systems – A Case Study in
Wireless Mobile Grids’. Phd dissertation, University of Bayreuth.

Balke, T., M. D. Vos, and J. Padget: 2011, ‘Analysing energy-incentivized cooperation in next
generation mobile networks using normative frameworks and an agent-based simulation’.
Future Generation Computer Systems 27(8), 1092–1102.

Baral, C.: 2003, Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press.

Bonabeau, E.: 2002, ‘Agent-based modeling: Methods and techniques for simulating human
systems’. Proceedings of the National Academy of Sciences of the United States of
America 99(10), 7280–7287.

Bordini, R. H., J. F. Hübner, and M. Wooldridge: 2007, Programming Multi-Agent Systems in
AgentSpeak using Jason, Wiley Series in Agent Technology. John Wiley & Sons.

Broersen, J., M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre: 2001, ‘The BOID archi-
tecture: conflicts between beliefs, obligations, intentions and desires’. In: AGENTS ’01:
Proceedings of the fifth international conference on Autonomous agents. New York, NY,
USA, pp. 9–16.

Clarke, E. M., E. A. Emerson, and A. P. Sistla: 1986, ‘Automatic Verification of Finite-
state Concurrent Systems Using Temporal Logic Specifications’. ACM Transactions on
Programming Languages and Systems 8(2), 244–263.

Cliffe, O.: 2007, ‘Specifying and Analysing Institutions in Multi-Agent Systems using Answer
Set Programming’. Ph.D. thesis, University of Bath.

Cliffe, O., M. De Vos, and J. Padget: 2007, ‘Specifying and Reasoning about Multiple
Institutions’. In: Coin, Vol. 4386 of LNAI. pp. 67–85.

Criado, N., E. Argente, and V. J. Botti: 2010, ‘A BDI architecture for normative decision
making’. In: W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, and S. Sen (eds.):
International Conference on Autonomous Agents and Multiagent Systems. pp. 1383–1384.

De Vos, M., J. Padget, and K. Satoh: 2011, ‘Legal Modelling and Reasoning using Institu-
tions’. In: S. Tojo (ed.): Proceedings of JURISIN 2010, Vol. 6797 of LNCS.

Denecker, M.: 2004, ‘What’s in a model? Epistemological Analysis of Logic Programming’.
In: Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth
International Conference (KR2004). pp. 106–113.

Dignum, F., D. Morley, E. Sonenberg, and L. Cavedon: 2000, ‘Towards Socially Sophisticated
BDI Agents’. Multi-Agent Systems, International Conference on 0, 0111.

Epstein, J. M. and R. Axtell: 1996, Growing Artificial Societies: Social Science from the
Bottom Up. Washington, DC, USA: The Brookings Institution.

Esteva, M., D. de la Cruz, and C. Sierra: 2002, ‘ISLANDER: an electronic institutions editor’.
In: International Conference on Autonomous Agents and Multiagent Systems. pp. 1045–
1052.

Esteva, M., B. Rosell, J. A. Rodrı́guez-Aguilar, and J. L. Arcos: 2004, ‘AMELI: An agent-
based middleware for electronic institutions’. In: N. e. a. Jennings (ed.): Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), Vol. 1. Washington, DC, USA, pp. 236–243.

Gebser, M., R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele: 2008, ‘En-
gineering an Incremental ASP Solver’. In: M. Garcia de la Banda and E. Pontelli (eds.):
Logic Programming, Vol. 5366 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 190–205.

Gebser, M., B. Kaufmann, A. Neumann, and T. Schaub: 2007, ‘Conflict-Driven Answer Set
Solving’. In: Proceeding of IJCAI07. pp. 386–392.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.28

29

Gelfond, M. and V. Lifschitz: 1991, ‘Classical Negation in Logic Programs and Disjunctive
Databases’. New Generation Computing 9(3-4), 365–386.

Gilbert, N. and K. G. Troitzsch: 2005, Simulation for the Social Scientist. Open University
Press, 2nd edition.

Governatori, G.: 2005, ‘Representing Business Contracts in RuleML’. International Journal
of Cooperative Information Systems 14(2-3), 181–216.

Governatori, G. and A. Rotolo: 2004, ‘Defeasible Logic: Agency, Intention and Obligation’.
In: A. Lomuscio and D. Nute (eds.): Deontic Logic in Computer Science, Vol. 3065 of
LNAI. Berlin, pp. 114–128.

Grossi, D.: 2007, ‘Designing invisible handcuffs. Formal investigations in institutions and
organizations for multi-agent systems’. Ph.D. thesis, Utrecht University.

Gulyás, L.: 2005, ‘Understanding Emergent Social Phenomena: Methods, Tools and Appli-
cations for Agent-Based Modeling’. Ph.D. thesis, Computer and Automation Research
Institute, Hungarian Academy of Sciences, Budapest, Hungary.

Helbing, D. and S. Balietti: 2011, ‘How to Do Agent-Based Simulations in the Future: From
Modeling Social Mechanisms to Emergent Phenomena and Interactive Systems Design’.
Working Paper 11-06-024, Santa Fe Institute.

Herrestad, H.: 1991, ‘Norms and formalization’. In: ICAIL’91: Proceedings of the 3rd
international conference on Artificial intelligence and law. pp. 175–184.

Holland, J. H.: 1992, Adaptation in natural and artificial systems. Cambridge, MA, USA:
MIT Press.

Hübner, J. F., J. S. Sichman, and O. Boissier: 2007, ‘Developing organised multiagent systems
using the MOISE’. IJAOSE 1(3/4), 370–395.

Jager, W.: 2000, ‘Modelling Consumer Behaviour’. Ph.D. thesis, University of Groningen.
Jones, A. J. and M. Sergot: 1996, ‘A Formal Characterisation of Institutionalised Power’. ACM

Computing Surveys 28(4), 121. Read 28/11/2004.
Jones, A. J. I. and M. Sergot: 1993, ‘On the Characterization of Law and Computer Systems:

The Normative Systems Perspective’. In: Deontic logic in Computer Science: Normative
System Specification. John Wiley and Sons Ltd., pp. 275–307.

Ligeza, A.: 2006, Logical Foundations for Rule-Based Systems, Vol. 11 of Studies in
Computational Intelligence. Springer.

Macy, M. W. and R. Willer: 2002, ‘From Factors to Actors: Computational Sociology and
Agent-Based Modeling’. Annual Review of Sociology 28, 143–166.

Meneguzzi, F. R. and M. Luck: 2009, ‘Norm-based behaviour modification in BDI agents’.
In: C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman (eds.): International
Conference on Autonomous Agents and Multiagent Systems (1). pp. 177–184.

Morales, J., M. López-Sánchez, and M. Esteva: 2011, ‘Evaluation of an Automated Mecha-
nism for Generating New Regulations’. In: J. Lozano, J. Gámez, and J. Moreno (eds.):
Advances in Artificial Intelligence, Vol. 7023 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 12–21.

Noriega, P.: 1997, ‘Agent mediated auctions: The Fishmarket Metaphor’. Ph.D. thesis,
Universitat Autònoma de Barcelona.

North, D. C.: 1994, ‘Institutions Matter’. Economic History 9411004, EconWPA.
Okouya, D. and V. Dignum: 2008, ‘OperettA: a prototype tool for the design, analysis and

development of multi-agent organizations’. In: AAMAS (Demos). pp. 1677–1678.
Ostrom, E.: 1990, Governing the Commons: the Evolution of Institutions for Collective Action.

Cambridge University Press. 18th printing (2006).
Prakken, H. and M. J. Sergot: 1996, ‘Contrary-to-Duty Obligations’. Studia Logica (SLOG-

ICA) 57(1), 91–115.
Rao, A. S. and M. P. Georgeff: 1995, ‘BDI-agents: from theory to practice’. In: Proceedings

of the First International Conference on Multiagent Systems.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.29

30

Sergot, M. J., F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory: 1986,
‘The British Nationality Act as a logic program’. Communications of the ACM 29(5),
370–386.

Sierra, C., J. Thangarajah, L. Padgham, and M. Winikoff: 2007, ‘Designing institutional multi-
agent systems’. In: Proceedings of the 7th international conference on Agent-oriented
software engineering VII. Berlin, Heidelberg.

Vázquez-Salceda, J.: 2003, ‘The role of norms and electronic institutions in multi-agent sys-
tems applied to complex domains. The HARMONIA framework’. Ph.D. thesis, Technical
University of Catalonia.

Vickers, G.: 1973, ‘Values, Norms and Policies’. Policy Science 4, 103–111.
Wooldridge, M. J. and N. R. Jennings: 1995, ‘Intelligent Agents: Theory and Practice’. The

Knowledge Engineering Review 10(2), 115–152.

ai_law_clean_header.tex; 5/04/2013; 22:18; p.30

31

Appendix

A. Full Case-Study Specification

The complete InstALspecification language description of our case study is
given in the following figures. Comments describing the comments are pre-
ceeded by %

1 % name of institution
2

3 institution buyerseller;
4

5 % types
6 type Agent;
7 type Round;
8

9 % exogeneous events
10 exogenous event setUpContract(Agent,Agent,Round);
11 % seller, buyer, round identifier
12 exogenous event terminateCompletedContracts(Round);
13 exogenous event endOfRound;
14

15 % institutional events
16 inst event intSetUpContract(Agent,Agent,Round);
17

18 % violation events
19 violation event contractViolationBuyer(Agent,Agent,Round);
20 % Seller, Buyer
21 violation event contractViolationSeller(Agent,Agent,Round);
22

23 % fluents
24 fluent contract(Agent,Agent,Round); % Seller, Buyer
25 fluent contractToBeDeleted(Agent,Agent,Round);
26

27 %%%%%%%%%%%%%%%%%%%

Figure 7. Declaration of the institutional components

ai_law_clean_header.tex; 5/04/2013; 22:18; p.31

