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Abstract

Game semantics extends the Curry-Howard isomorphism to a three-way correspondence:
proofs, programs, strategies. But the universe of strategies goes beyond intuitionistic
logics and lambda calculus, to capture stateful programs. In this paper we describe
a logical counterpart to this extension, in which proofs denote such strategies. The
system is expressive: it contains all of the connectives of Intuitionistic Linear Logic, and
first-order quantification. Use of Laird’s sequoid operator allows proofs with imperative
behaviour to be expressed. Thus, we can embed first-order Intuitionistic Linear Logic
into this system, Polarized Linear Logic, and an imperative total programming language.

The proof system has a tight connection with a simple game model, where games are
forests of plays. Formulas are modelled as games, and proofs as history-sensitive winning
strategies. We provide a strong full completeness result with respect to this model: each
finitary strategy is the denotation of a unique analytic (cut-free) proof. Infinite strategies
correspond to analytic proofs that are infinitely deep. Thus, we can normalise proofs,
via the semantics.

Keywords: game semantics, full completeness, history-sensitive strategies, sequentiality

1. Introduction

The Curry-Howard isomorphism between proofs in intuitionistic logics and functional
programs is a powerful theoretical and practical principle for specifying and reasoning
about programs. Game semantics provides a third axis to this correspondence: each
proof/program at a given type denotes a strategy for the associated game, and typically
a full completeness result establishes that this correspondence is also an isomorphism
[3]. However, in languages with side-effects such as mutable state it is evident that there
are many programs which do not correspond to intuitionistic proofs. Game semantics
has achieved notable success in providing models of such programs [5, 2, 20], in which
they typically denote “history-sensitive” strategies — strategies which may break the
constraints of innocence [14] or history-freeness [3] imposed in fully complete models of
intuitionistic or linear logic. The full completeness of these models means there is a pre-
cise correspondence between programs and history-sensitive strategies, which raises the
question: is there a logic to flesh out the proofs/imperative programs/history-sensitive
strategies correspondence?

In this paper we present a first-order logic, WS1, and a games model for it in which
proofs denote history-sensitive strategies. Thus total imperative programs correspond,
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via the game semantics, to proofs in WS1. Moreover, because WS1 is more expressive than
the typing system for a typical programming language, it can express finer behavioural
properties of strategies. In particular, we can embed first-order intuitionistic logic with
equality, Polarized Linear Logic, and a finitary imperative language with ground store,
coroutines and some infinite data structures. We also take first steps towards answering
some of the questions posed by the logic and its semantics: Are there any formulas which
only have ‘imperative proofs’, but no proofs in a traditional ‘functional’ proof system?
Can we use the expressivity of WS1 to specify imperative programs?

1.1. Related Work

The games interpretation of linear logic upon which WS1 is based was introduced
by Blass in a seminal paper [7]. Blass also gives instances of history sensitive strategies
which are not denotations of linear logic proofs; these do, however, correspond to proofs
in WS1. The particular symmetric monoidal closed category of games underlying our
semantics has been studied extensively from both logical and programming perspectives
[11, 26, 15]. Longley’s project to develop a programming language based on it [30] may
be seen as complementary to our aim of understanding it from a logical perspective.

Several logical systems have taken games or interaction as a semantic basis yielding
a richer notion of meaning than classical or intuitionistic truth, including Ludics [12]
and Computability Logic [18]. The latter also provides an analysis of Blass’s examples,
suggesting further connections with our logic, although there is a difference of emphasis:
the research described here is focused on investigating the structural properties of the
games model on which it is based.

Perhaps closest in spirit to our work is tensorial logic, introduced in [34]. Like WS1,
tensorial logic is directly inspired by the structure of strategies in game semantics, and
in [33], Melliès demonstrates a tight correspondence between the logic and categories of
innocent strategies on dialogue games. Our focus in this paper is somewhat different,
because we are primarily concerned with the history-sensitive behaviour characteristic of
(game semantics of) imperative programs, rather than the purely functional programs
that denote innocent strategies.

In [9] a proof theory for Conway games is presented, where formulas are the game
trees themselves. In [13], the λλ-calculus is presented, where individual moves of game
semantics are represented by variables and binders. Both settings deal with history-
sensitive strategies, and have dynamics corresponding to composition of strategies.

A quite different formalisation of game semantics for first order logic is given in [29],
also with a full completeness result.

1.2. Contribution

The main contribution of this paper is to present an expressive logical system and
its semantics, in which proofs correspond to history sensitive strategies. Illustrating the
expressive power of this system, we show how proofs of intuitionistic first-order logic,
Polarized Linear Logic and imperative programming constructs may be embedded in it.
We also demonstrate how formulas in the logic can be used to represent some properties of
imperative programs: for example, we describe a formula for which any proof corresponds
to a well-behaved (single write) Boolean storage cell.
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The interpretation of WS1 includes some interesting developments of game semantics.
In particular, the exponentials are treated in a novel way: we use the fact that the se-
mantic exponential introduced in [15] is a final coalgebra, and reflect this explicitly in the
logic in the style of [8]. This formulation allows us to express the usual exponential intro-
duction rules (promotion and dereliction) but also proofs that correspond to strategies
on !A that act differently on each interrogation, such as the reusable Boolean reference
cell. Another development is the interpretation of first-order logic with equality. A proof
corresponds to a family of winning strategies — one for each possible interpretation of
the atoms determined by a standard notion of L-structure — which must be uniform
across L-structures. This notion of uniformity is precisely captured by the requirement
that strategies are lax natural transformations between the relevant functors.

The main technical results of this paper concern the sharp correspondence between
proofs and strategies: full completeness results. We show that any bounded uniform win-
ning strategy is the denotation of a unique (cut-free) analytic proof. In the exponential-
free fragment, where all strategies are bounded, it follows that many rules such as cut
are admissible; and it allows us to normalise proofs to analytic proofs via the semantics.
For the full logic, since the exponentials correspond to final coalgebras, proofs can be
unfolded to infinitary form. Extending semantics-based normalisation to the full WS1,
the resulting normal forms are infinitary analytic proofs.

2. Games and Strategies

Our notion of game is essentially that introduced by [7], and similar to that of [3, 25],
augmented with winning conditions introduced as in [15]. We make use of the categorical
structure on games and strategies first introduced in [19].

Informally, a game is a tree where Player and Opponent own alternate nodes, together
with a polarity specifying which protagonist owns the starting node. A play proceeds
down a particular branch, with Opponent/Player choosing the subtree for nodes they
control. A strategy for Player specifies which choice Player should make in response to
Opponent’s moves so far. The winner of a finite play is the last protagonist to play a
move. The winner of an infinite play is specified by a winning condition for each game.

If A is a set, let A∗ denote the free monoid (set of sequences) over A, Aω the set
of infinite sequences over A, and ε the empty sequence. We write s v t if s is a prefix
of s, and s < t if s is a strict (finite) prefix of (possibly infinite) t. If X ⊆ A∗, write
X = {s ∈ Aω : ∀t < s, t ∈ X}.

Definition A game is a tuple (MA, λA, bA, PA,WA) where

• MA is a set of moves

• λA : MA → {O,P}

– We call m an O-move if λA(m) = O and a P-move if λA(m) = P .

• bA ∈ {O,P} specifies a starting player

– We call s ∈M∗A alternating if s starts with a bA-move and alternates between
O-moves and P-moves. Write M�

A for the set of such sequences.
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• PA ⊆M�
A is a nonempty prefix-closed set of valid plays.

• WA ⊆ PA represents the set of infinite plays that are P-winning; we say an infinite
play is O-winning if it is not P-winning.

For finite plays, the last player to play a move wins: let W ∗A = WA ∪ EA where EA
is the set of plays that end in a P-move. We will call a game A negative if bA = O and
positive if bA = P . We write A,B,C, . . . for arbitrary games; L,M,N, . . . for arbitrary
negative games and P,Q,R, . . . for arbitrary positive games.

Definition If A is a game, we define its negation by changing its polarity, and swapping
its Player/Opponent labelling. Define ¬ : {O,P} → {O,P} by ¬(O) = P and ¬(P ) = O.

A⊥ = (MA,¬ ◦ λA,¬bA, PA, PA −WA).

Negation is evidently an involutive bijection between negative and positive games.

Definition A strategy σ for a game (MA, λA, bA, PA,WA) is a subset of PA (a set of
traces) satisfying:

• If sa ∈ σ, then λA(a) = P

• If sab ∈ σ, then s ∈ σ

• If sa, sb ∈ σ, then a = b

• If σ = ∅ then bA = P , and if ε ∈ σ then bA = O.

We say a strategy σ is bounded if ∃k ∈ N.∀s ∈ σ.|s| ≤ k; in which case we write depth(σ)
for the smallest such k (the length of the longest play in σ).

Definition A strategy on a game A is total if it is nonempty and whenever s ∈ σ and
sa ∈ PA, there is some b ∈ MA such that sab ∈ σ. A total strategy σ is winning if
whenever s ∈ PA and all prefixes of s ending in a P-move are in σ, then s ∈WA.

2.1. Connectives

We next describe operations on games, which will correspond to connectives in our
logic. These come in dual pairs, determined by involutive negation.

First, some notation. If X and Y are sets, let X + Y = {in1(x) : x ∈ X} ∪ {in2(y) :
y ∈ Y }. We use standard notation [f, g] for copairing. If s ∈ (X + Y )∗ or s ∈ (X + Y )ω

then s|i is the subsequence of s consisting of elements of the form ini(z). If X1 ⊆ X∗ and
Y1 ⊆ Y ∗ let X1‖Y1 = {s ∈ (X +Y )∗ : s|1 ∈ X1 ∧ s|2 ∈ Y1}. If X1 ⊆ Xω and Y1 ⊆ Y ω let
X1‖Y1 = {s ∈ (X + Y )ω : s|1 ∈ X1 ∧ s|2 ∈ Y1}.

Empty Game. We define a negative game with no moves:

1 = (∅, ∅, O, {ε}, ∅).

There is one strategy on 1 given by {ε}, and this strategy is total (and winning, as P1 is
empty).

There is one strategy, ∅, on the empty positive game 0 = 1⊥. This strategy is not
total (intuitively, it is Player’s turn to play first but he has no moves to play).

4



One-move Game. We write ⊥ for the negative game with a single move q and maximal
play consisting of q :

⊥ = ({q}, {q 7→ O}, O, {ε, q}, ∅).

There is a single strategy {ε} on ⊥; this is not total.
We write > for the positive game with a single move, ⊥⊥. There are two strategies on

>: ∅ (which is evidently not total) and {q} which is total (and thus, trivially winning).

Disjoint Union. The negative game L&N is played over the disjoint union of the moves
of L and N : a play in this game is either a (tagged) play in L or a (tagged) play in N . A
play is P -winning if it is a P -winning play from L or a P -winning play from N . Thus, on
Opponent’s first move he chooses to play either in L or N , and thereafter play remains
in that component. Formally, define

L&N = (ML +MN , [λL, λN ], O, PL +∗ PN , {inω1 (s) : s ∈WL} ∪ {inω2 (s) : s ∈WN})

where X1 +∗ Y1 = {s ∈ X1‖Y1 : s|1 = ε ∨ s|2 = ε} if X1 ⊆ X∗ and Y1 ⊆ Y ∗, and
if s ∈ X∗i (resp. Xω

i ) we write in∗i (s) (resp. inωi ) for the corresponding sequence in
(X1 +X2)∗ (resp. (X1 +X2)ω). A (winning) strategy on L&N corresponds to a pairing
of a (winning) strategy on L with a (winning) strategy on N — hence the identification
of this connective with the “with” of linear logic.

Similarly, the positive game Q⊕ R = (Q⊥&R⊥)⊥ corresponds to a disjoint union of
plays from Q and R where Player’s first move constitutes a choice to play either in Q or
R. An infinite play in Q⊕ R is P-winning if it is P-winning in the relevant component.
Thus a winning strategy on Q ⊕ R corresponds to either a winning strategy on Q or a
winning strategy on R.

We may form any set-indexed conjunctions and disjunctions in this way. Let X be
a set and {Nx : x ∈ X} a family of negative games indexed by X. We define the game∏
x∈X Nx by

(
∑
x∈X

MNx , inx(m) 7→ λNx(m), O, {in∗x(s) : x ∈ X, s ∈ PNx}, {in
ω
x (s) : x ∈ X, s ∈WNx}).

If {Qx : x ∈ X} is a family of positive games then
⊕

x∈X Qx = (
∏
x∈X N

⊥
x )⊥.

Symmetric Merge. If L and N are negative games, a play in the negative game L ⊗ N
is an interleaving of a play in L with a play in N . Define

L⊗N = (ML +MN , [λL, λN ], O, (PL‖PN ) ∩M�
L⊗N , {s ∈ PL⊗N : s|1 ∈W ∗L ∧ s|2 ∈W ∗N}).

The fact that the play restricted to each component must be alternating, and that
the play overall must be alternating, ensures that only Opponent may switch between
components. This operation may be used to interpret the “times” of linear logic [7]. An
infinite play in L⊗N is P-winning if its restriction to L is P-winning and its restriction
to N is P-winning.

Similarly, if Q and R are positive games, plays in the positive game QOR = (Q⊥ ⊗
R⊥)⊥ consist of interleavings of plays in Q and R in which Player may switch between
the two components. An infinite play in QOR is P-winning if its restriction to Q is
P-winning or its restriction to R is P-winning.
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Left Merge. Let A be a game of polarity a (positive or negative), and N a negative game.
The game A � N has polarity a: a play in this game is an interleaving of a play in A
with a play in N such that the first move, if any, is in A. An infinite play in A �N is
P-winning if both of its restrictions are P-winning. Formally, define

A�N = (MA +MN , [λA, λN ], bA, (PA‖LPN ) ∩M�
A�N , {s ∈ P

ω
A�N : s|1 ∈W ∗A ∧ s|2 ∈W ∗N}).

where X1‖LY1 = {s ∈ X1‖Y1 : s|1 = ε ⇒ s|2 = ε}. Observe that it is Opponent who
switches between components: if A is negative then A�N consists of the plays in A⊗N
which start in A (or are empty). This connective on games, the sequoid, was introduced
in [21] and its properties can be used to model stateful effects [21, 24].

If Q is a positive game, the game A � Q = (A⊥ � Q⊥)⊥ has the same polarity as
A, and consists of interleavings of a play in A and a play in Q, starting in A and with
Player switching between components and winning an infinite play if he wins in either A
or Q.

Exponentials. Let N be a negative game. The negative game !N consists of countably
many copies of N , tagged with natural numbers. A play over !N is an interleaving of
plays in each copy, such that any move in Ni+1 is preceded by a move in Ni. An infinite
play is winning just if it is winning in each component. Define

!N = (MN × N, λN ◦ π1, {s : ∀i.s|i ∈ PN ∧ s|i = ε⇒ s|i+1 = ε}, {s : ∀i.s|i ∈W ∗N}).

As with the tensor, there is an implicit switching condition: only Opponent can open
new copies and switch between copies. This operation may be used to interpret the “of
course” of linear logic [15].

Dually, if Q is a positive game, ?Q = (!Q⊥)⊥ is the game consisting of an infinite
number of copies of Q, where Player can spawn new copies and switch between them.
An infinite play in ?Q is winning if it is winning in at least one component.

2.1.1. Derived Connectives

We shall also make use of the following derived operations:

Lifts. We can use left merge to add a single move at the beginning of a game. If N is a
negative game, a play in the positive game

↓ N = >�N

consists of a play in N prefixed by an extra P-move. A strategy on ↓ N is either ∅ or
corresponds to a strategy on N . A winning strategy on ↓ N corresponds to a winning
strategy on N . If P is a positive game, a play in the negative game

↑ P = ⊥� P

consists of a play in P prefixed by an extra O-move. A (winning) strategy on ↑ P
corresponds to a (winning) strategy on P .
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Affine Implication. If M and N are negative games, we may define

M ( N = N �M⊥.

A play in M ( N consists of a play in N interleaved with a play in M⊥ (an ‘input
version’ of M), starting in N . It is winning if its restriction to N is P-winning or its
restriction to M⊥ is P-winning (i.e. its restriction to M is O-winning), agreeing with
[15].

2.1.2. Isomorphisms of Games

Given two games A and B, we say that A and B are forest isomorphic if bA = bB and
there is a bijection from PA to PB which is monotone with respect to the prefix order,
and restricts to a bijection on the P -winning plays. Some forest isomorphisms between
games are given in Figure 1. Each isomorphism M ∼= N gives rise to winning strategies
M ( N and N ( M , which are mutually inverse. Thus, winning strategies on M are
in bijective correspondence with winning strategies on N .

Figure 1: Some Characteristic Isomorphisms of Games

M ⊗N ∼= N ⊗M POQ ∼= QOP
M ⊗ (N ⊗ L) ∼= (M ⊗N)⊗ L PO(QOR) ∼= (POQ)OL

M ⊗ 1 ∼= M ∼= M&1 PO0 ∼= P ∼= P ⊕ 0
M&N ∼= N&M P ⊕Q ∼= Q⊕ P

M&(N&L) ∼= (M&N)&L P ⊕ (Q⊕R) ∼= (P ⊕Q)⊕R
(M ⊗N) ( L ∼= M ( (N ( L) P � (M ⊗N) ∼= (P �M)�N

M ( (N&L) ∼= (M ( N)&(M ( L) (P ⊕Q)�N ∼= (P �N)⊕ (Q�N)
M ( 1 ∼= 1�M ∼= 1 0�M ∼= 0�M⊥ ∼= 0

M ⊗N ∼= (M �N)&(N �M) POQ ∼= (P �Q)⊕ (Q� P )
(M&N)� L ∼= (M � L)&(N � L) (P ⊕Q)�R ∼= (P �R)⊕ (Q�R)∏

x∈X(Mx � L) ∼=
∏
x∈XMx � L

⊕
x∈X(Px �R) ∼=

⊕
x∈X Px �R

M � (N ⊗ L) ∼= (M �N)� L P � (QOR) ∼= (P �Q)�R
M � 1 ∼= M P � 0 ∼= P

(M ( N) ( ⊥ ∼= (N ( ⊥)�M >� (M �Q) ∼= (>�M)�Q
⊥�M ∼= ⊥ >� P ∼= >
!N ∼= N�!N ?P ∼= P�?P

!(N&M) ∼=!N⊗!M ?(P ⊕Q) ∼=?PO?Q

2.2. Imperative Objects as Strategies

We may model higher-order programming languages with imperative features by in-
terpreting types as games and programs as strategies. (Such a semantics of a full object-
oriented language, using essentially the notion of game described here, is described in
[38].) Here, we illustrate the capacity of our games and strategies to represent imperative
objects by describing a strategy with the behaviour of a Boolean reference cell, on a game
corresponding to the type of imperative Boolean variables — essentially the cell strategy
first described, for a different notion of game, in [5]. (We will later see how this strategy
can be represented as a proof in our logic.)

7



Let B = ⊥ � > ⊕ > be the (negative) game of “Boolean output” — this has one
initial Opponent-move q and two possible Player responses, representing True or False.
Let Bi = (⊥&⊥)�> be the (negative) game of “Boolean input” which has two starting
Opponent-moves in(tt) and in(ff) and one possible response to this, ok. The game
!(Bi&B) represents the type of a Boolean variable — it is a product of a write method
which accepts a Boolean input and a read method which on interrogation produces a
Boolean output, under an exponential which allows these methods to be used arbitrarily
many times.

The strategy cell on this game represents a reference cell which accepts Boolean input
on the left, and returns the last value written to it as output on the right (we assume
it is initialised with ff). For readability, we will omit the tags on the product and the
exponential (since they can be inferred).

!(Bi & B)
q O
ff P

in(tt) O
ok P

q O
tt P

In contrast with the history-free strategies which denote proofs of linear logic in the
model of [3], this strategy is history-sensitive — the move prescribed by the strategy
depends on the entire play so far. It is this property which allows the state of the object
to be described implicitly, as in [5].

3. The Logic WS1

3.1. Formulas of WS1

The formulas of WS1 are based on first-order linear logic, with some additional con-
nectives, and subject to a notion of polarity. A first-order language consists of:

• A collection of complementary pairs of predicate symbols φ (negative) and φ (posi-
tive), each with an arity in N such that ar(φ) = ar(φ). This must include the binary
symbol = (negative), and we write 6= for its complement

• A collection of function symbols, each with an arity.

The negative and positive formulas of WS1 over L are defined by the following gram-
mar. M,N range over negative formulas and P,Q over positive formulas; variables range
over some global set V.

M , N := 1 | ⊥ | φ(−→s ) |
M ⊗N | M �N | N � P |
∀x.N | M&N | !N

P , Q := 0 | > | φ(−→s ) |
POQ | P �Q | P �N |
∃x.P | P ⊕Q | ?P

8



Here, s ranges over L-terms, x over variables, and φ(−→s ) over n-ary predicates φ applied
to a tuple of terms −→s = (s1, . . . , sn).

The involutive negation operation ( )⊥ sends negative formulas to positive ones and
vice versa by exchanging each atom, unit or connective for its dual — i.e. 1 for 0, ⊥ for
>, φ(−→x ) for φ(−→x ), ⊗ for O, � for �, ∀ for ∃, & for ⊕ and ! for ?.

3.1.1. Interpreting Formulas as Games

We may interpret each positive formula as a positive game, and each negative formula
as a negative game, by fixing a truth assignment for the atomic formulas via a standard
notion of first-order structure.

Definition An L-structure L is a set |L| together with an interpretation function IL
sending:

• each predicate symbol (with arity n) to a function |L|n → {tt, ff} such that
IL(φ)(−→a ) 6= IL

(
φ
)

(−→a ) for all ~a and IL(=)(a, b) = tt iff a = b;

• each function symbol f (with arity n) to a function IL(f) : |L|n → |L|.

For any X ⊆ V, an L-model over X is a pair (L, v) where L is an L-structure and
v : X → |L| a valuation function, yielding an assignment of truth values to all atomic
formulas with variables in X.

Given a L-model (L, v) over X, we may interpret each formula A with free variables
in X as a game JAK(L, v) in as follows:

• Each of the units and connectives ⊗,O,�,�,1,0,>,⊥,!,?,&,⊕ is interpreted as the
corresponding operation on games from Section 2.1, lifted to an action on families
of games.

• Positive atoms which are assigned true in (L, v) are interpreted as the game with
a single (Player) move (>); positive atoms which are assigned false are interpreted
as the game with no moves (0). Conversely, negative atoms which are assigned
true in (L, v) are interpreted as the empty game (1), whilst negative atoms which
are assigned false are interpreted as the game with a single Opponent move (⊥).

• Quantifiers are interpreted as additive conjunctions and disjunctions over the do-
main of L — i.e. J∀x.NK(L, v) =

∏
l∈|L|JNK(L, v[x 7→ l]) and J∃x.P K(L, v) =⊕

l∈|L|JP K(L, v[x 7→ l]). In the case of ∀x.N , this is equivalent to Opponent choos-

ing an x ∈ |L| and play proceeding in N(x). In the case of ∃x.P , this is equivalent
to Player choosing an x ∈ |L| and play proceeding in P (x).

Note that JA⊥K = JAK⊥.

3.2. Proofs

A proof of a formula ` A will be interpreted as a uniform family of winning strategies
on JAK(L, v) for each (L, v). We will formalise this interpretation (and, importantly, the
meaning of “uniformity”) in Section 6, but with this in mind, we can define proof rules
for WS1. A sequent of WS1 is of the form X; Θ ` Γ where X ⊆ V, Θ is a set of positive
atomic formulas and Γ is a nonempty list of formulas such that FV (Θ,Γ) ⊆ X. The
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explicit free variable set X is required for the tight correspondence between the syntax
and semantics. For brevity, let Φ range over X; Θ contexts.

We shall interpret such a sequent as a (family of) dialogue games by interpreting the
comma operator in Γ as left-associative left-merge (i.e. either � or � depending on the
polarity of the right-hand operand), so that the first move must occur in the first element
(or head formula) of Γ. For example, if M,N are negative formulas and P,Q positive
formulas, the sequent

`M,P,Q,N

is semantically equivalent to

` ((M � P )�Q)�N.

Thus, in the game interpretation of a sequent Γ the first move must occur in the first (or
head) formula of Γ.

The derivation rules for proofs are partitioned into core rules and other rules. Here
M,N range over negative formulas, P,Q over positive formulas, Γ,∆ over lists of formu-
las, Γ∗ over non-empty lists of formulas and Γ+,∆+ over lists of positive formulas.

3.2.1. Core Rules

Each n-ary connective � of WS1 is associated with core introduction rules which intro-
duce that connective in the head position of a sequent: they conclude Φ ` �(A1, . . . , An),Γ
from some premises. These rules are given in Figure 2. These core introduction rules are
all additive (by contrast to linear logic: note in particular the difference with respect to
the ⊗ introduction rule).

Figure 2: Core Introduction Rules for WS1

P1
Φ ` 1,Γ

Φ ` A,N,Γ
P�

Φ ` A�N,Γ

Φ ` A,P,Γ
P�

Φ ` A� P,Γ
Φ `M,N,Γ Φ ` N,M,Γ

P⊗
Φ `M ⊗N,Γ

Φ ` P,Q,Γ
PO1 Φ ` POQ,Γ

Φ ` Q,P,Γ
PO2 Φ ` POQ,Γ

Φ `M,Γ Φ ` N,Γ
P&

Φ `M&N,Γ

Φ ` P,Γ
P⊕1 Φ ` P ⊕Q,Γ

Φ ` Q,Γ
P⊕2 Φ ` P ⊕Q,Γ

P>
Φ ` >

Φ ` N
P−> Φ ` >, N

Φ ` P
P+
⊥ Φ ` ⊥, P

X; Θ, φ(−→s ) ` ⊥,Γ
Pat−

X; Θ ` φ(−→s ),Γ

X; Θ, φ(−→s ) ` >,Γ
Pat+

X; Θ, φ(−→s ) ` φ(−→s ),Γ

Φ ` N, !N,Γ
P!

Φ `!N,Γ

X; Θ ` P [s/x],Γ
Ps∃ FV (s) ⊆ X

X; Θ ` ∃x.P,Γ
X ] {x}; Θ ` N,Γ

P∀
X; Θ ` ∀x.N,Γ

Φ ` P, ?P,Γ
P?

Φ `?P,Γ

We may interpret each of the core introduction rules with respect to (L, v) as follows:

• The interpretation of P1 is the unique total strategy on the game 1,Γ (where it
is Opponent’s turn to start, but there are no moves for him to play since the first
move must take place in the empty game 1).
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• The interpretation of P> is the unique total strategy on the game >, where Player
plays a move and the game is over.

• The interpretation of the unary rule P� is the identity function, as the game de-
noted by the conclusion is the same game as that denoted by the premise. The
interpretation of P� is similar.

• For P& we note that given strategies σ : M,Γ and τ : N,Γ we can construct a
strategy on M&N,Γ which plays as σ if Opponent’s first move is in M , and as τ
if Opponent’s first move is in N .

• Similarly, for P⊗ we note that given strategies σ : M,N,Γ and τ : N,M,Γ we
can construct a strategy on M ⊗ N which plays as σ if Opponent’s first move is
in M , and as τ if Opponent’s first move is in N . Here we are making use of the
isomorphism M ⊗ N ∼= (M � N)&(N �M) — each play in M ⊗ N must either
start in M (and thus be a play in M �N) or in N (and thus be a play in N �M).
Thus, WS1 commits to a particular interpretation of ⊗, rather than an arbitrary
monoidal structure.

• For P⊕1 we note that given a strategy σ : P,Γ we can construct a strategy on
P ⊕Q,Γ with Player choosing to play his first move in P and thereafter playing as
σ. For P⊕2 Player can play his first move in Q and then play as the given strategy.

• Similarly, for the PO rules, we note that in a strategy on POQ,Γ Player may choose
to either play his first move in P (requiring a strategy on P,Q,Γ) or in Q (requiring
a strategy on Q,P,Γ).

• The interpretation of P+
⊥ uses the observation that total strategies on ⊥, P = ↑P

are in correspondence with total strategies on P . Similarly, the interpretation of
P−> uses the observation that total strategies on >, N = ↓N are in correspondence
with total strategies on N .

• For Pat−, we know that φ(−→s ),Γ is interpreted by 1,Γ if (L, v) |= φ(−→s ) and by ⊥,Γ
if (L, v) 6|= φ(−→s ). In the former case, there are no moves to respond to, so we only
need to consider the case when (L, v) |= φ(−→s ).

• For Pat+, we can only provide a family of strategies on a game whose first move is
in φ(−→s ) if we know that (L, v) |= φ(−→s ) since otherwise our family has to contain
a winning strategy on the empty positive game 0, of which there are none.

• For P∀, to give a family of strategies on ∀x.N,Γ we must give a strategy on N,Γ
for each choice of x — that is, a family of strategies on the set of Θ-satisfying
L-models over X ] {x}.

• For P∃, to give a family of strategies on ∃x.P,Γ we must choose a value s for x and
give a family of strategies on P [s/x],Γ.

As well as the core introduction rules, there is a small set of core elimination rules,
found in Figure 3. These permit decomposition of the second and third formula in a
sequent, if the first formula is ⊥ or >. They correspond to isomorphisms between the
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Figure 3: Core Elimination Rules for WS1

Φ ` ⊥,Γ
P−⊥ Φ ` ⊥, N,Γ

Φ ` ⊥, POQ,Γ
PO⊥ Φ ` ⊥, P,Q,Γ

Φ ` ⊥, P �N,Γ
P�⊥ Φ ` ⊥, P,N,Γ

Φ ` >,Γ
P+
> Φ ` >, P,Γ

Φ ` >,M ⊗N,Γ
P⊗> Φ ` >,M,N,Γ

Φ ` >, N � P,Γ
P�
> Φ ` >, N, P,Γ

Figure 4: Core Equality Rules for WS1

(X; Θ ` Γ)[ zx ,
z
y ] X; Θ, x 6= y ` Γ

Px,y,zma X; Θ ` Γ

P6=
X; Θ, x 6= x ` Γ

premise and conclusion in the semantics, which induces a bijection between the winning
strategies on each. For example, P−⊥ uses the isomorphism ⊥ � N ∼= ⊥, and PO⊥ the
isomorphism ⊥ � (POQ) ∼= (⊥ � P ) � Q and P�⊥ the isomorphism ⊥ � (P � N) ∼=
(⊥� P )�N .

Finally, there are core equality rules which deal with equality, given in Figure 4. We
can interpret the core equality rules at a model (L, v) as follows:

• To interpret P6= (reflexivity of identity), we take the empty family of strategies,
since there are no Θ-satisfying L-models if Θ contains x 6= x.

• To interpret the matching rule Px,y,zma , we note that the collection of Θ-satisfying
L-models can be decomposed into those where x and y are identified (the left-hand
premise) and those where they are distinct (the right-hand premise).

Once a discipline regarding where the matching rule is applied has been introduced,
proof search in this core subsystem is particularly simple, as the form of the sequent to
be proved determines the choice of final rule. We will later show that the core rules are
sufficient to denote any finitary family of uniform winning strategies.

We make a brief note on polarities and reversibility, and a comparison with focused
proof systems. In such systems, polarisation is used to differentiate between connectives
whose corresponding rules are reversible or irreversible [6]. Irreversible rules act on
positive formulas. An irreversible rule is one where (reading upwards) in applying the rule
one must make some definite choice, a choice which could determine whether the proof
search succeeds or not. Thus, additive disjunction introduction is always an irreversible
rule, and in linear logic so is the tensor introduction rule, since a choice must be made
regarding how the context is split.

In WS1, the core introduction rule for tensor (as for all such rules) is additive, not
multiplicative. Thus, this rule is reversible, and ⊗ is resultantly a negative connective.
In contrast, O is a positive connective as there are two different core introduction rules,
which are not reversible. Thus, as well as the semantic motivation, we can view our
distinction between positive and negative formulas in the same light as the polarities of
focused systems.
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However, there is an important distinction. In focused systems, the proof search
alternates between negative phases, in which reversible rules are applied, and positive
phases, in which irreversible rules are applied. Analytic proof search in WS follows a
different two-phase discipline, in which we first decompose the first formula of a sequent
into a unit using the core introduction rules, and then collate the tail formulas together
using the core elimination rules. We will give an embedding of LLP inside WS in Section
3.3.

3.2.2. Other Rules

Figure 5: Non-core rules of WS1

Φ ` Γ∗,∆
PT
1

Φ ` Γ∗,1,∆

Φ ` Γ∗,M,N,∆
PT
⊗

Φ ` Γ∗,M ⊗N,∆
Φ ` Γ∗,M,N,∆

P−sym
Φ ` Γ∗, N,M,∆

Φ ` Γ∗,M,∆
P−wk Φ ` Γ∗,∆

Φ ` Γ∗,0,∆
PT
0

Φ ` Γ∗,∆

Φ ` Γ∗, P,Q,∆
PT
O

Φ ` Γ∗, POQ,∆
Φ ` Γ∗, P,Q,∆

P+
sym

Φ ` Γ∗, Q, P,∆

Φ ` Γ∗,∆
P+

wk Φ ` Γ∗, P,∆

Φ ` Γ∗, N⊥,Γ1 Φ ` N,∆+

Pcut
Φ ` Γ∗,∆+,Γ1

Φ ` N⊥ Φ ` N,Q
P0

cut Φ ` Q
Φ ` N,Q,∆+

Pid�
Φ `M,N,M⊥ �Q,∆+

Φ ` Γ, Pi,∆
PT
⊕i Φ ` Γ, P1 ⊕ P2,∆

Φ `M,Γ,∆+ Φ ` N,∆+
1

Pmul
Φ `M,Γ, N,∆+,∆+

1

Pid
Φ ` N,N⊥

Φ `M,N,N⊥
Pana

Φ `!M,N⊥

Φ `M,Γ, P Φ ` N,∆+

P(
Φ `M,Γ, P �N,∆+

Φ ` Γ,M1&M2,∆
PT

&i Φ ` Γ,Mi,∆

Φ ` Γ, !M,∆
P!

der Φ ` Γ,M,∆

Φ ` Γ, !M,∆
P!

con Φ ` Γ, !M, !M,∆

Φ ` Γ, P,∆
P?

der Φ ` Γ, ?P,∆

Φ ` Γ, ?P, ?P,∆
P?

con Φ ` Γ, ?P,∆

X; Θ ` Γ, ∀x.N,∆
PT
∀ FV (s) ⊆ X
X; Θ ` Γ, N [s/x],∆

X; Θ ` Γ, P [s/x],∆
PT
∃ FV (s) ⊆ X

X; Θ ` Γ,∃x.P,∆

The non-core rules of WS1 are given in Figure 5, with ∆+ ranging over lists of positive
formulas, Γ∗ over non-empty lists of formulas. These rules reflect some of the categorical
structure enjoyed by our games model, and allow straightforward interpretation of other
logics and programming languages inside WS1. They include a cut rule, a multiplicative
⊗ rule, a restricted form of the exchange rule, weakening, and so on. We will later see
that these rules are admissible with respect to the rules in Figures 2, 3 and 4, when
restricted to the exponential-free subsystem of WS1. Informally, we can interpret each
of these rules as follows:

• In the cases of PT
⊗, PT

1 , PT
O, PT

0 , P+
sym and P−sym, the premise and conclusion are the

same game, up to retagging, and can be interpreted using game isomorphisms.

• In the cases of PT
&1, PT

&2, P−wk, P!
der a strategy on the conclusion can be obtained

by using only part of the strategy on the premise. For example, for P−wk we remove
all moves in M .
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• In the cases of PT
⊕1, PT

⊕2, P+
wk, P?

der, a strategy on the conclusion can be obtained by
using the strategy on the premise and ignoring the extra moves available to Player.

• The Pid rule requires a strategy on N ( N : we can use a copycat strategy in which
Player always switches component, playing the move that Opponent previously
played. The Pid� rule can be interpreted by playing copycat in the M component.

• The Pcut and P0
cut rules can be interpreted by playing the two strategies given by

the premises against each other in the N component: “parallel composition plus
hiding”.

• The Pmul rule can be interpreted by combining the strategies given by the premises
in a multiplicative manner: Opponent’s moves in M,Γ are responded to in accor-
dance with the first premise, and moves in N in accordance with the second. The
P( rule can be interpreted similarly.

• To interpret P?
con, we can construct a strategy on the conclusion by identifying the

two copies of ?P in the premise. To interpret P!
con, we can construct a strategy on

the conclusion by identifying the two copies of !M in the conclusion.

• We can interpret Pana using the following construction: given a map N (M �N ,
we may “unwrap” it an infinite number of times to yield a strategy on N ( !M .
The N component represents a parameter that can be used to pass information
between the separate threads, to admit history-sensitive behaviour.

3.2.3. Embedding of Intuitionistic Linear Logic

For any negative formulas M,N , define M ( N to be N �M⊥. Thus any formula
of first-order Intuitionistic Linear Logic is a negative formula of WS1. We sketch an
embedding into WS1 of proofs of ILL (over the connectives ⊗,(,∀,&,1,⊥,! and (negative)
atoms, formulated with left- and right- introduction rules as in [37]).

Proposition 3.1. For any proof p of M1, . . . ,Mn ` N in ILL with free variables in X,
there is a proof κ(p) in WS1 of X; ∅ ` N,M⊥1 , . . . ,M⊥n .

Proof We show that for each rule of ILL there is a derivation in WS1 of the conclusion
from the premises.

The left ⊗ rule corresponds to PT
O. For the right ⊗ rule, with Γ = G1, . . . , Gn and

∆ = D1, . . . , Dm, we duplicate the proof and use Pmul as follows:

`M,G1, . . . , Gn ` N,D1, . . . , Dm
Pmul `M,N,G1, . . . , Gn, D1, . . . , Dm

` N,D1, . . . , Dm `M,G1, . . . , Gn
Pmul ` N,M,D1, . . . , Dm, G1, . . . , Gn

P+
sym

...
P+

sym ` N,M,G1, . . . , Gn, D1, . . . , Dm
P⊗ `M ⊗N,G1, . . . , Gn, D1, . . . , Dm

The left 1 rule corresponds to PT
0 . The right 1 rule corresponds to P1. The left ( rule

can be derived as follows:
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` L,D1, . . . , Dm, N⊥ `M,G1, . . . , Gn
P(

` L,D1, . . . , Dm, N⊥ �M,G1, . . . , Gn
P+

sym
.
..

P+
sym ` L,G1, . . . , Gn, N⊥ �M,D1, . . . , Dm

The right ( rule corresponds to P�. The left & rules correspond to the PT
⊕ rules. The

right & rule corresponds to P&. The right-∀ rule corresponds to P∀ and the left-∀ rule
corresponds to PT

∃ .
The dereliction, contraction and weakening rules for the exponential correspond to

P?
der, P

?
con and P+

wk respectively. We next give the translation of the right ! rule (promo-
tion). We first assume Γ consists of a single formula L.

` N, ?L⊥
Pid

`!L, ?L⊥
Pmul

` N, !L, ?L⊥, ?L⊥
P?

con ` N, !L, ?L⊥
Pana

`!N, ?L⊥

We will later refer to this derived rule as Pprom. If Γ contains more than one formula, we
use the equivalence of !M⊗!N and !(M&N) in WS1.

The first direction p1 `!M⊗!N (!(M&N) is defined as follows:

Pid
`!M, ?M⊥

Pid
`!N, ?N⊥

Pmul
`!M, !N, ?M⊥, ?N⊥

P!
con `!M, !M, !N, ?M⊥, ?N⊥

P!
der `M, !M, !N, ?M⊥, ?N⊥

PT
O `M, !M, !N, ?M⊥O?N⊥

PT
⊗ `M, !M⊗!N, ?M⊥O?N⊥

Pid
`!M, ?M⊥

Pid
`!N, ?N⊥

Pmul
`!M, !N, ?M⊥, ?N⊥

P!
con `!M, !N, !N, ?M⊥, ?N⊥

Psym
`!N, !M, !N, ?M⊥, ?N⊥

P!
der ` N, !M, !N, ?M⊥, ?N⊥

PT
O ` N, !M, !N, ?M⊥O?N⊥

PT
⊗ ` N, !M⊗!N, ?M⊥O?N⊥

P&
`M&N, !M⊗!N, ?M⊥O?N⊥

Pana
`!(M&N), ?M⊥O?N⊥

The second direction p2 `!(M&N) (!M⊗!N is given as follows:

Pid
`M,M⊥

PT
⊕1

`M,M⊥ ⊕N⊥
P?

der `M, ?(M⊥ ⊕N⊥)
Pprom

`!M, ?(M⊥ ⊕N⊥)

Pid
` N,N⊥

PT
⊕2

` N,M⊥ ⊕N⊥
P?

der ` N, ?(M⊥ ⊕N⊥)
Pprom

`!N, ?(M⊥ ⊕N⊥)
Pmul⊗

`!M⊗!N, ?(M⊥ ⊕N⊥), ?(M⊥ ⊕N⊥)
P?

con `!M⊗!N, ?(M⊥ ⊕N⊥)

We can then generalise Pprom to
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`M, ?P1, ?P2, . . . , ?Pn−1, ?Pn

.

..

`M, ?(P1 ⊕ P2 ⊕ . . .⊕ Pn−1), ?Pn
PT
O `M, ?(P1 ⊕ P2 ⊕ . . .⊕ Pn−1)O?Pn p2

Pcut `M, ?(P1 ⊕ P2 ⊕ . . .⊕ Pn−1 ⊕ Pn)
Pprom

`!M, ?(P1 ⊕ P2 ⊕ . . .⊕ Pn−1 ⊕ Pn)

...

`!M, ?(P1 ⊕ P2), . . . , ?Pn−1, ?Pn p1
Pcut `!M, ?P1O?P2, . . . , ?Pn−1, ?Pn

PT
O `!M, ?P1, ?P2, . . . , ?Pn−1, ?Pn

and interpret the right ! rule of ILL. 2

A detailed proof-theoretic analysis of the properties of this translation is beyond
the scope of this paper. However, we note that the translation is semantically natural,
in the following sense. We shall see in Section 5 that the categorical models of WS1
have (among other properties) the structure of a standard categorical model of ILL: they
are Lafont categories [32]. The semantics of the quantifier-free fragment of ILL induced
by translation into WS1 followed by interpretation in a categorical model coincides with
the expected semantics of ILL in a Lafont category.

3.2.4. New Theorems

We next sketch some examples of formulas that are not provable in ILL but are
provable in WS1 — i.e. they denote games on which there are uniform winning history-
sensitive strategies which are expressible in WS1.

The formulas

((A⊗B ( ⊥)⊗ (C ⊗D ( ⊥) ( ⊥) (
((A( ⊥)⊗ (C ( ⊥) ( ⊥)⊗ ((B ( ⊥)⊗ (D ( ⊥) ( ⊥)

are not provable, in general, in intuitionistic linear logic (in particular, when A,B,C,D
are instantiated as negative atoms). They are a counterpart in ILL of the medial rule
[(A⊗B)O(C⊗D)] ( [(AOC)⊗(BOD)], using an interpretation of depolarised formulas
in a polarised setting following [34].

As observed by Blass [7], however, there are (uniform) history-sensitive winning
strategies for medial. Informally, suppose:

• Opponent first choses the left hand component in the output (choice 1)

• Opponent then chooses the right hand component in the input (choice 2)

Player can then play copycat in C. If Opponent then switches to the second output
component ((B ( ⊥) ⊗ (D ( ⊥) ( ⊥), Player must enter copycat in D. But this
decision relies on knowledge of Opponent’s choice 2, which is not possible in an innocent
setting and requires history-sensitive knowledge.

An outline WS1 proof of this formula is given in Figure 6. The use of the P⊗ demon-
strates where the proof branches; there are four branches corresponding to the two uses
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of P⊗. In each of these four branches different POi proof rules are chosen at the points
labelled PO1 here.

Similarly, the following theorems of WS1 are not provable in ILL but are provable in
WS1:

• [A⊗ (C&D)]&[B ⊗ (C&D)]&[(A&B)⊗ C]&[(A&B)⊗D] (
(A&B)⊗ (C&D), also discussed in [7]

• φex ( φex ⊗ φex where φex = (φ&(φ( ⊥)) ( ⊥.

3.3. Embedding Polarized Linear Logic in WS1

Polarized Linear Logic (LLP) [27] is a proof system for a polarisation of linear logic
into negative and positive formulas. As we have noted, this is entirely different from the
polarisation of WS1 formulas employed here: each makes sense within the proof system
within which it is defined. Here, we show how proofs of LLP may be represented inside
WS1 by translation, with two objectives:

• To clarify the relationship between the two logical systems, and their notions of
polarisation.

• To capture both call-by-name and call-by-value λ-calculi via known (and elegant)
translations into LLP, which may be composed with our embedding of LLP into
WS1. In the call-by-name case, this corresponds with interpretation via intuition-
istic linear logic, whereas for call-by-value it is new.

The formulas of LLP (over the units) are as follows:

P ::= 1 | 0 | P ⊗Q | P �Q | ↓ N | !N
N ::= ⊥ | > | MON | M&N | ↑ P | ?P

There is an operation (−)⊥ exchanging polarity, swapping 1 for ⊥, 0 for >, ⊗ for O, and
so on. The presentation of LLP given in [27] omits the linear lifts ↑ and ↓ of MALLP. We
will include them in our presentation of LLP and its embedding.

A sequent of LLP is a list of LLP formulas. The proof rules for Polarized Linear Logic
are given in Figure 7. Γ− ranges over lists of negative formulas, and Γ′ over lists where
at most one formula is positive. We say a negative LLP formula N is reusable (and write
reuse(N)) if every occurrence of ↑ occurs under a ?. If we exclude the linear lifts ↑ and
↓, all negative formulas are reusable. reuse(Γ−) holds if all formulas in Γ− are reusable.

Each provable sequent has at most one positive formula, so we can restrict our atten-
tion to sequents of this form. It is possible to give semantics to LLP proofs as innocent
strategies [27], which do not have access to the entire history of play.

We next describe an embedding of LLP inside WS1. Apart from some renaming of
units, connectives in LLP will be interpreted by the same connective in WS1. Broadly
speaking, positive formulas of LLP will be mapped to negative formulas of WS1, and
negative formulas of LLP to positive formulas of WS1. However, under this scheme there
is a mismatch for the additives: we will therefore need to map formulas of LLP to families
of WS1 formulas. The formulas that have a lift as their outermost connective will be
mapped to singleton families.

Let WS1− denote the set of negative WS1 formulas, and WS1+ the set of positive
WS1 formulas.
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Figure 6: Outline Proof of Medial

α, γ ` >
α, γ ` >, δ
α, γ ` γ, δ
α, γ ` γOδ

α, γ ` ⊥, (⊥� (>� β)O(>� δ)), γOδ

α ` γ, (⊥� (>� β)O(>� δ)), γOδ

α ` >, γ, (⊥� (>� β)O(>� δ)), γOδ

α ` (>� γ), (⊥� (>� β)O(>� δ)), γOδ

α ` (>� γ)� (⊥� (>� β)O(>� δ)), γOδ

α ` ⊥, γOδ, (>� γ)� (⊥� (>� β)O(>� δ))

α ` (⊥� γOδ), (>� γ)� (⊥� (>� β)O(>� δ))

α ` >, β, (⊥� γOδ), (>� γ)� (⊥� (>� β)O(>� δ))

α ` α, β, (⊥� γOδ), (>� γ)� (⊥� (>� β)O(>� δ))
PO1

α ` αOβ, (⊥� γOδ), (>� γ)� (⊥� (>� β)O(>� δ))

α ` αOβ � (⊥� γOδ), (>� γ)� (⊥� (>� β)O(>� δ))

α ` ⊥,>� γ, (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)

` α,>� γ, (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)

` >, α,>� γ, (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)

` > � α,>� γ, (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)
PO1

` (>� α)O(>� γ), (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)

` (>� α)O(>� γ)� (⊥� (>� β)O(>� δ)), αOβ � (⊥� γOδ)

` ⊥, αOβ, (⊥� γOδ), (>� α)O(>� γ)� (⊥� (>� β)O(>� δ))

` ⊥� αOβ, (⊥� γOδ), (>� α)O(>� γ)� (⊥� (>� β)O(>� δ))
...

P⊗
` (⊥� αOβ)⊗ (⊥� γOδ), (>� α)O(>� γ)� (⊥� (>� β)O(>� δ))

` >, ((⊥� αOβ)⊗ (⊥� γOδ)), (>� α)O(>� γ)� (⊥� (>� β)O(>� δ))

` > � ((⊥� αOβ)⊗ (⊥� γOδ)), (>� α)O(>� γ)� (⊥� (>� β)O(>� δ))

` ⊥, (>� α)O(>� γ), (⊥� (>� β)O(>� δ)),>� ((⊥� αOβ)⊗ (⊥� γOδ))

` (⊥� (>� α)O(>� γ)), (⊥� (>� β)O(>� δ)),>� ((⊥� αOβ)⊗ (⊥� γOδ))
...

P⊗
` (⊥� (>� α)O(>� γ))⊗ (⊥� (>� β)O(>� δ)),>� ((⊥� αOβ)⊗ (⊥� γOδ))
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Figure 7: Proof rules for LLP

ax
` N,N⊥

` Γ, N ` ∆, N⊥
cut ` Γ,∆

` Γ, A,B,∆
ex
` Γ, B,A,∆

` Γ, P ` ∆, Q⊗ ` Γ,∆, P ⊗Q
` Γ,M,N

O ` Γ,MON

` Γ, P⊕1 ` Γ, P ⊕Q
` Γ, Q⊕2 ` Γ, P ⊕Q

` Γ,M ` Γ, N
& ` Γ,M&N

1 ` 1

` Γ⊥ ` Γ,⊥ > ` Γ′,>
` Γ−, N↓
` Γ−, ↓ N

` Γ, P↑ ` Γ, ↑ P

` Γ−, N
! reuse(Γ−)
` Γ−, !N

` Γ, P
?d ` Γ, ?P

` Γ, N,N
?c reuse(N)` Γ, N

` Γ
?w reuse(N)` Γ, N

Definition A finite family of negative (resp. positive) WS1 formulas is a pair (I, f)
where I is a finite set and f : I →WS1− (resp. I →WS1+).

For brevity, given such a family F = (I, f) we will write |F | for I and Fx for f(x).
We will interpret a negative formula of LLP as a finite family of positive WS1 formulas,
and a positive formula of LLP as a finite family of negative WS1 formulas. We describe
this mapping in Figure 8. Like [34], we decompose the polarity-reversing exponentials of
LLP into polarity-preserving exponentials of and polarity-switching linear lifts.

Note that |i(A⊥)| = |i(A)| and i(A⊥)y = i(A)⊥y . We translate proofs of LLP to
families of proofs of WS1 in the following manner:

• Given an LLP proof p of ` N1, . . . , Nn and xi ∈ |i(Ni)| for each i, we construct a
proof i(p,−→xi) of ` ⊥, i(N1)x1 , . . . , i(Nn)xn

• Given an LLP proof p of ` N1, . . . , Ni, Q,Ni+1, . . . , Nn and xi ∈ |i(Ni)| for each
i, we construct a pair i(p,−→xi) = (y, q) where y ∈ |i(Q)| and q is a proof of `
i(Q)y, i(N1)x1

, . . . , i(Nn)xn .

Proposition 3.2. Suppose N is reusable. Then for any x in |i(N)|, there is a formula
Q and proofs p `!Q⊥, i(N)x and p′ ` i(N)⊥x , ?Q such that JpK and Jp′K are inverses.

Proof Simple induction, making use of isomorphisms !(M&N) ∼=!M⊗!N . 2

Proposition 3.3. For each LLP formula P , y ∈ |i(P )| and sequence of negative WS1
formulas ∆− there is a WS1 proof P>P,y ` i(P )y,∆

−,>.
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Figure 8: LLP formulas as families of WS1 formulas

A ∈ LLP i(A) ∈ Fam WS1
1 ({∗}, ∗ 7→ 1)
0 ({∗}, ∗ 7→ ⊥)
P ⊗Q (|i(P )| × |i(Q)|, 〈x, y〉 7→ i(P )x ⊗ i(Q)y)
P ⊕Q (|i(P )| ] |i(Q)|, [in1(x) 7→ i(P )x, in2(y) 7→ i(Q)y]
!N ({∗}, ∗ 7→!&j∈|i(N)|(⊥� i(N)j)
↓ N ({∗}, ∗ 7→ &j∈|i(N)|(⊥� i(N)j)
⊥ ({∗}, ∗ 7→ 0)
> ({∗}, ∗ 7→ >)
MON (|i(M)| × |i(N)|, 〈x, y〉 7→ i(M)xOi(N)y))
M&N (|i(M)| ] |i(N)|, [in1(x) 7→ i(M)x, in2(y) 7→ i(N)y]
↑ P ({∗}, ∗ 7→

⊕
j∈|i(P )|(>� i(P )j)

?P ({∗}, ∗ 7→?
⊕

j∈|i(P )|(>� i(P )j)

Proof Simple induction on P . 2

We next show how each of the LLP proof rules is translated. The translation is simple;
we demonstrate some representative cases.

• The cut rule, with p = cut(q, r): Suppose Γ = N1, . . . , Ni, P,Ni+1, . . . Nn and
∆ = M1, . . . ,Mm. Let xi ∈ |i(Ni)| and yi ∈ |i(Mi)|. Then i(r,−→yi ) = (y, t) with
y ∈ |i(N⊥)| and t ` i(N⊥)y, i(M1)y1

, . . . , i(Mn)yn . Then i(q,−→xi , y) = (y′, q′) where
y′ ∈ |i(P )| and

q′ ` i(P )y′ , i(N1)x1 , . . . , i(Nn)xn , i(N)y.

Applying Pcut to this proof and t results in a proof g of

` i(P )y′ , i(N1)x1
, . . . , i(Nn)xn , i(M1)y1

, . . . , i(Mm)ym

and we set i(p,−→xi ,−→yi ) = (y′, g).

The case where Γ = N1, . . . , Nn and ∆ = M1, . . . ,Mm is similar.

• The ↑ rule, with p =↑ (q): Let Γ = N1, . . . , Nn and xi ∈ |i(Ni)|. Then i(q,−→xi) =
(y, q) where q ` i(P )y, i(N1)x1 , . . . , i(Nn)xn . We set i(p,−→xi) to be the following
proof:

q ` i(P )y, i(N1)x1 , . . . , i(Nn)xn
` >, i(P )y, i(N1)x1

, . . . , i(Nn)xn
` > � i(P )y, i(N1)x1

, . . . , i(Nn)xnP⊕y `
⊕

j∈|i(P )|>� i(P )j , i(N1)x1
, . . . , i(Nn)xn

` ⊥, i(N1)x1
O . . .Oi(Nn)xnO(

⊕
j∈|i(P )|>� i(P )j)

` ⊥, i(N1)x1
, . . . , i(Nn)xn ,

⊕
j∈|i(P )|>� i(P )j
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Note that in the semantics of this rule two moves are played: the opening lift
overall (O-move) and the opening lift in the derelicted component (P-move), which
corresponds to “focusing” on that component.

• The ?c rule, with p =?c(q):

If Γ = N1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi , x, x) is a proof
of ` ⊥, i(N1)x1 , . . . , i(Nn)xn , i(N)x, i(N)x. We can apply Proposition 3.2 and use
?-contraction in WS1 to yield a proof q′ of
` ⊥, i(N1)x1

, . . . , i(Nn)xn , i(N)x and we set i(p,−→xi , x) = q′.

If Γ = N1, . . . , Ni, P,Ni+1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi , x, x) =
(y, q′) where q′ ` i(P )y, i(N1)x1

, . . . , i(Nn)xn , i(N)x, i(N)x. We can apply Propo-
sition 3.2 and use ?-contraction in WS1 to yield a proof q′′ of

` i(P )y, i(N1)x1
, . . . , i(Nn)xn , i(N)x

and we set i(p,−→xi , x) = (y, q′′).

We can hence interpret proofs in LLP as (families of) proofs in WS1.

4. Representing Imperative Programs and their Properties

4.1. Imperative Cell

As an example of a proof of WS1 capturing imperative behaviour (and which does
not correspond to a proof of intuitionistic or polarized linear logic), we give a proof which
denotes the Boolean reference cell strategy described in Section 2.2, the cell strategy of
[5].

Recall that this is a strategy for the game !(B&Bi), where B = ⊥ � > ⊕ > and
Bi = (⊥&⊥)�>. We can parametrise the cell by a starting value, yielding a strategy on
B ( !(B&Bi). We may obtain this strategy using a finite strategy p : B ( (B&Bi)�B.
The strategy p is defined as follows, using the naming conventions from Section 2.2:

B ( (B & Bi) � B
q

q

b
b

q

b
in(b)
ok

q

b

To obtain the cell strategy, we consider an infinite unwrapping $p% : B ( !(B&Bi), as
performed by the semantics of the Pana rule.
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B ( (B & Bi) � B ( (B & Bi) � ((B & Bi) � . . .)
in(b)

in(b)
ok

ok

q

q

b
b
...

We can represent this strategy in our system using the anamorphism rule Pana: we
may prove !(B&Bi),B⊥ by applying this rule to a proof of (B&Bi),B,B⊥. To obtain
this, we apply the product rule to a pair of proofs:

• pread, of B,B,B⊥, corresponding to a function which reads its argument, returns
it and propagates it to the next call, and

• pwrite, of Bi,B,B⊥, corresponding to a function which ignores its argument, ac-
cepts a Boolean input value and propagates it to the next call.

In this proof, if a rule is not labelled it is the unique applicable core rule, and some steps
are omitted for brevity.

pwrite :` (⊥&⊥) �>,⊥� (>⊕>),>� (⊥&⊥) pread :` ⊥� (>⊕>),⊥� (>⊕>),>� (⊥&⊥)

` ((⊥&⊥) �>)&(⊥� (>⊕>)),⊥� (>⊕>),>� (⊥&⊥)
Pana `!(((⊥&⊥) �>)&(⊥� (>⊕>))),>� (⊥&⊥)

where pwrite is

` >
` >, (>� (⊥&⊥))

P⊕1 ` > ⊕>, (>� (⊥&⊥))
PO1 ` (>⊕>)O(>� (⊥&⊥))

` ⊥, (>⊕>)O(>� (⊥&⊥))

` (⊥� (>⊕>)) � (>� (⊥&⊥))

` >, (⊥� (>⊕>)) � (>� (⊥&⊥))

` (>� (⊥� (>⊕>))),>� (⊥&⊥)
PO1 ` (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` >
` >, (>� (⊥&⊥))

P⊕2 ` > ⊕>, (>� (⊥&⊥))
PO1 ` (>⊕>)O(>� (⊥&⊥))

` ⊥, (>⊕>)O(>� (⊥&⊥))

` (⊥� (>⊕>)) � (>� (⊥&⊥))

` >, (⊥� (>⊕>)) � (>� (⊥&⊥))

` (>� (⊥� (>⊕>))),>� (⊥&⊥)
PO1 ` (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` ⊥&⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` (⊥&⊥) �>,⊥� (>⊕>),>� (⊥&⊥)

and pread is
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` >P⊕1 ` > ⊕>
` ⊥, (>⊕>)

` >,⊥� (>⊕>)
P⊕1 ` > ⊕>,⊥� (>⊕>)

` ⊥, (>⊕>)� (⊥� (>⊕>))

` >P⊕2 ` > ⊕>
` ⊥, (>⊕>)

` >,⊥� (>⊕>)
P⊕2 ` > ⊕>,⊥� (>⊕>)

` ⊥, (>⊕>)� (⊥� (>⊕>))

` ⊥&⊥, (>⊕>)� (⊥� (>⊕>))

` >, (⊥&⊥) � ((>⊕>)� (⊥� (>⊕>)))

` > � (⊥&⊥), (>⊕>)� (⊥� (>⊕>))
PO2 ` ((>⊕>)� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, ((>⊕>)� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥� (>⊕>),⊥� (>⊕>),>� (⊥&⊥)

We will later give categorical semantics to WS1, and so the above proof provides a
categorical account of this Boolean reference cell, using a final coalgebraic property of
the exponential.

We may use this proof to interpret declaration of a Boolean reference in either call-
by-name or call-by-value settings, by composition (cut) with (the translation of) a term-
in-context of the form Γ, x : var ` M : T . Thus we may translate the recursion-free
fragments of Idealized Algol [36] and Reduced ML over finite datatypes into WS1, for
example.

4.2. State Encapsulation

WS1 is more expressive than total, finitary Idealized Algol: for instance, we may use
the anamorphism rule to capture structures such as stacks, capable of storing an arbi-
trarily large amount of data. A generalised programming construct which corresponds
to this capability is the encapsulation operation which appears as the thread operator
in [38], and as the encaps strategy in [30] where it is used for constructing imperative
objects in a model based on the same underlying notion of game as used here. The
operator has type

(s→ (o× s))→ s→ (1→ o).

Here s is the type of the object’s internal state. The first argument represents an object
which takes an explicit state of type s, and returns a value of type o, together with an
updated state. The second argument represents an initial state. Encapsulation returns
an object of type 1→ o (a “thunk” of type o) in which the state s is encapsulated — i.e.
hidden from the environment, but shared between separate invocations of the object. On
first invocation (unthunking) the initial state is used as the input state, and thereafter,
each fresh call receives the output state from the previous invocation as its input.

We can represent this operation in WS1 using the Pana rule. To do this, we con-
sider a call-by-value interpretation of types. We may translate call-by-value types as
positive formulas of LLP: φ+(1) = 1, φ+(A × B) = φ+(A) ⊗ φ+(B) and φ+(A →
B) = !(φ+(A)⊥O ↑ φ+(B))1. Thus by composition with the embedding of LLP in

1This is slightly different to the original embedding presented in [27], which uses ? rather than ↑ in the
translation of →, allowing first-class continuations to be interpreted (the λµ-calculus). The translation
adopted here is a form of linear CPS interpretation.
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WS1, we may translate the types o and s as the families of WS-formulas i ◦ φ+(s)
and i ◦ φ+(o). Let us assume for simplicity, that these are singleton families {S} and
{O} respectively (i.e. s represent products of function types). Then encaps may be
translated as a proof of ` ⊥,> � i ◦ φ+(1 → o), S⊥, i ◦ φ+(s → (o × s))⊥ — i.e.
` ⊥,>�! ↑ (0O ↓ O), S⊥, ? ↓ (S⊗ ↑ (O⊥OS⊥)) — as follows:

a

Pid
`! ↑ (S⊥O ↓ (O ⊗ S)), ? ↓ (S⊗ ↑ (O⊥OS⊥)) b

Pmul
`↑ (↓ O), ! ↑ (S⊥O ↓ (O ⊗ S)), S, ? ↓ (S⊗ ↑ (O⊥OS⊥)), ? ↓ (S⊗ ↑ (O⊥OS⊥)), S⊥

P?
con `↑ (↓ O), ! ↑ (S⊥O ↓ (O ⊗ S)), S, ? ↓ (S⊗ ↑ (O⊥OS⊥)), S⊥

`↑ (↓ O), ! ↑ (S⊥O ↓ (O ⊗ S))⊗ S, ? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥
Pana

`! ↑ (↓ O), ? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥
Pcut

`! ↑ (0O ↓ O), ? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥
PT

O
`! ↑ (0O ↓ O), ? ↓ (S⊗ ↑ (O⊥OS⊥)), S⊥

P+
sym

`! ↑ (0O ↓ O), S⊥, ? ↓ (S⊗ ↑ (O⊥OS⊥))

` >, ! ↑ (0O ↓ O), S⊥, ? ↓ (S⊗ ↑ (O⊥OS⊥))

` ⊥,>�! ↑ (0O ↓ O), S⊥, ? ↓ (S⊗ ↑ (O⊥OS⊥))

where a is the evident isomorphism `! ↑ (0O ↓ O), ? ↓↑ O⊥ and b is:

Pid
` S, S⊥

Pid
` O,O⊥

Pid
` S, S⊥

Pmul
` O,S,O⊥, S⊥

` O � S,O⊥, S⊥
PT
O ` O � S,O⊥OS⊥

` >, O � S,O⊥OS⊥

` O⊥OS⊥O(↓ O � S)

` ⊥, O⊥OS⊥, ↓ O � S
Pmul⊗

` S⊗ ↑ (O⊥OS⊥), ↓ O � S, S⊥
P+

sym ` S⊗ ↑ (O⊥OS⊥), S⊥, ↓ O � S
` >, S⊗ ↑ (O⊥OS⊥), ↓ O � S, S⊥

`↓ (S⊗ ↑ (O⊥OS⊥)), ↓ O � S, S⊥

` ⊥, (↓ O � S)O ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥

`↑ (↓ O), S, ↓ (S⊗ ↑ (O⊥OS⊥)), S⊥
P?

der `↑ (↓ O), S, ? ↓ (S⊗ ↑ (O⊥OS⊥)), S⊥

4.3. Coroutines

We may also give a proof denoting a coroutining operation, permitting a form of
deterministic multithreading, defined as a strategy in [23, 24]. In a call-by-name setting,
this corresponds to an operation taking two terms s, t of type com→ com, and returning
a command which runs s: when (and if) s calls its argument, control passes to t. When
t calls its argument, control is passed back to s, and so on, until either s or t terminates.

We can define a coroutining operator cocomp ` Σ, ?(Σ⊥�!Σ), ?(Σ⊥�!Σ), where Σ =
>�⊥. We first give a proof o of (!Σ ( ⊥) (!Σ.
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Pid ` ⊥�?(>�⊥),>�!(⊥�>)

` >,⊥�?(>�⊥),>�!(⊥�>)

` > � (⊥�?(>�⊥)),>�!(⊥�>)

` ⊥,>�!(⊥�>),>� (⊥�?(>�⊥))

` ⊥�>, !(⊥�>),>� (⊥�?(>�⊥))

`!(⊥�>),>� (⊥�?(>�⊥))

` >, !(⊥�>),>� (⊥�?(>�⊥))

` >�!(⊥�>),>� (⊥�?(>�⊥))

` ⊥,>� (⊥�?(>�⊥)),>�!(⊥�>)

` ⊥,>,⊥�?(>�⊥),>�!(⊥�>)

` ⊥�>,⊥�?(>�⊥),>�!(⊥�>)
Pana `!(⊥�>),>�!(⊥�>)

`!(⊥�>) � (>�!(⊥�>))

We next define a proof o′ ` (!Σ ( Σ) ( ⊥ (!Σ, which connects the output move of
the first argument to the Player-move in the second argument.

o `!Σ,>�!Σ

` ⊥,> `!Σ, ?Σ⊥
Pmul⊗

` ⊥⊗!Σ, ?Σ⊥,>
` >,⊥, !Σ, ?Σ⊥,>
` (>�⊥)�!Σ, ?Σ⊥,>
` ⊥, ?Σ⊥,>, (>�⊥)�!Σ

` ⊥�?Σ⊥,>, (>�⊥)�!Σ
Pcut `!Σ,>, (>�⊥)�!Σ

`!Σ �>,Σ⊥�!Σ

We can then define cocomp.

` >
` ⊥,>

` >
` ⊥,>

` ⊥⊗⊥,>
` >,⊥,⊥,>

` (>�⊥)�⊥,>
` ⊥,>, (>�⊥)�⊥
` Σ,Σ⊥ �⊥

Pid
` Σ,Σ⊥

Pid
`!Σ, ?Σ⊥

Pid ` ⊥,>
P(

`!Σ, ?Σ⊥ �⊥,>
P+

sym `!Σ,>, ?Σ⊥ �⊥
P(

` Σ,Σ⊥�!Σ,>, ?Σ⊥ �⊥
P+

sym ` Σ,>,Σ⊥�!Σ, ?Σ⊥ �⊥
` Σ �>,Σ⊥�!Σ, ?Σ⊥ �⊥

Pcut
` Σ,Σ⊥�!Σ, ?Σ⊥ �⊥ o′

Pcut
` Σ,Σ⊥�!Σ,Σ⊥�!Σ

4.4. Specifying Properties of Programs

The formulas of WS1 are more expressive than the types of languages such as Ide-
alized Algol, and hence they enable the behaviour of history sensitive strategies to be
specified both more abstractly and more precisely. For example, formulas can specify the
order in which arguments are interrogated, how many times they are interrogated, and
relationships between inputs and outputs of ground type (using the first-order structure).
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4.4.1. Data-Independent Programming

We can use quantifiers to represent data-independent structures such as cells and
stacks, where the underlying ground type at a given L-structure L is |L|. As a for-
mula/game, this ground type is represented by V = ⊥�∃x.>— a dialogue in this game
consists of Opponent playing a question move q and Player responding with an element
of |L|. We can represent a stream of such values using the formula !V.

Let Vi = ∀x.⊥ � > represent an ‘input version’ of V, where Opponent plays an |L|
value and Player then accepts it, analogous to Bi above. The type of a stack object can
then be given by the formula !(V&Vi), with a “pop” and a “push” method. We give a
proof denoting the behaviour of such a stack, parametrised by a starting stack, of type
!V ( !(V&Vi).

Pid `!(⊥� ∃x.>), ?(>� ∀x.⊥)
P!

con `!(⊥� ∃x.>), !(⊥� ∃x.>), ?(>� ∀x.⊥)
P!

der ` ⊥� ∃x.>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

Pid {x};`!(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};` >, !(⊥� ∃x.>), ?(>� ∀x.⊥)
Px∃ {x};` ∃x.>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};` ⊥, ∃x.>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};` ⊥� ∃x.>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};`!(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};` >, !(⊥� ∃x.>), ?(>� ∀x.⊥)

{x};` ⊥,>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

` ∀x.⊥,>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

` ∀x.⊥�>, !(⊥� ∃x.>), ?(>� ∀x.⊥)

` (⊥� ∃x.>)&(∀x.⊥�>), !(⊥� ∃x.>), ?(>� ∀x.⊥)
Pana `!((⊥� ∃x.>)&(∀x.⊥�>)), ?(>� ∀x.⊥)

Once again, we use Pana to obtain the infinite behaviour, applied to a proof q of
!V ( (V&Vi)�!V. The strategy denoted by q performs as ‘copycat’ in the !V ( V�!V
component, and in the !V ( Vi�!V component behaves as follows:

!V ( Vi � !V
in(v)
ok

q

v

and then enters copycat.

4.4.2. Good Variables

One respect in which the game semantics of Idealized Algol (and other imperative
languages) fails to reflect its syntax fully is in the existence in the model of bad variables
which do not return the last value assigned to them [5]. In WS1 we may define formulas
for which the only proof denotes a good variable.

The formula worm = Bi � !B represents a Boolean variable which can be written
once, then read many times. One proof/strategy of this formula will indeed be a valid
Boolean cell: if Opponent plays inputX then Player responds with ok, if Opponent then
tries to read the cell q, then Player responds with X. But there are also bad variables:
for example, the read method may always return True regardless of what was written.
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To exclude such behaviour, we can replace the input/output moves with atoms. Define
Bφ,ψ = ⊥� (φ⊕ψ) and Biφ,ψ = (φ&ψ)�>, with wormφ,ψ = Biφ,ψ� !Bφ,ψ. If φ and ψ
are assigned tt, then this denotes the same dialogue as worm. However, the denotation
of any proof of wormφ,ψ at such a model must be the good variable strategy. The rule
for φ (and semantically, uniformity of strategies) ensures that φ must be played before
φ, and ψ before ψ. Consequently, Player can only respond with a particular Boolean
value in the read component if that same value has previously been given as an input
in the write component, so good-variable behaviour is assured. The following proof of
this formula uses only the core rules and the promotion rule.

φ ` >
φ ` φ

P⊕1
φ ` φ⊕ ψ
φ ` ⊥, φ⊕ ψ
φ ` ⊥� φ⊕ ψ

prom
φ `!(⊥� φ⊕ ψ)

φ ` >, !(⊥� φ⊕ ψ)

φ ` >�!(⊥� φ⊕ ψ)

φ ` ⊥,>�!(⊥� φ⊕ ψ)

φ ` ⊥,>, !(⊥� φ⊕ ψ)

` φ,>, !(⊥� φ⊕ ψ)

ψ ` >
ψ ` ψ

P⊕2
ψ ` φ⊕ ψ
ψ ` ⊥, φ⊕ ψ
ψ ` ⊥� φ⊕ ψ

prom
ψ `!(⊥� φ⊕ ψ)

ψ ` >, !(⊥� φ⊕ ψ)

ψ ` >�!(⊥� φ⊕ ψ)

ψ ` ⊥,>�!(⊥� φ⊕ ψ)

ψ ` ⊥,>, !(⊥� φ⊕ ψ)

` ψ,>, !(⊥� φ⊕ ψ)

` (φ&ψ),>, !(⊥� φ⊕ ψ)

` (φ&ψ) �>, !(⊥� φ⊕ ψ)

` ((φ&ψ) �>)�!(⊥� φ⊕ ψ)

We cannot use ! to obtain a formula which admits only an arbitrarily reusable ‘good
variable’, but we can obtain finite approximations. For example, the formula

Biα,β � (wormφ,ψ & (Bα,β �wormφ,ψ) & (Bα,β � (Bα,β �wormφ,ψ)))

models a good variable that can be written to twice, and can be read at most twice
before the second write. Strategies on such formulas then approximate our reusable cell
strategy above on !(B&Bi).

5. Categorical Semantics for WS1

To give a formal semantics for our logic, we first introduce a notion of categorical
model which captures everything except the first-order structure (quantifiers and atoms).
We shall use notation η : F ⇒ G : C → D to mean η is a natural transformation from F
to G with F,G : C → D.

First, we define some categories of games that will form the intended instance of our
categorical model. Objects in these categories will be negative games, and an arrow
A → B will be a strategy on A ( B. We can compose strategies using “parallel
composition plus hiding”. Suppose σ : A( B and τ : B ( C, define

σ‖τ = {s ∈ (MA +MB +MC)∗ : s|1 ∈ PA ∧ s|2 ∈ PB ∧ s|3 ∈ PC}
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and set
τ ◦ σ = {s|1,3 : s ∈ σ‖τ}.

It is well-known that τ ◦ σ is a well-formed strategy on A( C (see e.g. [3]).

Proposition 5.1. Composition is associative, and there is an identity A → A given by
the copycat strategy: {s ∈ PA(A : γ(s)} where γ(s) holds if and only if t|1 = t|2 for all
even-length prefixes t of s.

Definition The category G has negative games as objects, and a map σ : A → B is a
strategy on A( B with composition and identity as above.

This category has been studied extensively in e.g. [25, 11, 30], and has equivalent pre-
sentations using graph games [16] and locally Boolean domains [22].

If A, B and C are bounded, σ : A ( B and τ : B ( C are total then τ ◦ σ is
also total. Total strategies do not compose for unbounded games, however. Winning
strategies on unbounded games do compose [15], and the identity strategy is winning.

Definition The category W has negative games as objects and winning strategies as
maps.

A map σ : A→ B is strict if it responds to Opponent’s first move with a move in A, if it
responds at all. Strict strategies are closed under composition and the identity is strict.

Definition The category Gs has negative games as objects and strict strategies as maps.
The category Ws has negative games as objects and strict winning strategies as maps.

Isomorphisms in W correspond to forest isomorphisms and all isomorphisms are total
and strict [28].

Each of the above categories can be endowed with symmetric monoidal structure,
given by (I,⊗) where I is the empty game 1 and the action of ⊗ on objects is as defined
in Section 2.1.

5.1. Sequoidal Closed Structure

The notions of sequoidal category and sequoidal closed category were first introduced
in [21].

Definition A sequoidal category consists of:

• A symmetric monoidal category (C, I,⊗) (we will call the relevant isomorphisms
assoc : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C), lunit⊗ : I ⊗ A ∼= A, runit⊗ : A ⊗ I ∼= I and
sym : A⊗B ∼= B ⊗A)

• A category Cs

• A right-action � of C on Cs. That is, a functor � : Cs × C → Cs with natural
isomorphisms unit� : A� I ∼= A and pasc : A� (B ⊗ C) ∼= (A�B) � C satisfying
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the following coherence conditions [17]:

A� (B ⊗ (C ⊗D))
pasc- (A�B)� (C ⊗D)

pasc- ((A�B)� C)�D

A� ((B ⊗ C)⊗D)

id� assoc

? pasc- (A� (B ⊗ C))�D

pas
c�

id
-

A� (I ⊗B)
pasc- (A� I)�B A� (B ⊗ I)

pasc- (A�B)� I

A�B

id� lunit⊗

?�

un
it�
� i
d

A�B

id� runit⊗

?�

un
it�

• A functor J : Cs → C

• A natural transformation wk : J( ) ⊗ ⇒ J( � ) satisfying further coherence
conditions [21]:

JA⊗ I
runit⊗- JA (JA⊗B)⊗ C

wk⊗ id- J(A�B)⊗ C
wk- J((A�B)� C)

J(A� I)

wk

?

J(
un
it�

) -

JA⊗ (B ⊗ C)

assoc

? wk- J(A� (B ⊗ C))

J(pa
sc)

-

Definition An inclusive sequoidal category is a sequoidal category in which Cs is a full-
on-objects subcategory of C containing wk and the monoidal isomorphisms; J is the
inclusion functor; and J reflects isomorphisms.

We can identify this structure in our categories of games: we can extend the left-merge
operator � to an action Gs×G → Gs. If σ : A→ B and τ : C → D then σ� τ : A�C →
B � D plays as σ between A and B and as τ between C and D. The strictness of σ
guarantees that this yields a valid strategy on (A � C) ( (B �D). The isomorphisms
pasc and unit� exist, and there is a natural copycat strategy wk : M ⊗ N → M � N
in Gs, all satisfying the required axioms [24]. The functor J reflects isomorphisms as
the inverse of strict isomorphisms are strict. Thus (G,Gs) forms an inclusive sequoidal
category; as does (W,Ws).

Definition An inclusive sequoidal category is Cartesian if Cs has finite products pre-
served by J (we will write tA for the unique map A → 1). It is decomposable if the
natural transformations dec = 〈wk,wk◦ sym〉 : A⊗B ⇒ (A�B)× (B�A) : Cs×Cs → Cs
and dec0 = tI : I ⇒ 1 : Cs are isomorphisms (so, in particular, (C,⊗, I) is an affine
SMC).

A Cartesian sequoidal category is distributive if the natural transformations dist =
〈π1 � idC , π2 � idC〉 : (A × B) � C ⇒ (A � C) × (B � C) : Cs × Cs × C → Cs and
dist0 = t1�C : 1� C ⇒ 1 : C → Cs are isomorphisms.
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We write dist0 : I � C ∼= I for the isomorphism (dec0)−1 ◦ dist0 ◦ (dec0 � id).
In the game categories defined above, M&N is a product of M and N , and the

empty game I is a terminal object as well as the monoidal unit. The decomposability
and distributivity isomorphisms above exist as natural copycat morphisms [24]. In fact,
W and G have all small products, following the construction in Section 2.1, with the
corresponding distributivity isomorphism with respect to �.

Definition A sequoidal closed category is an inclusive sequoidal category where C is
symmetric monoidal closed and the map f 7→ Λ(f ◦ wk) defines a natural isomorphism
Λs : Cs(B �A,C)⇒ Cs(B,A( C).

We can show that G and W are sequoidal closed, with the internal hom given by ( [24].
In any sequoidal closed category, define apps : (A ( B) � A → B as Λ−1

s (id), and
app : (A ( B) ⊗ A → B = Λ−1(id), noting that app = apps ◦ wk. If f : A → B let
ΛI(f) : I → A ( B denote the name of f , i.e. Λ(f ◦ runit⊗). Write Λ−1

I for the inverse
operation.

Proposition 5.2. In any sequoidal closed category, ( restricts to a functor Cop×Cs →
Cs with natural isomorphisms unit( : I ( A ∼= A and pasc( : A ⊗ B ( C ∼= A (
(B ( C) in Cs.

Proof We need to show that if g is in Cs then f ( g is in Cs. But f ( g = Λ(g ◦ app ◦
(id⊗ f)) = Λ(g ◦ apps ◦wk ◦ (id⊗ f)) = Λ(g ◦ apps ◦ (id� f) ◦wk) = Λs(g ◦ apps ◦ (id� f))
which is in Cs.

In any symmetric monoidal category the isomorphisms unit( and pasc( exist, but
we must show that they are strict.

• unit( : I ( A→ A is given by app◦runit−1
⊗ . This apps◦wk◦runit−1

⊗ = apps◦unit−1
�

which is a map in Cs.

• pasc( : A⊗B ( C ∼= A( (B ( C) is given by Λ(Λ(app ◦ assoc)) = Λ(Λ(apps ◦
wk◦ assoc)) = Λ(Λ(apps ◦pasc−1 ◦wk◦ (wk⊗ id)) = Λ(Λ(apps ◦pasc−1 ◦wk)◦wk) =
Λs(Λs(apps ◦ pasc−1)) which is in Cs.

The inverses of the above maps are strict as J reflects isomorphisms. 2

In distributive, decomposable sequoidal closed categories we can also define the following
natural transformations:

• The isomorphism psym : (A�B)�C ∼= (A�C)�B given by pasc◦(id�sym)◦pasc−1.

• The isomorphism psym( : C ( (B ( A) ∼= B ( (C ( A) given by pasc( ◦
(sym ( id) ◦ pasc−1

(

• The isomorphism dist( : A ( (B × C) → (A ( B) × (A ( C) given by 〈id (
π1, id ( π2〉, whose inverse is Λ〈app ◦ (π1 ⊗ id), app ◦ (π2 ⊗ id)〉. This isomorphism
exists in any monoidal closed category with products.

• The map af : A⇒ I given by (dec0)−1 ◦ tA.
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• The isomorphism dist0( : A( I → I given by af whose inverse is Λ(runit⊗ ◦ (id⊗
af)). We must check that these are inverses: af◦Λ(runit⊗◦(id⊗af)) = id as both are
maps into the terminal object, and Λ(runit⊗ ◦ (id⊗ af)) ◦ af = Λ(runit⊗ ◦ (af ⊗ id) ◦
(af⊗ id)) = Λ(app) = id as required. We know that runit⊗ ◦(af⊗ id)◦(af⊗ id) = app
as both are maps into the terminal object.

We can use the structure described above to model the negative connectives of WS1.
We will represent positive connectives indirectly, inspired by the fact that strategies on
the positive game P correspond to strategies on the negative game ↑ P = P⊥ ( o where
o is the one-move game ⊥. The object o satisfies a special property: an internalised
version of linear functional extensionality [1].

Definition An object o in a sequoidal closed category satisfies linear functional exten-
sionality if the natural transformation lfe : (B ( o)�A⇒ (A( B) ( o : C ×Cop → Cs
given by Λs(apps ◦ (id� app) ◦ (id� sym) ◦ pasc−1) is an isomorphism.

The linear functional extensionality property is characteristic of our history sensitive,
locally alternating games model [24]: it does not hold in other sequoidal closed categories
(e.g. Conway games [21]).

Using linear functional extensionality we can give a natural isomorphism abs : o�A ∼=
o by noticing that o� A ∼= (I ( o)� A ∼= (A ( I) ( o ∼= I ( o ∼= o, and thus setting
abs = unit( ◦ ((dist0()−1 ( id) ◦ lfe ◦ (unit−1

( � id).

5.2. Coalgebraic Exponential Comonoid

We next consider the categorical status of the exponential operator !. We interpret the
core introduction rules for the exponentials, and the key anamorphism rule, by requiring
that it is the carrier for a final coalgebra of the functor X 7→ N �X.

Recall that a coalgebra for a functor F : C → C is an object A and a map A→ F (A).
A final coalgebra is a terminal object in the category of coalgebras, that is a coalgebra
α : Z → F (Z) such that for any f : A→ F (A) there is a unique $f% : A→ Z such that
α ◦$f% = F ($f%) ◦ f .

A
f - F (A)

Z

$f%

?

α
- F (Z)

F ($f%)

?

We call $f% the anamorphism of f . Note in particular that if (Z,α) is a final coalgebra
for F , then α is an isomorphism, with inverse α−1 = $F (α)%.

In W we define a coalgebra (!N,α) by taking α : !N → N � !N to be the evident
copycat strategy which relabels in1(a) on the right to (a, 1) on the left and in2(a, n) on
the right to (a, n+ 1) on the left.

Proposition 5.3. (!N,α) is the final coalgebra of the functor N � in the category G.
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Proof Let σ : M → N �M . Define $σ%n : M → (N � )n(M) by $σ%0 = id and
$σ%n+1 = (id� )n(σ) ◦$σ%n.

M
$σ%n- (N � )n(M)

(id� )n(σ)- (N � )n(N �M) = (N � )n+1(M)

The strategy $σ%n is a partial approximant to $σ% : M → !N . We can show by
induction on n that $σ%n+1 = (id � $σ%n) ◦ σ. Similarly, we can define αk : !N ∼=
(N � )k(!N) : α−1

k by performing the above construction on α. Consider the sequence
of maps M → !N defined by sk = α−1

k ◦ (id� )k(ε) ◦$σ%k for k ∈ ω. We can show that
sk+1 w sk by induction on k, and so (sk) is a chain. Set $σ% =

⊔
α−1
k ◦(id� )k(ε)◦$σ%k,

where ε is the empty strategy. It is well-known that G is cpo-enriched with bottom
element ε [24].

We wish to show that $σ% is the unique strategy such that α◦$σ% = (id�$σ%)◦σ.
To show that the equation holds, note that α ◦$σ% = α ◦

⊔
α−1
k ◦ (id� )k(ε) ◦$σ%k =

α◦
⊔
α−1
k+1◦(id� )k+1(ε)◦$σ%k+1 =

⊔
α◦α−1

k+1◦(id� )k+1(ε)◦$σ%k+1 =
⊔

(id�α−1
k )◦

(id�(id� )k(ε))◦(id�$σ%k)◦σ = (id�
⊔

(α−1
k ◦(id� )k(ε)◦$σ%k)◦σ = (id�$σ%)◦σ.

For uniqueness, suppose that γ : M → !N is such that α ◦ γ = (id� γ) ◦ σ. We wish
to show that γ = $σ% =

⊔
α−1
k ◦ (id� )k(ε) ◦$σ%k. To see that γ w $σ%, it suffices

to show that γ is an upper bound of the chain, i.e. γ w α−1
k ◦ (id� )k(ε)◦$σ%k for each

k. This can be shown using a simple induction on k. To see that γ v $σ%, we show
that each play in γ is also in $σ%. Consider a play s ∈ γ : M → !N . Since s is finite, it
must visit only a finite number of copies of N — say, k copies. Then s is also a play in
α−1
k ◦ (id� )k(ε) ◦ αk ◦ γ.

It is thus sufficient to show that (id � )k(ε) ◦ αk ◦ γ v (id � )k(ε) ◦ $σ%k. This is
achieved by a simple induction on k. 2

Proposition 5.4. (!N,α) is the final coalgebra of N � in the category W.

Proof It suffices to show that if σ : M → N �M is a winning strategy, then $σ% is
winning.

To see that $σ% is total, let s ∈ $σ% and so ∈ P!N . Then so visits only finite k
many copies of N , and so up to retagging it is a play in M → (N � )k(M), and s a
play in $σ%k. By totality of $σ%k, there is a move p with sop ∈ $σ%k. Then, up to
retagging, sop is also a play in $σ%.

We next need to check that each infinite play with all even prefixes in $σ% is winning.
Let s be such an infinite play, with s|M winning. We must show that s|!N is winning,
i.e. s|(N,i) is winning for each i. The infinite play s corresponds to an infinite interaction
sequence:

M
σ- N �M

id� σ- N � (N �M)
id� (id� σ)- . . .

...

Then s|(N,i) can also be found in the ith column of the above interaction sequence. By
hiding all columns other than the first and the ith, we see a play in M → (N � )i(M)
in $σ%i. The first column is s|M (which is winning), and the ith component of the
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second is s|(N,i). Since $σ%i is a winning strategy, this play is winning, by the winning
condition for �. 2

Recall that the monoidal unit of a distributive sequoidal category is a terminal object.
Thus we may define operations corresponding to dereliction and promotion:

• derN : !N → N = unit� ◦ (id� t) ◦ α.

• Given any symmetric comonoid (B, η, δ), and morphism f : B → N , let f† : B →!N
be the (comonoid morphism) $wk ◦ (f ⊗ id) ◦ δ%.

To interpret the contraction rule, we require a further coalgebraic property.

Definition A decomposable, distributive sequoidal category C has coalgebraic monoidal
exponentials if:

• For any object A, the endofunctor A� has a specified final coalgebra (!A,αA).

• For any objects A,B, (!A⊗!B,αA,B) is a final coalgebra for the endofunctor (A×
B)� , where αA,B :!A⊗!B → (A×B)� (!A⊗!B) is the isomorphism:

!A⊗!B ∼= (!A�!B)× (!B�!A) ∼= ((A�!A)�!B)× ((B�!B)�!A)
∼= (A� (!A⊗!B))× (B � (!A⊗!B)) ∼= (A×B)� (!A⊗!B)

The second requirement is equivalent to requiring that the morphism 〈derA⊗ t, t⊗derB〉†
from !A⊗!B to !(A×B) is an isomorphism. Thus we may define a comonoid (!A, δ :!A→
!A⊗!A, t : A→ I), where δ is the anamorphism of the map distA,A,!A ◦ 〈αA, αA〉.
Proposition 5.5. If C has coalgebraic monoidal exponentials then (!A, δ, t) is the cofree
commutative comonoid on A.

Proof In other words, the forgetful functor from the category of comonoids on C into
the category C has a left adjoint which sends A to (!A, δ, t). The unit of this adjunction
is the dereliction derA : !A→ A: for any f : B → A, f† : B →!A is the unique comonoid
morphism such that der ◦ f†. (Uniqueness follows from finality of !A.) 2

This cofree commutative comonoid can also be constructed using the technique de-
scribed in [35]. This approach builds the exponential as a limit of finitary symmetric
tensor powers, that is, finite tensor products subject to a quotient so that the order that
the components are played in is irrelevant. Our use of the asymmetric � enforces a strict
left-to-right order, providing a concrete (albeit less generally applicable) alternative to
such quotienting.

Proposition 5.6. The sequoidal closed categories W and G are both equipped with coal-
gebraic monoidal exponentials.

Proof Follows from Propositions 5.3, 5.4 and the fact ! is the cofree commutative
comonoid in G and W [24]. 2

Definition A WS!-category is a distributive, decomposable sequoidal closed category
with an object o satisfying linear functional extensionality and coalgebraic monoidal
exponentials.

Proposition 5.7. The categories (G,Gs) and (W,Ws) enjoy the structure of an WS!-
category.
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5.3. Semantics of Rules

We may now describe the interpretation of the rules of our logic (other than those for
atoms, quantifiers and equality) in a WS!-category C. Suppose that, for a given context
of variables and atoms Φ, we have an interpretation of formulas and sequents over Φ as
objects of C, satisfying the following:

JΦ ` 1K = I JΦ ` 0K = I
JΦ ` ⊥K = o JΦ ` >K = o
JΦ `M ⊗NK = JΦ `MK⊗ JΦ ` NK JΦ ` POQK = JΦ ` P K⊗ JΦ ` QK
JΦ `M&NK = JΦ `MK× JΦ ` NK JΦ ` P ⊕QK = JΦ ` P K× JΦ ` QK
JΦ `M �NK = JΦ `MK� JΦ ` NK JΦ ` P �QK = JΦ ` P K� JΦ ` QK
JΦ `M �QK = JΦ ` QK( JΦ `MK JΦ ` P �NK = JΦ ` NK( JΦ ` P K
JΦ `!NK = !JΦ ` NK JΦ `?P K = !JΦ ` P K

JΦ `M,Γ, NK = JΦ `M,ΓK� JΦ ` NK
JΦ `M,Γ, P K = JΦ ` P K( JΦ `M,ΓK
JΦ ` P,Γ, NK = JΦ ` NK( JΦ ` P,ΓK
JΦ ` P,Γ, QK = JΦ ` P,ΓK� JΦ ` QK

(For atom and quantifier-free formulas, these equations define an interpretation of
formulas and sequents in C.) Then we may give an interpretation of each proof rule
except those for atoms, quantifiers, and equality as an operation on morphisms in C.
These typically involve an operation on the head formula of the sequence “under” a
context consisting of its tail, and so we define distributivity maps to allow this:

We define endofunctors JΓKb on Cs for each context (possibly empty list of formulas)
Γ and b ∈ {+,−}. below.

JεK+ = id JεK− = id
JΓ,MK+ = JMK( JΓK+ JΓ, P K− = JP K( JΓK−
JΓ, P K+ = JΓK+ � JP K JΓ,MK− = JΓK− � JMK

Proposition 5.8. For any sequent A,Γ we have JA,ΓK = JΓKb(JAK) where b is the po-
larity of A.

Proof A simple induction on Γ. 2

Proposition 5.9. For any context Γ, JΓKb preserves products.

Proof Using the distributivity of × over � and (, we can construct isomorphisms
distb,Γ : JΓKb(A×B) ∼= JΓKb(A)× JΓKb(B) and dist0

b,Γ : JΓKb(I) ∼= I by induction on Γ.
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Figure 9: Categorical Semantics for WS1 (core rules)

P1
(dist0−,Γ)−1 : J` 1,ΓK

P>
ido : J` >K

σ : J`M,N,ΓK τ : J` N,M,ΓK
P⊗

JΓK−(dec−1) ◦ dist−1
−,Γ ◦ 〈σ, τ〉 : J`M ⊗N,ΓK

σ : J`M,ΓK τ : J` N,ΓK
P&

dist−1
−,Γ ◦ 〈σ, τ〉 : J`M&N,ΓK

σ : J` Q,P,ΓK
PO2

σ ◦ JΓK+(wk ◦ sym) : J` POQ,ΓK
σ : J` P,Q,ΓK

PO1
σ ◦ JΓK+(wk) : J` POQ,ΓK

σ : J` P,∆K
P⊕1

σ ◦ J∆K+(π1) : J` P ⊕Q,∆K
σ : J` Q,∆K

P⊕2
σ ◦ J∆K+(π2) : J` P ⊕Q,∆K

σ : J` ⊥, POQ,ΓK
PO⊥ JΓK−(pasc( ◦ (sym ( id)) ◦ σ : J` ⊥, P,Q,ΓK

σ : J` P K
P+
⊥ ΛI(σ) : J` ⊥, P K

σ : J` ⊥, P �N,ΓK
P�⊥ JΓK−(lfe−1) ◦ σ : J` ⊥, P,N,ΓK

σ : J` NK
P−> unit( ◦ (σ ( id) : J` >, NK

σ : J` >,M ⊗N,ΓK
P⊗>

σ ◦ JΓK+((sym ( id) ◦ pasc−1
( ) : J` >,M,N,ΓK

σ : J` >, N � P,ΓK
P�
>

σ ◦ JΓK+(lfe) : J` >, N, P,ΓK
σ : J` ⊥,ΓK

P−⊥ JΓK−(abs−1) ◦ σ : J` ⊥, N,ΓK
σ : J` A,P,ΓK

P�
σ : J` A� P,ΓK

σ : J>,ΓK
P+
>

σ ◦ JΓK+(abs) : J>, P,ΓK
σ : J` A,N,ΓK

P�
σ : J` A�N,ΓK

5.4. Semantics of Proof Rules

Define σ : J` ΓK if:

• Γ = N,Γ′, and σ : I → JΓK in C.

• Γ = P,Γ′, and σ : JΓK→ o in C.

Semantics of the core rules as operations on morphisms are given in Figure 9 and the other
rules in Figures 10 and 11. The rules involving the exponential are treated separately in
Figure 12. Note that in each case, the interpretation in the WS!-category W agrees with
the informal exposition in Section 3.2.

In the semantics of Pcut we use an additional construction. If τ : I → JN,∆K define
(strict) τ◦−M,Γ : JM,Γ, N⊥K → JM,Γ,∆K to be unit( ◦ (τ ( idJM,ΓK) if |∆| = 0 and

pascn(◦(Λ−nΛ−1
I τ ( idJM,ΓK) if |∆| = n+1. Define (strict) τ◦+P,Γ : JP,Γ,∆K→ JP,Γ, N⊥K

to be (idJP,ΓK � τ) ◦ unit−1
� if |∆| = 0 and (id � Λ−nΛ−1

I τ) ◦ ((idJP,ΓK � sym) ◦ pasc−1)n

if |∆| = n + 1. In some of the rules in Figure 11 we omit some pasc isomorphisms for
clarity.

6. Semantics of atoms, quantifiers and equality

We shall now complete the semantics of WS1 by interpreting atoms and quantifiers
based on our categories of games and strategies. (The requisite structure could be ax-
iomatised for any WS!-category, but we shall not do so here.) We have seen that a sequent
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Figure 10: Categorical Semantics for WS1 (other rules, part 1)

σ : J`M ′,Γ,M,N,∆K

J∆K−(psym) ◦ σ : J`M ′,Γ, N,M,∆K

σ : J` P,Γ,M,N,∆K

σ ◦ J∆K+(psym() : J` P,Γ, N,M,∆K

σ : J`M,Γ, P,Q,∆K

J∆K−(psym() ◦ σ : J`M,Γ, Q, P,∆K
σ : J` P ′,Γ, P,Q,∆K

σ ◦ J∆K+(psym) : J` P ′,Γ, Q, P,∆K

σ : J` P,Γ,M,∆K

σ ◦ J∆K+((af ( id) ◦ unit−1
( ) : J` P,Γ,∆K

σ : J` N,Γ,M,∆K

J∆K−(unit� ◦ (id� af)) ◦ σ : J` N,Γ,∆K

σ : J`M,Γ,∆K

J∆K−((af ( id) ◦ unit−1
( ) ◦ σ : J`M,Γ, P,∆K

σ : J` P,Γ,∆+K

σ ◦ J∆K−(unit� ◦ (id� af)) : J` P,Γ, Q,∆+K

σ : J` N,Γ,∆K
J∆K−(unit−1

� ) ◦ σ : J` N,Γ,1,∆K
σ : J` P,Γ,∆K

σ ◦ J∆K+(unit() : J` P,Γ,1,∆K
σ : J`M,Γ,∆K

J∆K−(unit−1
( ) ◦ σ : J`M,Γ,0,∆K

σ : J` P,Γ,∆K
σ ◦ J∆K+(unit�) : J` P,Γ,0,∆K

σ : J`M ′,Γ,M,N,∆K

J∆K−(pasc) ◦ σ : J`M ′,Γ,M ⊗N,∆K
σ : J` P,Γ,M,N,∆K

σ ◦ J∆K+(pasc() : J` P,Γ,M ⊗N,∆K

σ : J` P ′,Γ, P,Q,∆K
σ ◦ J∆K+(pasc−1) : J` P ′,Γ, POQ,∆K

σ : J`M,Γ, P,Q,∆K

J∆K+(pasc−1
( ) ◦ σ : J`M,Γ, POQ,∆K

σ : J`M,Γ, Pi,∆K

J∆K−(πi ( id) ◦ σ : J`M,Γ, P1 ⊕ P2,∆K

σ : J` Q,Γ, Pi,∆K
σ ◦ J∆K+(id� πi) : J` Q,Γ, P1 ⊕ P2,∆K

σ : J` N,Γ,M1&M2,∆K

J∆K−(id� πi) ◦ σ : J` N,Γ,Mi,∆K

σ : J` Q,Γ,M1&M2,∆K

σ ◦ J∆K+(πi ( id) : J` Q,Γ,Mi,∆K
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Figure 11: Categorical Semantics for WS1 (other rules, part 2)

σ : J`M,Γ,∆+K τ : J` N,∆+
1 K

Pmul
ΛIΛ(wk ◦ (Λ−1

I (σ)⊗ Λ−1
I (τ))) : J`M,Γ, N,∆+,∆+

1 K

σ : J`M,Γ, N⊥,Γ1K τ : J` N,∆+K
Pcut

JΓ1K−(τ◦−M,Γ) ◦ σ : J`M,Γ,∆+,Γ1K

σ : J` P,Γ, N⊥,Γ1K τ : J` N,∆+K
Pcut

σ ◦ JΓ1K+(τ◦+P,Γ) : J` P,Γ,∆+,Γ1K

Pid
ΛI(id) : J` N,N⊥K

σ : J` N⊥K τ : J` N,QK
P0

cut
σ ◦ Λ−1

I (τ) : J` QK

σ : J`M,Γ, P K τ : J` N,∆+K
P(

psym( ◦ ΛI(Λ
−1
I (τ) ( Λ−1

I (σ)) : J`M,Γ, P �N,∆+K

σ : J` N,Q,∆+K
Pid�

ΛIΛ((id� Λ−1Λ−1
I (σ) ◦ sym) ◦ pasc� ◦ wk ◦ sym) : J`M,N,M⊥ �Q,∆+K

X; Θ ` Γ of WS1 can be interpreted as a family of games, indexed over Θ-satisfying L-
models over X. We shall interpret a proof of X; Θ ` Γ as a uniform family of strategies
for each such game.

For example, the family denoted by >� (φ�>) has games of the following form:

q

p

a

Here we represent the forest of plays PA directly. The moves in dotted circles are only
available if (L, v) |= φ. There is a unique total strategy on the (positive) game above in
both cases, and this family is uniform in the sense that the strategy on models which
satisfy φ is a substrategy of the strategy on models satisfying φ — if (L, v) |= φ and
(L′, v′) |= φ then σJ>�(φ�>)K(L,v) ⊆ σJ>�(φ�>)K(L′,v′).

In contrast, consider the formula ⊥ � (φ ⊕ (> � φ)). The game forest is given as
follows, using the same notation as above:
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Figure 12: Semantics for WS1 — Exponential Rules

Core rules:

σ : J` N, !N,ΓK
P!

JΓK−(α−1) ◦ σ : J`!N,ΓK

σ : J` P, ?P,ΓK
P?

σ ◦ JΓK+(α) : J`?P,ΓK
Other rules:

σ : J`M,P⊥, P K
Pana

ΛI($Λ−1
I (σ)%) : J`!M,P K

σ : J` P,Γ, !M,∆K

σ ◦ J∆K+(der ( id) : J` P,Γ,M,∆K

σ : J`!M,∆K

J∆K−(der) ◦ σ : J`M,∆K
σ : J` P,Γ, !M,∆K

σ ◦ J∆K+((δ ( id) ◦ pasc−1
( ) : J` P,Γ, !M, !M,∆K

σ : J` N,Γ, !M,∆K

J∆K−(id� der) ◦ σ : J` N,Γ,M,∆K
σ : J` N,Γ, !M,∆K

J∆K−(pasc ◦ (id� δ)) ◦ σ : J` N,Γ, !M, !M,∆K

σ : J`!M,∆K

J∆K−(con) ◦ σ : J`!M, !M,∆K
σ : J`M,Γ, ?P, ?P,∆K

J∆K−((δ ( id) ◦ pasc−1
( ) ◦ σ : J`M,Γ, ?P,∆K

σ : J`?P, ?P,∆K

σ ◦ J∆K+(con) : J`?P,∆K
σ : J` Q,Γ, ?P, ?P,∆K

σ ◦ J∆K+(pasc ◦ (id� δ)) : J` Q,Γ, ?P,∆K

σ : J` P,∆K
σ ◦ J∆K+(der) : J`?P,∆K

σ : J` Q,Γ, P,∆K
σ ◦ J∆K+(id� der) : J` Q,Γ, ?P,∆K

σ : J`M,Γ, P,∆K

J∆K−(der ( id) ◦ σ : J`M,Γ, ?P,∆K

q

t f

p

There is a family of strategies on this (negative) game: if φ is true, Player plays f and if
φ is true, Player plays t. However, this strategy is not uniform as the choice of second
move depends on the truth value of φ in the appropriate L-structure. Correspondingly,
the formula is not provable in WS1.

We now formalise this notion of uniformity of strategies as a naturality property.

6.1. Uniform Strategies

6.1.1. Game Embeddings

We wish to formalise categorically the notion of a game A being a subgame of B: we
can then state that a family of strategies is uniform if whenever A is a subgame of B, the
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restriction of σB to A is σA. If we consider games as trees, we require a tree embedding
from PA into PB . We use the following machinery:

Definition Let C be a poset-enriched category. The category Ce has the same objects
as C and a map A→ B in Ce consists of a pair (if , pf ) where if : A→ B and pf : B → A
in C, such that pf ◦ if = id and if ◦ pf v id.

• The identity is given by (id, id).

• For composition, set (if , pf ) ◦ (ig, pg) = (if ◦ ig, pg ◦ pf ). We need to check this is
a valid pairing: pf◦g ◦ if◦g = pg ◦ pf ◦ if ◦ ig = pg ◦ id ◦ ig = id and if◦g ◦ pf◦g =
if ◦ ig ◦ pg ◦ pf v if ◦ id ◦ pf = if ◦ pf v id.

• It is clear that composition is associative and that f = f ◦ id = id ◦ f .

Let G denote the poset-enriched category of games and (not-necessarily winning) strate-
gies, and Gs its subcategory of strict strategies, with v given by strategy inclusion. A
tree embedding of A into B corresponds to a map A→ B in Ge.

Proposition 6.1. If f : A→ B in Ge then if and pf are strict.

Proof If if responds to an opening move in B with a move in B then so does if ◦ pf
and so if ◦ pf v id fails. Similarly, if pf responds to an opening move in A with a move
in A then so does pf ◦ if and so pf ◦ if = id fails. 2

We can thus define identity-on-objects functors i : Ge → Gs and p : Ge → Gop
s . We can

show that our operations on games lift to functors on Ge.

Proposition 6.2. All of the operations (,�,⊗,&,! extend to covariant (bi)functors on
Ge.

Proof Each case exploits functoriality and monotonicity of the relevant operation. We
just give an example: set (i, p) ( (i′, p′) = (p( i′, i( p′). Then (i( p′) ◦ (p( i′) =
(p◦i) ( (p′◦i′) = id ( id = id and (p( i′)◦(i( p′) = (i◦p) ( (i′◦p′) v id ( id = id.

2

6.1.2. Lax natural Transformations

Given an embedding e : A → B and strategies σA : A, σB : B, σB restricts to σA if
σA = pe ◦ σB . We generalise this idea using the notion of lax natural transformations.

Definition Let C be a category, D a poset-enriched category and F,G : C → D. A
lax natural transformation F ⇒ G is a family of arrows µA : F (A) → G(A) such that
ηB ◦ F (f) w G(f) ◦ ηA.

F (A)
µA- G(A)

w

F (B)

F (f)

?

µB
- G(B)

G(f)

?

39



We can compose lax natural transformations using vertical composition. There is also a
form of horizontal composition, provided that one of the two functors is the identity: Let
H,G : C → D and µ : G ⇒ H a lax natural transformation. Then a) if F : B → C then
there is a lax natural transformation µF : G◦F ⇒ H ◦F given by (µF )A = µF (A) and b)
if J : D → E is monotonic then there is a lax natural transformation Jµ : J ◦G→ J ◦H
given by (Jµ)A = J(µA).

6.1.3. Uniform Winning Strategies

Definition Let F,G : C → Ge. A uniform strategy from F to G is a lax natural
transformation σ : i ◦ F ⇒ i ◦G. A uniform total strategy is a uniform strategy σ where
each σA is total. A uniform winning strategy is a uniform strategy where each σA is
winning.

If f : A → B, the lax naturality condition is that iG(f) ◦ σA v σB ◦ iF (f). Thus σA =
pG(f) ◦ iG(f) ◦σA v pG(f) ◦σB ◦ iF (f). But since σA is total, it is maximal in the ordering
v and we must have σA = pG(f) ◦σB ◦ iF (f). Similarly, we see that σA = pG(f) ◦σB ◦ iF (f)

implies the lax naturality condition as iG(f) ◦σA = iG(f) ◦ pG(f) ◦σB ◦ iF (f) v σB ◦ iF (f).
Thus, lax naturality captures the fact that σA is determined by σB via restriction. If F
is the constant functor κI , this reduces to σA = pG(e) ◦ σB .

We can construct a WS-category of uniform strategies over a base category C. Let
GC be the category where:

• Objects are functors C → Ge

• An arrow F → G is a uniform strategy F ⇒ G

• Composition is given by vertical composition of lax natural transformations

• The identity on a functor F is given by the lax natural transformation η : F ⇒ F
where ηA = idF (A). It is clear that this is lax natural.

Similarly, we can construct a category WC of functors and uniform winning strategies.

Proposition 6.3. GC is a WS!-category.

Proof We first exhibit the symmetric monoidal structure. F ⊗ G is defined to be ⊗ ◦
(F × G) ◦ ∆ where ∆ : C → C × C is the diagonal. So, (F ⊗ G)(A) = F (A) ⊗ G(A).
On arrows, we set (η ⊗ ρ)A = ηA ⊗ ρA. We need to show that if f : L → K then
(iA(f) ⊗ iC(f)) ◦ (ηK ⊗ ρK) w (iB(f) ⊗ iD(f)) ◦ (ηL ⊗ ρL). That is, we need to show that
(iA(f) ◦ ηK)⊗ (iC(f) ◦ ρK) w (iB(f) ◦ ηL)⊗ (iD(f) ◦ ρL). But this is clear by lax naturality
of η and ρ and monotonicity of ⊗.

The tensor unit I is the constant functor, sending all objects to the game I and arrows
to idI .

The morphisms assoc, runit⊗, lunit⊗ and sym are defined pointwise: for example,
(assocF,G,H)X = assocF (X),G(X),H(X). To check for lax naturality, we must use horizontal
composition. For example, consider the map assoc : (F ⊗G)⊗H → F ⊗ (G⊗H) defined
pointwise as described. The domain is (F ⊗ G) ⊗ H = (( ⊗ ) ⊗ ) ◦ (i ◦ F × i ◦ G ×
i ◦ H) ◦ ∆3 where ∆3 is the diagonal functor C → C × C × C. Similarly, the codomain
is ( ⊗ ( ⊗ )) ◦ (i ◦ F × i ◦G × i ◦H) ◦∆3. We can thus see that assoc is equal to the
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horizontal composition assocJ where J = (i ◦ F × i ◦ G × i ◦ H) ◦ ∆3 and assoc is the
natural transformation ⊗ ( ⊗ )⇒ ( ⊗ )⊗ in Gs.

C
∆3- C × C × C

i ◦ F × i ◦G× i ◦H- Gs × Gs × Gs
⊗ ( ⊗ )- Gs

C
∆3-

id�
wwwwwww
C × C × C

i ◦ F × i ◦G× i ◦H-

id�
wwwwwww

Gs × Gs × Gs
( ⊗ )⊗-

assoc�
wwwwwww

Gs

One can similarly express the other monoidal isomorphisms in this way to see lax
naturality. The coherence equations of symmetric monoidal categories inherit pointwise
from G.

Symmetric monoidal closure, products, sequoidal closure and linear functional exten-
sionality lift pointwise from G using horizontal composition. We can also show that the
coalgebraic monoidal exponential structure lifts from G. 2

Proposition 6.4. WC is a WS!-category.

Proof We proceed precisely as in Proposition 6.3, lifting the structure of a WS!-category
in W to that in WC . In particular, pointwise-winningness of the relevant morphisms in
WC inherits from the winningness in W. 2

6.2. Quantifiers

6.2.1. Category of L-structures

Definition Given a set of variables X and set of atomic formulas Θ, we letMX
Θ denote

the category of Θ-satisfying L-models over X. Objects are L-models over X that satisfy
each formula in Θ. A morphism (L, v)→ (L′, v′) is a map f : |L| → |L′| such that:

• For each x ∈ X, v′(x) = f(v(x))

• If (L, v) |= φ(−→a ) for −→a ∈ |L|ar(φ) then (L′, v′) |= φ(
−−→
f(a))

• For each function symbol g in L, f(IL(g)(−→a )) = IL′(g)(
−−→
f(a)).

Note that since the positive atoms include inequality, such morphisms must be injective.
Also note that if f : (L, v)→ (L′, v′) and (L, v) |= φ(−→s ) then (L′, v′) |= φ(−→s ).

If v is a valuation on X, define v[x 7→ l] on X ∪ {x} to be the valuation sending
y to v(y) if y 6= x, and x to l. Given f : (L, v) → (M,w) in MΘ

X and s a term
with FV (s) ⊆ X, f is also a map (L, v[x 7→ v(s)]) → (M,w[x 7→ w(s)]) in MΘ

X∪{x}.
We know that f preserves all of the valuations other than x, and for x we see that
f(v[x 7→ v(s)](x)) = f(v(s)) = w(s) = w[x 7→ w(s)](x).

We will give semantics of sequents X; Θ ` Γ as functorsMX
Θ → Ge, and proofs as uniform

winning strategies.
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6.2.2. Quantifiers as Adjoints

In this section, we will describe an adjunction that will allow us to interpret the
quantifiers.

• If FV (s) ⊆ X we can define a functor setxs : MΘ
X → MΘ

X]{x} by setxs (L, v) =

(L, v[x 7→ v(s)]) and if f : (L, v) → (M,w) we set setxs (f) = f . We need to check
that setxs (f) is a valid morphism. We know that setxs (f) preserves all variables in
X, and setxs (f)(v[x 7→ v(s)](x)) = f(v(s)) = w(s) = w[x 7→ w(s)](x) as required.
It is clear that setxs is functorial.

From this we can extract a functor set′xs : WM
Θ
X]{x} → WMΘ

X , mapping F to
F ◦ setxs , with an action on arrows defined by horizontal composition.

• Provided x does not occur in Θ, there is an evident forgetful functor Ux :MΘ
X]{x} →

MΘ
X mapping (L, v) to (L, v−x). From this we can extract a functor U ′x :WMΘ

X →
WM

Θ
X]{x} mapping F to F ◦ Ux, with an action on arrows defined by horizontal

composition. Note that Ux ◦ setxs = id and so set′xs ◦ U ′x = id.

We will show that U ′x has a right adjoint ∀x. . Assuming empty Γ, this allows us to
interpret the rules P∀ and P∃.

Definition Let C be a category. We define the category FamInj(C). An object is a set I
and a family of C-objects {Ai : i ∈ I}. An arrow {Ai : i ∈ I} → {Bj : j ∈ J} is a pair
(f, {fi : i ∈ I}) where f is an injective function I → J and each fi : Ai → Bf(i). We will
often write such a map as (f, {fi}) when we wish to leave the indexing set implicit.

• Composition is defined by (f, {fi}) ◦ (g, {gi}) = (f ◦ g, {fg(i) ◦ gi}).

• The identity {Ai : i ∈ I} → {Ai : i ∈ I} is given by (id, {idAi}).

• Satisfaction of the categorical axioms is inherited from C.

Definition Let F : C → D. We define FamInj(F ) : FamInj(C)→ FamInj(D). On objects,
FamInj(F )({Ai : i ∈ I}) = {F (Ai) : i ∈ I}. On arrows, we set FamInj(F )(f, {fi}) =
(f, {F (fi)}).

We define a distributivity functor dst : FamInj(C)×D → FamInj(C × D) by dst({Ai : i ∈
I}, B) = {(Ai, B) : i ∈ I} and dst((f, {fi}), g) = (f, {(fi, g)}).

Suppose F is an object in WM
Θ
X]{x} (a functor MΘ

X]{x} → Ge). We define ∀x.F
as an object in WMΘ

X (a functor MΘ
X → Ge). We first define a product functor prod :

FamInj(Ge) → Ge. On objects, prod sends {Gi : i ∈ I} to
∏
i∈I Gi. On arrows, let

f : {Gj : j ∈ J} → {Hh : h ∈ H}. The embedding part of prod(f) is given by 〈gh〉h where
gh = ifj ◦ πj if h = f(j) and ε otherwise. The projection part is given by 〈pfj ◦ πf(j)〉j .
We can check that prod defines a functor into Ge. Finally, given F : MΘ

X]{x} → Ge we

define ∀x.F :MΘ
X → Ge to be prod ◦ FamInj(F ) ◦ addx.

Proposition 6.5. The functor U ′x : WMΘ
X → WM

Θ
X]{x} has a right adjoint given by

∀x. = prod ◦ FamInj( ) ◦ addx :WM
Θ
X]{x} →WMΘ

X
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Proof We must first give the unit of this adjunction. For each F , we must give a
uniform winning strategy η : U ′x(∀x.F ) ⇒ F . Such an η is a winning uniform strategy
prod ◦ FamInj(F ) ◦ addx ◦ Ux ⇒ F . Note that (prod ◦ FamInj(F ) ◦ addx ◦ Ux)(L, v) =
prod({F (L, v−x[x 7→ l]) : l ∈ L}) =

∏
l∈L F (L, v[x 7→ l]). Thus η(L,v) must be a winning

strategy
∏
l∈L F (L, v[x 7→ l])→ F (L, v) and we take η(L,v) = πv(x). One can check that

this transformation is lax natural.
Given f : U ′x(F ) → G we must show that there is a unique f̂ : F → ∀x.G such

that f = ηG ◦ U ′x(f̂). Let f be such a uniform winning strategy. Then we must give

winning strategies f̂(L,v) : F (L, v) →
∏
l∈LG(L, v[x 7→ l]). Set f̂(L,v) = 〈hl〉l where

hl : F (L, v)→ G(L, v[x 7→ l]) is defined by f(L,v[x 7→l]). We can check that f̂ satisfies lax
naturality.

We next need to show that f̂ satisfies the universal property. Firstly, we must show
that f = ηG ◦ U ′x(f̂). It suffices to show that for each (L, v), f(L,v) = ((ηG) ◦ U ′x(f̂))L,v.
Composition in is given by vertical composition. Thus, the RHS is given by πv(x) ◦
〈f(L,v[x 7→l])〉l = f(L,v[x 7→v(x)]) = f(L,v) as required.

We need to show that f̂ : F → ∀x.G is the unique uniform strategy satisfying f =
ηG ◦U ′x(f̂). Suppose h : F → ∀x.G in WMΘ

X satisfies this property. Then given (L, v) in
MΘ

X]{x}, we know that f(L,v) = ηG(L,v) ◦ h(L,v−x) = πv(x) ◦ h(L,v−x). Let (L, v) ∈ MΘ
X .

We must show that h(L,v) = f̂(L,v) = 〈f(L,v[x 7→l])〉l. Thus we need to show that for each
l, πl ◦ h(L,v) = f(L,v[x 7→l]). But consider the model (L, v[x 7→ l]). This is f(L,v[x 7→l]) =
πv[x 7→l](x) ◦ h(L,v[x 7→l]−x) = πl ◦ h(L,v), as required. 2

If N : MΘ
X]{x} → Ge then on objects J∀x.NK(L, v) =

∏
l∈|L|JNK(L, v[x 7→ l]).

For the action of ∀x.N on arrows, suppose f : (L, v) → (L′, w). Then J∀x.NK(f) :∏
l∈|L|JNK(L, v[x 7→ l]) →

∏
l∈|L′|JNK(L

′, w[x 7→ l]) is given as follows: The embedding

part (left to right) is given by 〈gm〉m where gm = ε if m is not in the image of f , and
gm = iJNK(f) ◦ πl if m = f(l) (note in this case l is unique by injectivity of f). The
projection part is given by 〈pJNK(f) ◦ πf(l)〉l.

Consider the map set′xs (η) : ∀x.F = set′xs (U ′x(∀x.F ))→ set′xs (F ) in the categoryMΘ
X .

Pointwise, set′xs (η)(L,v) :
∏
l∈L F (L, v[x 7→ l])→ F (L, v[x 7→ v(s)]) is given by πv(s), and

so we will write πs for this map.

6.3. Semantics of Sequents

We define the semantics of sequents X; Θ ` Γ as functors MΘ
X → Ge inductively, via

the equations given in the previous section, extended with the following interpretations
of atoms and quantifiers:

JΦ ` φ(−→s )K(L, v) = I if (L, v) |= φ(−→s ) JΦ ` φ(−→s )K(L, v) = I if (L, v) |= φ(−→s )

JΦ ` φ(−→s )K(L, v) = o if (L, v) |= φ(−→s ) JΦ ` φ(−→s )K(L, v) = o if (L, v) |= φ(−→s )

JX; Θ ` ∀x.NK = ∀x.JX ] {x}; Θ ` NK
JX; Θ ` ∃x.P K = ∀x.JX ] {x}; Θ ` P K

In the case of atoms, the functors are specified pointwise on objects, and we must
also define the (functorial) action on arrows. Let f : (L, v)→ (L′, v′). If the truth value
of φ(−→s ) is the same in (L, v) and (L′, v), we use the identity embedding (id, id). If the
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truth value of φ(−→s ) is different, we must have (L, v) |= φ(−→s ) and (L′, v) |= φ(−→s ) since
morphisms inMX preserve truth of positive atoms. Thus we need an embedding I → o.
We can take (εI(o, εo(I) where εA is the strategy containing just the empty sequence.
Note that εo(I ◦ εI(o = εI = idI and εI(o ◦ εo(I = ε v ido (ε is the bottom element
with respect to v).

We must check functoriality. We have already noted that if the truth value of φ(−→s )
is the same in (L, v) and (L′, v′) then Jφ(−→s )K(f) = id, so in particular Jφ(−→s )K(id) = id.
For composition, suppose f : (L, v) → (L′, v′) and g : (L′, v′) → (L′′, v′′). We can con-
sider the truth value of φ(−→s ) in each of these models (only some cases are possible, as
morphisms preserve truth of positive atoms).

(L, v) |= (L′, v′) |= (L′′, v′′) |= Jφ(−→s )K(g) ◦ Jφ(−→s )K(g) = Jφ(−→s )K(g ◦ f)
φ(−→s ) φ(−→s ) φ(−→s ) (id, id) ◦ (id, id) = (id, id)

φ(−→s ) φ(−→s ) φ(−→s ) (ε, ε) ◦ (id, id) = (ε, ε)

φ(−→s ) φ(−→s ) φ(−→s ) (id, id) ◦ (ε, ε) = (ε, ε)

φ(−→s ) φ(−→s ) φ(−→s ) (id, id) ◦ (id, id) = (id, id)

6.4. Semantics of Proofs

We now extend the semantics of proof rules given in the previous section with inter-
pretations for the rules for quantifiers, atoms and equality, completing the semantics of
WS1.
We first show that if x 6∈ FV (Γ) there is an isomorphism distΓ : J∀x.A,ΓK ∼= ∀x.JA,ΓK in

WMΘ
X . Observe that there is a natural isomorphism

dist� : � ◦ (prod× id)⇒ prod ◦ FamInj( � ) ◦ dst : FamInj(Gs)× Gs → Gs
which is concretely a family of winning strategies

prod({Gi : i ∈ I})�M → prod({Gi �M : i ∈ I})

given by dist� = 〈πi � id〉i. Each dist� is a natural isomorphism in Ws.
Similarly, we can define a natural isomorphism

dist( : prod({M ( Gi : i ∈ I}) ∼= M ( prod({Gi : i ∈ I})

between functors

( ◦ (prod× id)⇒ prod ◦ FamInj( ( ) ◦ dst : FamInj(Gs)× Gs → Gs.

For each Γ, we can then construct a map

distb,Γ : JΓKb1 ◦ (prod× id) ∼= prod ◦ FamInj(JΓKb1) ◦ dst : FamInj(Gs)×MΘ
X → Gs

proceeding by induction on Γ.
Finally, given a sequent A,Γ we define distΓ as the following horizontal composition,

where b is the polarity of A. It is easy to see by checking pointwise that the functor
∀x.JA,ΓK is equal to the given decomposition.

∀x.JA,ΓK :MΘ
X

〈addx, id〉- FamInj(MΘ
X]{x})×M

Θ
X

FamInj(A)× id- FamInj(Gs)×MΘ
X

prod ◦ FamInj(JΓKb1) ◦ dst- Gs

J∀x.A,ΓK :MΘ
X

〈addx, id〉-

id�
wwwwwwww

FamInj(MΘ
X]{x})×M

Θ
X

FamInj(A)× id-

id�
wwwwwwww

FamInj(Gs)×MΘ
X

JΓKb1 ◦ (prod× id)-

dist−1
b,Γ�

wwwwwww
Gs
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Since distΓ is a natural isomorphism, and pointwise winning, it is an isomorphism in
WMΘ

X .

Proposition 6.6. πv(x) ◦ distΓ(L,v) = JΓKb(πv(x))

Proof We can check this by induction on Γ, as in Proposition 5.9. 2

We next give semantics to the rules involving atoms and quantifiers. We first introduce
some notation. Suppose C is the coproduct of two categories D and E (the disjoint union
of the two categories, where there are no maps between them). If F : C → Ge we write
F |D and F |E for the restriction of F to D and E respectively. If η : F ⇒ G then
we can restrict η to a natural transformation F |D ⇒ G|D, and we write η|D for this
restriction. If η : F |D ⇒ G|D and σ : F |E ⇒ G|E then we write [η, σ]D,E for the lax
natural transformation defined by [η, σ]A = ηA if A ∈ D and [η, σ]A = σA if A ∈ E .
Lax naturality of [η, σ] inherits from lax naturality of η and σ, since there are no maps
between D and E when viewed as subcategories of C. If C = MΘ

X then we will write
[η, σ]α,β for [η, σ]MΘ,α

X ,MΘ,β
X

.

We construct an isomorphism

Hx,y,z :MΘ,x=y
X

∼=M
Θ[ zx ,

z
y ]

X/{x,y}]{z} : H−1
x,y,z

with Hx,y,z(M, v) = (M,v[z 7→ v(x)] − x − y) and H−1(M, v) = (M,v[x 7→ v(z), y 7→
v(z)]− z). We can show that J(X; Θ ` Γ)[ zx ,

z
y ]K = JX; Θ, x = y ` ΓKH−1

x,y,z by induction
on Γ.

Semantics of the rules involving atoms and quantifiers are given in Figure 13. We
must justify lax naturality of Pat−: the following diagram must lax commute:

I
JPat−(p)K(M,w)- Jφ(−→s ),ΓK(M,w)

w

I

id

?

JPat−(p)K(L, v)
- Jφ(−→s ),ΓK(L, v)

iJφ(−→s ),ΓK(f)

?

To see this, note that if (L, v) and (M,w) agree on φ(−→x ) then the diagram lax com-
mutes by lax naturality of ε or JpK. If they disagree, then we must have (L, v) |=
φ(−→x ) and (M,w) |= φ(−→x ). We need to show that JPat−(p)K(L, v) w iJφ(−→x ),ΓK(f) ◦
JPat−(p)K(M,w). But JPat−(p)K(M,w) = pJφ(−→x ),ΓK(f) ◦ JPat−(p)K(L, v) as both sides
map into the terminal object, so JPat−(p)K(L, v) w iJφ(−→x ),ΓK(f) ◦ pJφ(−→x ),ΓK(f) ◦
JPat−(p)K(L, v) = iJφ(−→x ),ΓK(f) ◦ JPat−(p)K(M,w).

7. Full Completeness

We next show a full completeness result for the function-free fragment of WS1: in
this section we assume that L contains no function symbols. Thus, the only uses of the
P∃ rule are of the form Py∃ where y is some variable in scope.
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Figure 13: Semantics of Rules involving Atoms and Quantifiers

σ : JΘ, φ(−→s ) ` ⊥,ΓK
Pat−

[σ, ε]φ(−→s ),φ(−→s ) : JΘ ` φ(−→s ),ΓK

σ : JΘ, φ(−→s ) ` >,ΓK
Pat+

σ : JΘ, φ(−→s ) ` φ(−→x ),ΓK

σ : J(X; Θ ` Γ)[ z
x
, z
y

]K τ : JX; Θ, x 6= y ` ΓK
Px,y,zma

[σHx,y,z, τ ]x=y,x6=y : JX; Θ ` ΓK

P6= ∅ : JΘ, x 6= x ` ΓK

σ : JX ] {x}; Θ ` N,ΓK
P∀ x 6∈ FV (Θ,Γ)

dist−1
Γ ◦ σ̂ : JX; Θ ` ∀x.N,ΓK

σ : JX; Θ ` P [s/x],ΓK
Ps∃ FV (s) ⊆ X

σ ◦ πs ◦ distΓ : JX; Θ ` ∃x.P,ΓK

σ : JX; Θ `M,Γ, ∀x.N,∆K
PT
∀ FV (s) ⊆ X

J∆K−(id� πs) ◦ σ : JX; Θ `M,Γ, N [s/x],∆K

σ : JX; Θ ` Q,Γ,∀x.N,∆K
PT
∀ FV (s) ⊆ X
σ ◦ J∆K+(πs ( id) : JX; Θ ` Q,Γ, N [s/x],∆K

σ : JX; Θ `M,Γ, P [s/x],∆K
PT
∃ FV (s) ⊆ X

J∆K−(πs ( id) ◦ σ : JX; Θ `M,Γ, ∃x.P,∆K

σ : JX; Θ ` Q,Γ, P [s/x],∆K
PT
∃ FV (s) ⊆ X
σ ◦ J∆K+(id� πs) : JX; Θ ` Q,Γ, ∃x.P,∆K

We show that the core rules suffice to represent any uniform winning strategy σ on a
type object provided σ is bounded — i.e. there is a bound on the size of plays occurring
in σ. In particular, such a strategy is the semantics of a unique analytic proof — a proof
using only the core rules, with some further restrictions on the use of the matching rule.
Given a sequent X; Θ ` Γ, we say Θ is lean if it contains x 6= y for all distinct x and y
in X and does not contain x 6= x. We assume an arbitrary ordering on variables.

Definition A proof in WS1 is analytic if it uses only core rules and has the following
additional restrictions:

• Rules other than P6= and Px,y,zma can only conclude sequents with a lean Θ

• If Px,y,zma is used to conclude X; Θ ` Γ then Θ does not contain w 6= w for any w;
(x, y) is the least pair with x, y ∈ X, x 6≡ y and x 6= y 6∈ Θ; and z is the least
variable in Fr(X; Θ ` Γ) (the least fresh variable).

Theorem 7.1. Let X; Θ ` Γ be a sequent of WS1 and σ a bounded uniform winning
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strategy on JX; Θ ` ΓK. Then there is a unique analytic proof p of X; Θ ` Γ with
JpK = σ.

All strategies on the denotations of exponential-free sequents are bounded. Conse-
quently, in the affine fragment we can perform reduction-free normalisation from proofs
to (cut-free) core proofs, by reification of their semantics. We thus see that all of the
non-core rules are admissible (when restricted to this fragment).

The rest of this section sketches the proof of this full completeness result, and de-
scribes an extension to reify unbounded strategies as infinitary analytic proofs. We
perform a semantics-guided proof search procedure, following [14, 4, 27, 31].

7.1. Uniform Choice

When constructing a proof of a given sequent out of core rules there is a choice of
which rule to use when the outermost head connective is ⊕ (either P1

⊕ or P2
⊕) or ∃

(which s to use in Ps∃). Our choice of rule will depend on the given strategy, depending
on which component Player plays in first. However, the input to our procedure is a
family of strategies, and we need to ensure that the same component choice is made in
each strategy. We will next show that our uniformity condition ensures this.

Proposition 7.2. If Θ is lean and (L, v), (M,w) ∈MΘ
X there exists an L-model (L, v)t

(M,w) with maps f(L,v,M,w) : (L, v)→ (L, v)t (M,w) and g(L,v,M,w) : (M,w)→ (L, v)t
(M,w).

Proof If (L, v) is an L-model, define U(L,v) to be the elements of |L| not in the image
of v. Then the carrier of (L, v) t (M,w) is defined to be X ] U(L,v) ] U(M,w). The
L-structure validates all positive atoms, and the valuation is just inj1. Then the map
f(L,v,M,w) sends v(x) to inj1(x) and u ∈ U(L,v) to inj2(u). This is an injection because Θ
is lean. g(L,v,M,w) is defined similarly. 2

We also recall that if f : (L, v) → (M,w) then σ(L,v) is determined entirely by f
and σ(M,w). In particular, uniformity for positive strategies σ : N ⇒ o requires that
σ(L,v) v σ(M,w) ◦N(f) but since σ(L,v) is total, it is maximal in the ordering and so we
must have σ(L,v) = σ(M,w) ◦N(f).

Proposition 7.3. Let X; Θ ` Γ be a sequent and suppose Θ is lean. Then there exists
an object in MΘ

X .

Proof Note that Θ just contains positive atoms. We can take (X, id), with (X, id) |=
φ(−→x ) just if φ(−→x ) ∈ Θ. Then each formula in Θ is satisfied: each such formula is either
φ(−→x ), or x 6= y for distinct x, y. 2

We now use the above lemmas to show that in any uniform winning strategy on a
sequent whose head formula is P ⊕Q, either all strategies play their first move in P , or
all strategies play their first move in Q.

Proposition 7.4. Let M1,M2 :MΘ
X → Ge. Suppose Θ is lean, and let σ : M1×M2 ⇒ o

be a uniform total (resp. winning) strategy. Then σ = τ ◦ π1 for some uniform total
(resp. winning) strategy τ : M1 ⇒ o, or σ = τ ◦ π2 for some uniform total (resp.
winning) strategy τ : M2 ⇒ o.
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Proof We know that each σ(L,v) is of the form τ(L,v) ◦ πi for some i ∈ {1, 2} since in
the game M1(L, v)×M2(L, v) ( o we must respond to the initial Opponent-move either
with a move in M1 or a move in M2 (the π-atomicity condition). But we need to check
that i is uniform across components. Suppose that i is not uniform — then we have (L, v)
and (T,w) with σ(L,v) = τ(L,v) ◦π1 and σ(T,w) = τ(T,w) ◦π2. Now consider (L, v)t (T,w)
and let k be such that σ(L,v)t(T,w) = τ(L,v)t(T,w) ◦ πk. By uniformity and totality,
σ(L,v) = σ(L,v)t(T,w) ◦ (M1×M2)(f(L,v,T,w)) = τ(L,v)t(T,w) ◦πk ◦ (M1×M2)(f(L,v,T,w)) =
τ(L,v)t(T,w) ◦Mk(f(L,v,T,w)) ◦πk. But since σ(L,v) is of the form τ(L,v) ◦π1, we must have
k = 1. But we can reason similarly using σ(T,w) and g(L,v,T,w) and discover that k = 2.
This is a contradiction.

Thus there is some i such that each σ(L,v) can be decomposed into τ(L,v) ◦ πi. In
particular, we can take i such that σ(X,id) = τ(X,id) ◦ πi where (X, id) is as defined in
Proposition 7.3. We only need to show that τ is lax natural. We can construct a natural
transformations ι1 : 〈id, ε〉 : M1 → M1 ×M2 and ι2 : 〈ε, id〉 : M2 → M1 ×M2. Then
τ = σ ◦ ιi, and so is lax natural. 2

We next show that in any uniform family of winning strategies on a sequent with
head ∃x.P , Player chooses the same x in each strategy component. Moreover, the chosen
x is the value of some variable in scope.

Proposition 7.5. Let M :MΘ
X]{x} → Ge. Suppose Θ is lean, and let σ : ∀x.M ⇒ o be

a uniform total (resp. winning) strategy. Then there exists a unique variable y ∈ X and
uniform total (resp. winning) strategy τ : Msetxy ⇒ o such that σ = τ ◦ πy.

Proof We firstly show that given any L-model (L, v) there is some x with σ(L,v) =
τ(L,v) ◦ πv(x). Suppose for contradiction that σ(L,v) = τ(L,v) ◦ πu for some u ∈ U(L,v).
Build the L-model L′ = X ]{a, b}]U(L,v) with valuation inj1 and validating all positive
atoms. Let σ(L′,inj1) = τ(L′,inj1)◦πr. Define m1 : (L, v)→ (L′, inj1) sending v(x) to inj1(x),
u to inj2(a) and v ∈ U(L,v) − {u} to inj3(v). Then σ(L,v) = σ(L′,inj1) ◦ πr ◦ ∀x.M(m1).

• If r = inj2(b) then this is σ(L′,inj1) ◦ ε which is ε as σ(L′,inj1) must be strict (as its
total and a map into o). This is impossible.

• If r = inj1(x) then this is σ(L′,inj1)◦M(m1)◦πv(x), which is impossible by assumption.

• Hence we must have r = inj2(a).

Define m2 : (L, v) → (L′, inj1) sending v(x) to inj1(x), u to inj2(b) and v ∈ U(L,v) − {u}
to inj3(v). We can use similar reasoning to show that r = inj2(b). This is a contradiction.

Hence, given any (L, v) there is some variable x such that σ(L,v) = τ(L,v) ◦ πv(x).
Let y ∈ X be the unique variable such that σ(X,id) = τ(X,id) ◦ πy where (X, id) is con-
structed as in Proposition 7.3. We now show the stronger fact that σ(L,v) = τ(L,v) ◦πv(y).
Suppose that σ(L,v) = τ(L,v) ◦ πv(x) and σ(L,v)t(X,id) = τ(L,v)t(X,id) ◦ πinj1(z). By lax
naturality, τ(L,v) ◦ πv(x) = σ(L,v) = σ(L,v)t(X,id) ◦ ∀x.M(f(L,v,X,id)) = τ(L,v)t(X,id) ◦
πv(z) ◦ ∀x.M(f(L,v,X,id)). Since inj1(z) = f(L,v,X,id)(v(z)), we have σ(L,v) = τ(L,v)t(X,id) ◦
M(f(L,v,X,id)) ◦ πv(z) and so we must have x = z. By similar reasoning using g(L,v,X,id),
we see that y = z, so x = y.

Hence there is a variable y such that for all (L, v), σ(L,v) = τ(L,v) ◦ πv(y) for some
τ(L,v) : M(L, v[x 7→ v(y)]) ⇒ o. Since Θ is lean, y is the unique variable such that
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σ(L,v) = τ(L,v) ◦ πv(y). Note that M(L, v[x 7→ v(y)]) = M(setxy(L, v)). We can easily
check that the resulting transformation τ : Msetxy ⇒ o is lax natural. 2

7.2. Reification of Strategies

We define a procedure reify which transforms a bounded uniform winning strategy on
a formula object into a proof of that formula. It may be seen as a semantics-guided proof
search procedure: given such a strategy σ on the interpretation of Γ, reify finds a proof
which denotes it. Reading upwards, the procedure first decomposes the head formula
into a unit (nullary connective) using the head introduction rules. If this unit is 1, we
are done. It cannot be 0, as there are no (total) strategies on this game. If the unit is >
or ⊥, the procedure then consolidates the tail of Γ into a single formula, using the core
elimination rules. Once this is done, the head unit is removed using P+

⊥ or P−>, strictly
decreasing the size of the sequent. These steps are then repeated until termination.
We further have to deal with equality: whenever a free variable is introduced, we must
consider if it is equal to each of the other free variables using the Pma rule.

Informally, if Θ is not lean:

• If Θ contains x 6= x we use P6= and halt.

• Otherwise, we consider the least two variables x, y ∈ X that are not declared
distinct by Θ and split the family into those models that identify x and y, and
those that do not. In the former case, we can substitute fresh z for both x and
y. We then apply the inductive hypothesis to both halves and apply Px,y,zma using
H−1
x,y,z.

If Θ is lean, then:

• The case Γ = 0,Γ′ is impossible: there are no total strategies on this game.

• If Γ = 1,Γ′ then σ must be the empty strategy, since it is the unique total strategy
on this game. This is the interpretation of the proof P1.

• If Γ = > then σ must similarly be the unique total strategy on this game, i.e. the
interpretation of P>.

• If Γ = >, P,Γ′ then σ can never play in P since if it did the play restricted to
>, P would not be alternating. Thus σ is a strategy on >,Γ′. We can call reify
inductively yielding a proof of ` >,Γ′, and apply P+

> to yield a proof of >, P,Γ.

• If Γ = >, N, P,Γ′ then σ is a total strategy on >, N � P,Γ up to retagging and
we can proceed inductively using P�

>. If Γ = >, N,M,Γ′ we can proceed similarly,
using P⊗>.

• If Γ = >, N then σ is a total strategy on ↓ N : we can strip off the first move
yielding a total strategy on N , apply reify inductively yielding a proof of ` N , and
finally apply P−> yielding a proof of ` >, N .

• The case Γ = ⊥ is impossible: there are no total strategies on this game. Other
cases where ⊥ is the head formula proceed as with >: if the tail is a single positive
formula, we remove the first move and apply P+

⊥, otherwise we shorten the tail
using P−⊥, P�⊥ or PO⊥.
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• If Γ = A�N,Γ′ then σ is also a strategy on A,N,Γ. We can call reify inductively
yielding a proof of ` A,N,Γ that denotes σ, and apply P�. We can proceed
similarly in the following case Γ = A� P,Γ′.

• If Γ = M&N,Γ′ then we can split σ into those plays that start with M and those
that start with N . This yields total strategies on M,Γ and N,Γ respectively, which
we can reify inductively and apply P&.

• If Γ = M ⊗N,Γ′ then we can split σ into those plays that start with M and those
that start with N . This yields total strategies on M,N,Γ and N,M,Γ respectively,
which we can reify inductively and apply P⊗.

• If Γ = P⊕Q,Γ then σ specifies a first move that must either be in P or in Q. In the
former case, we have a strategy on P,Γ and can reify inductively, finally applying
P⊕1. In the latter case, we have a strategy on Q,Γ and can reify inductively and
apply P⊕2. The case of Γ = POQ,Γ is similar.

• If the head formula is a positive atom φ(−→x ) then we must have φ(−→x ) in Θ, as
otherwise there can be no uniform winning strategies on JΓK (since some games
in that family have no winning strategies). Thus we can proceed inductively and
apply Pat+.

• If the head formula is a negative atom φ(−→x ) then we can split the family σ into
those models that satisfy φ(−→x ) and those that do not. All strategies in the latter
group must be empty, as there are no moves to play. All strategies in the former
group form a uniform winning strategy on JΘ, φ(−→x ) ` ⊥,ΓK and we can proceed
inductively using Pat−.

• If σ : JX; Θ ` Γ = ∀x.N,Γ′K then distΓ′ ◦σ : I ⇒ ∀x.JN,Γ′K. Using our adjunction,

this corresponds to a map η ◦ U ′x(distΓ′ ◦ σ) : I ⇒ JN,Γ′K in WM
Θ
X]{x} . We can

then reify this inductively to yield a proof of X ] {x}; Θ ` N,Γ′ and apply P∀.

• If Γ = ∃x.P,Γ′ then σ ◦ dist+,Γ′ : ∀x.JP,Γ′K ⇒ o. By Proposition 7.5, there is a
unique y and natural transformation τ : JP,Γ′Ksetxy ⇒ o such that σ ◦ dist+,Γ′ =
τ ◦ πy. Since x does not occur in Γ, we have JP,Γ′Ksetxy = JP [y/x],Γ′K. This yields
a lax natural transformation JP [y/x],Γ′K ⇒ o. We can then apply the inductive
hypothesis use the Py∃ rule.

We will later show that reify is well founded by giving a measure on sequents that
decreases on each call to the inductive hypothesis.

7.3. Definition of Reify

reifyΓ is defined inductively in Figure 14. Following the above remarks, the following
properties hold:

1a The unique map i : ∅⇒ C(I, o) is a bijection.

1b The map d = [λf.f ◦ π1, λg.f ◦ π2] : C(M,o) + C(N, o)⇒ C(M ×N, o) is a bijection.
(π-atomicity [1]).

2 The map ( o : C(I,M)⇒ C(M ( o, I ( o) is a bijection.
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Figure 14: Reification of Strategies as Analytic Proofs

For non-lean Θ:
reifyX,x 6=x;Θ`Γ(σ) = P6=
reifyX,x,y;Θ`Γ(σ) = Px,y,zma (reify(σ|MΘ,x=y

X
◦H−1

x,y,z), reify(σ|MΘ,x 6=y
X

))

if (x, y) ∈ X ×X is least such that x 6≡ y and (x 6= y) 6∈ Θ
and z is the least element in Fr(X; Θ ` Γ)

For lean Θ:
reifyX;Θ`φ(−→x ),Γ(σ) = Pat−(reify(σ|

MΘ,φ(−→x )
X

))

reifyX;Θ`φ(−→x ),Γ(σ) = Pat+(reify(σ))

reifyX;Θ`∀x.N,Γ(σ) = P∀(reify(η ◦ U ′x(distΓ′ ◦ σ))
reifyX;Θ`∃x.N,Γ(σ) = Py∃(reify(τ))where σ ◦ dist−1

Γ = τ ◦ πy
reify1,Γ(σ) = P1

reify⊥,N,Γ(σ) = P−⊥(reify⊥,Γ(JΓK−(abs) ◦ σ))
reify⊥,P (σ) = P+

⊥(reifyP (Λ−1
I (σ)))

reify⊥,P,Q,Γ(σ) = PO⊥(reify⊥,POQ,Γ(JΓK−((sym ( id) ◦ pasc−1
( ◦ σ)))

reify⊥,P,N,Γ(σ) = P−⊥(reify⊥,P�N,Γ(JΓK−(lfe) ◦ σ))
reifyM&N,Γ(σ) = P&(reifyM,Γ(π1 ◦ dist−,Γ ◦ σ))(reifyN,Γ((π2 ◦ dist−,Γ ◦ σ))
reifyM⊗N,Γ(σ) = P⊗(reifyM,N,Γ(π1 ◦ σ′), reifyN,M,Γ(π2 ◦ σ′))

where σ′ = dist−,Γ ◦ JΓK−(dec) ◦ σ
reifyA�N,Γ(σ) = P�(reifyA,N,Γ(σ))
reifyA�P,Γ(σ) = P�(reifyA,P,Γ(σ))
reify>(σ) = P>
reify>,P,Γ(σ) = P−⊥(reify⊥,Γ(σ ◦ JΓK+(abs−1)))
reify>,N (σ) = P−>(reifyN (( ( o)−1(unit−1

( ◦ σ)))
reify>,N,M,Γ(σ) = P⊗>(reify>,N⊗M,Γ(σ ◦ JΓK+(pasc( ◦ (sym ( id))))
reify>,N,P,Γ(σ) = P�

>(reify>,N�P,Γ(σ ◦ JΓK+(lfe−1)))
reifyP⊕Q,Γ(σ) = [P⊕1 ◦ reifyP,Γ,P⊕2 ◦ reifyQ,Γ] ◦ d−1(σ ◦ dist−1

+,Γ)

reifyPOQ,Γ(σ) = [PO1 ◦ reifyP,Q,Γ,PO2 ◦ reifyQ,P,Γ] ◦ d−1(σ ◦ JΓK+(dec−1) ◦ dist−1
+,Γ)

reify!N,Γ(σ) = P!(reifyN,!N,Γ(JΓK−(α) ◦ σ))
reify?P,Γ(σ) = P?(reifyP,?P,Γ(σ ◦ JΓK+(α−1)))
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7.4. Termination of Reify

We next argue for termination of our procedure. Intuitively, the full completeness
procedure first breaks down the head formula until it is ⊥ or >. It then uses the core
elimination rules to compose the tail into (at most) a single formula. These steps do not
increase the size of the strategy. Finally, the head is removed using P+

⊥ or P−>, strictly
reducing the size of the strategy. If Θ is not lean, the number of distinct variable pairs
that are not declared distinct in Θ is reduced by using Pma.

Formally, we can see this as a lexicographical ordering of four measures on σ,X,Θ,Γ:

• The most dominant measure is the length of the longest play in σ.

• The second measure is the length of Γ as a list if the head of Γ is ⊥ or >, and ∞
otherwise.

• The third measure is the size of the head formula of Γ.

• The fourth measure is

|{(x, y) ∈ X ×X : x 6≡ y ∧ x 6= y /∈ Θ}|

If Θ is lean:

• If Γ = ⊥, P or >, N then the first measure decreases in the call to the inductive
hypothesis.

• Otherwise, if Γ = A,Γ′ with A ∈ ⊥,> the first measure does not increase and the
second measure decreases.

• If Γ = A,Γ′ with A 66∈ {⊥,>}, the first measure does not increase and either the
second or third measure decreases.

If Θ is not lean and the Pma rule is applied, in the call to the inductive hypotheses
the first three measures stay the same and the fourth measure decreases.

Thus, the inductive hypothesis is used with a smaller value in the compound measure
on N× N ∪ {∞} × N× N ordered lexicographically.

7.5. Soundness and Uniqueness

Lemma 7.6. For all σ : J` ΓK we have JreifyΓ(σ)K = σ.

Proof We proceed by induction on our reification measure 〈|Γ|, tl(Γ), hd(Γ)〉 using equa-
tions that hold in the categorical model. We perform case analysis on Γ. The calculation
is routine, we demonstrate only a few cases.

• If Θ is not lean with (x, y) ∈ X ×X least such that x 6≡ y and (x 6= y) 6∈ Θ and z
is the least element in Fr(X; Θ ` Γ), then Jreify(σ)K
= JPx,y,zma (reify(σ|MΘ,x=y

X
◦H−1

x,y,z, reify(σ|MΘ,x 6=y
X

)K
= [Jreify(σ|MΘ,x=y

X
◦H−1

x,y,z)KHx,y,z, Jreify(σ|MΘ,x6=y
X

)K]x=y,x6=y

= [σ|MΘ,x=y
X

◦H−1
x,y,z ◦Hx,y,z, σ|MΘ,x 6=y

X
]x=y,x6=y

= [σ|MΘ,x=y
X

, σ|MΘ,x6=y
X

]x=y,x6=y = σ.
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• If Θ is lean and Γ = φ(−→x ),Γ′ then

Jreify(σ)K = JPat−(σ|
MΘ,φ(−→x )

X

)K = [σ|
MΘ,φ(−→x )

X

, ε]φ(−→x ),φ(−→x ) = σ

as we must have σ|MΘ,φ(−→x )
X

= ε since Jφ(−→x ),ΓKA is the terminal object for each A

in MΘ,φ(−→x )
X .

• If Γ = ∀x.N,Γ′ then Jreify(σ)K = JP∀(reify(η ◦ U ′x(distΓ′ ◦ σ)))K =

dist−1
Γ′ ◦ ̂Jreify(η ◦ U ′x(distΓ′ ◦ σ))K = dist−1

Γ′ ◦ ̂(η ◦ U ′x(distΓ′ ◦ σ)) = dist−1
Γ′ ◦distΓ′ ◦σ =

σ as required.

• If Γ = P1OP2,∆ then JreifyP1OP2,∆(σ)K = J[PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆] ◦
d−1(σ ◦ J∆K+(dec−1) ◦ dist−1

+,∆)K. Suppose d−1(σ ◦ J∆K+(dec−1) ◦ dist−1
+,∆) = ini(τ),

so τ ◦ πi = σ ◦ J∆K+(dec−1) ◦ dist−1
+,∆.

If i = 1 then J[PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(σ ◦ J∆K+(dec)◦dist−1
+,∆)K =

JPO1(reifyP1,P2,∆(τ))K = JreifyP1,P2,∆(τ)K ◦ J∆K+(wk) =
JreifyP1,P2,∆(τ)K◦J∆K+(π1◦dec) = τ ◦J∆K+(π1◦dec) = τ ◦π1◦dist+,∆◦J∆K+(dec) =

σ ◦ J∆K+(dec−1) ◦ dist−1
+,∆ ◦ dist+,∆ ◦ J∆K+(dec) = σ.

The case for i = 2 is similar. 2

Lemma 7.7. For any analytic proof p of ` Γ we have reifyΓ(JpK) = p.

Proof We proceed by induction on p. The calculation is routine, we demonstrate only
a few cases.

• If p = P+
⊥(p′) with Γ = ⊥, P then reifyΓ(JpK) = P+

⊥(reifyP (Λ−1
I (JpK)) =

P+
⊥(reifyP (Λ−1

I ΛIJp′K)) = P+
⊥(reifyP (Jp′K)) = P+

⊥(p′) = p.

• If p = P&(p1, p2) with Γ = M&N,∆ then reifyΓ(JpK)
= P&(reifyM,∆(π1 ◦ dist−,∆ ◦ JpK), reifyN,∆(π2 ◦ dist−,∆ ◦ JpK))
= P&(reifyM,∆(π1 ◦ dist−,∆ ◦ dist−1

−,∆ ◦ 〈Jp1K, Jp2K〉), reifyN,∆(π2 ◦ dist−,∆ ◦ dist−1
−,∆ ◦

〈Jp1K, Jp2K〉))
= P&(reifyM,∆(Jp1K), reifyN,∆(Jp2K))
= P&(p1, p2) = p.

• If p = PO1(p′) with Γ = P1OP2,∆ then reifyΓ(JpK) = reifyΓ(Jp′K ◦ J∆K+(wk)) =
[PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(Jp′K◦J∆K+(wk)◦J∆K+(dec−1)◦dist−1

+,∆) =

[PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆] ◦ d−1(Jp′K ◦ J∆K+(π1) ◦ dist−1
+,∆) = [PO1 ◦

reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(Jp′K◦π1) = [PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦
d−1(d(in1(Jp′K))) = PO1(reifyP1,P2,∆(Jp′K)) = PO1(p′) = p as required. 2

This completes our proof of Theorem 7.1.
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7.6. Infinitary Analytic Proofs

We have seen that any bounded winning strategy is the denotation of a unique ana-
lytic proof of WS1. We cannot use this to normalise proofs to their analytic form because
proofs do not necessarily denote bounded strategies. We will next show that our reifica-
tion procedure can be extended to winning strategies that may be unbounded, provided
the resulting analytic proofs are allowed to be infinitary — that is, proofs using the
core rules that may be infinitely deep. More precisely, we will show that total strategies
on a type object correspond precisely to the infinitary analytic proofs. Thus we can
normalise any proof of WS1 to an infinitary normal form, by taking its semantics and
then constructing the corresponding infinitary analytic proof. Two proofs of WS1 are
semantically equivalent if and only if they have the same normal form as an infinitary
analytic proof.

7.6.1. Infinitary Proofs as a Final Coalgebra

Let L be a set. Let TL denote the final coalgebra of the functor X 7→ L × X∗ in
Set. The inhabitants of TL are L-labelled trees of potentially infinite depth. We let
α : TL → L × T ∗L describe the arrow part of this final coalgebra: this maps a tree to
its label and sequence of subtrees. Given a natural number n, we define a function
Nn : TL → P(L × T ∗L ), by induction: N0(T ) = ∅ and Nn+1(T ) = {α(T )} ]

⋃
{Nn(T ′) :

T ′ ∈ π2(α(T ))}. We define the set of nodes N(T ) to be {Nn(T ) : n ∈ N}. Let Prf be the
set of (names of) proof rules of WS1 and Seq the set of sequents of WS1.

Definition An infinitary analytic proof of WS1 is an infinitary proof using only the core
rules of WS1. Formally, this is an element T of I = TPrf×Seq such that for each node
((Px, X; Θ ` Γ), c) ∈ N(T ) we have |c| = ar(Px) and if (π2 ◦ π1 ◦ α)(ci) = Xi; Θi ` Γi
then the following is a valid core rule of WS1:

X1; Θ1 ` Γ1 . . . X|c|; Θ|c| ` Γ|c|
Px X; Θ ` Γ

We let IΓ denote the set of infinitary analytic proofs of ` Γ.

Let {AX;Θ`Γ : X; Θ ` Γ ∈ Seq} be family of sets indexed by sequents. We can
construct a family of maps AX;Θ`Γ → IX;Θ`Γ by giving, for each X; Θ ` Γ and a ∈
AX;Θ`Γ, a proof rule that concludes X; Θ ` Γ from X1; Θ1 ` Γ1, . . . , Xn; Θn ` Γn and
for each i an element ai ∈ AXi;Θi`Γi .

7.6.2. Infinitary Proofs as a Limit of Paraproofs

We can consider an alternative approach for presenting our infinitary analytic proofs.
We consider partial proofs, that may “give up” in the style of [12].

Definition An analytic paraproof of WS1 is a proof made up of the core proof rules of
WS1, together with a dæmon rule that can prove any sequent:

Φ`Γ Pε
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Note that each analytic proof is also an analytic paraproof. Let CΓ represent the set
of analytic paraproofs of ` Γ. We can introduce an ordering v on this set, generated
from the least congruence with Pε as a bottom element. We can take the completion of
CΓ with respect to ω-chains generating an algebraic cpo DΓ. The maximal elements in
this domain are precisely the infinitary analytic proofs IΓ, and the compact elements are
the analytic paraproofs CΓ.

7.6.3. Semantics of Infinitary Analytic Proofs

We next describe semantics of infinitary analytic proofs via the semantics of analytic
paraproofs.

We can interpret analytic paraproofs as partial strategies. We interpret paraproofs
of X; Θ ` Γ in GMΘ

X . For the rules other than Pε, we use the fact that GMΘ
X is a WS!-

category. We interpret Pε as the strategy {ε} where ε denotes the empty play on any
game. We can hence interpret a analytic paraproof of ` Γ as a strategy on J` ΓK.

The category GMΘ
X is cpo-enriched, with σ v τ if for each A, σA ⊆ τA as a set of plays.

The bottom element is the uniform strategy that is {ε} at each component. Composition,
pairing and currying are continuous maps of hom sets; as are the operations used in the
first-order structure.

Proposition 7.8. If p and q are analytic paraproofs of ` Γ and p v q then JpK v JqK.

Proof A simple induction on the proof rules for WS1, using the fact that composition,
pairing and currying are monotonic operations. Note that J−K is also strict, as JPεK = {ε}.

2

Hom sets of GMΘ
X are algebraic domains: each strategy is the limit of its compact

(finite) approximants. Our monotonic map CΓ → JX; Θ ` ΓK thus extends uniquely to a
continuous map DΓ → JX; Θ ` ΓK. By construction this agrees with the semantics given
above for analytic paraproofs in DΓ. Given any infinitary analytic proof p if p ↓ is the
set of analytic paraproofs less than p then JpK =

⊔
Jp ↓K using the cpo structure in GMΘ

X .
We can show that this really does capture the intended semantics of infinitary analytic

proofs.

Proposition 7.9. The equations for the semantics of analytic proofs given in Figures
9, 12 and 13 hold for infinitary analytic proofs.

Proof We use the fact that the constructs used in the semantics of the core proof rules
are continuous. We proceed by case analysis on the proof rule.

We just give an example. In the case of P⊗, note that JP⊗(p, q)K =
⊔
{JrK : r v

P⊗(p, q)} =
⊔
{JP⊗(p′, q′)K : p′ v p ∧ q′ v q} =

⊔
{JΓK−(dec−1) ◦ dist−1

−,Γ ◦ 〈Jp′K, Jq′K〉 :

p′ v p ∧ q′ v q} = JΓK−(dec−1) ◦ dist−1
−,Γ ◦ 〈J

⊔
{p′ : p′ v p}K, J

⊔
{q′ : q′ v q}K〉 =

JΓK−(dec−1) ◦ dist−1
−,Γ ◦ 〈JpK, JqK〉 as required. All other cases are similar. 2

7.6.4. Totality

We need to show that given p ∈ IΓ, JpK is a total uniform strategy. Note that this is
not true of arbitrary paraproofs in DΓ, nor is it true for infinite derivations in full WS1
(for example, one could repeatedly apply the Psym rules forever).

To show this fact, we first introduce some auxiliary notions.
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Definition Let σ : N be a strategy on a negative game. We say that σ is n-total if
whenever s ∈ σ ∧ |s| ≤ n ∧ so ∈ PN ⇒ ∃p.sop ∈ σ. A uniform strategy is n-total if it is
pointwise n-total.

It is clear that a strategy is total if and only if it is n-total for each n.

Proposition 7.10. The following hold:

1. If σ is n-total and τ is an isomorphism then τ ◦ σ is n-total. If σ is n-total and τ
is an isomorphism then σ ◦ τ is n-total.

2. If σ : A → B and τ : A → C are n-total then 〈σ, τ〉 is also n-total. If σ : Ai ( B
is n-total then σ ◦ πi : A1 ×A2 ( B is n-total.

3. If σ : A ⊗ B ( C is n-total then Λ(σ) is n-total. If σ : A ( B is n-total then
σ ( id : (B ( o) ( (A( o) is (n+ 2)-total.

4. If σ and τ are n-total, then so is [σ, τ ]C,D, σ ◦H. If σ is n-total, then so is σ̂.

Proof Simple verification. 2

Proposition 7.11. Given any infinitary analytic proof p of X; Θ ` Γ, JpK is total.

Proof We show that JpK is n-total for each n. We proceed by induction on a compound
measure.

• Define tl+(A,Γ) to be the length of Γ as a list if A = > or ∞ otherwise.

• Define hd+(A,Γ) to be |A| if A is positive or ∞ otherwise.

• Define tl−(A,Γ) to be the length of Γ as a list if A = ⊥ or ∞ otherwise.

• Define hd−(A,Γ) to be |A| if A is negative or ∞ otherwise.

We proceed by induction on

f(n,X,Θ,Γ) = 〈n, tl+(Γ), hd+(Γ), tl−(Γ), hd−(Γ), L(X,Θ)〉.

We proceed by case analysis on p. If p = P⊗(p1, p2) then JP⊗(p1, q2)K = JΓK−(dec−1) ◦
dist−1
−,Γ ◦ 〈Jp1K, Jp2K〉. By by Proposition 7.10 JP⊗(p, q)K = JpK is n-total. The remaining

cases work in an entirely analogous way. For P+
⊥ we must use the fact that currying is

continuous and preserves n-totality. For termination:

• If Θ is not lean, in the call to the inductive hypothesis the first five measures do
not increase, and the fifth measure L decreases.

• In the case of P⊗, P&, P! the first three measures (n, tl+(Γ), hd+(Γ)) stay the same
and either the fourth measure tl−(Γ) decreases, or the fourth measure stays the
same and the fifth measure hd−(Γ) decreases.

• In the case of PO⊥, P�⊥, P−⊥ the first three measures stay the same and the fourth
measure decreases.
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• In the cases of P+
⊥, PO, P⊕, P? the first measure n stays the same and either the

second measure tl+(Γ) decreases, or the second measure stays the same and the
third measure hd+(Γ) decreases.

• In the case of P⊗>, P�
>, P+

> the first measure stays the same and the second measure
decreases.

• In the case of P−>, the first measure decreases. In particular, JP+
>(q)K = unit( ◦

(JqK( id). By induction JqK is (n− 2)-total, and so JqK( id is n-total, and so JpK
is n-total by Proposition 7.10. 2

Note that there are infinitary analytic proofs that denote strategies that are total,
but not winning. For example, there is an infinitary analytic proof of ` ⊥, ?(> � ⊥)
given by P+

⊥(h) where h is the infinitary analytic proof of `?(> � ⊥) given by h =
P?(P�(P�

>(P−>(P�(P+
⊥(h)))))). But there are no winning strategies on this game.

7.6.5. Reification of Total Strategies as Infinitary Analytic Proofs

We next show that any total strategy σ on the denotation of a sequent is the inter-
pretation of a unique infinitary analytic proof reify(σ).

We first define reify for winning strategies. We have seen that we can construct a
family of maps AX;Θ`Γ → IX;Θ`Γ by giving, for each X; Θ ` Γ and a ∈ AX;Θ`Γ, a proof
rule that concludes X; Θ ` Γ from X1; Θ1 ` Γ1, . . . , Xn,Θn ` Γn and for each i an
element ai ∈ AXi;Θi`Γi .∑

X;Θ`Γ∈Seq

AΓ
f- (Prf × Seq)× (

∑
X;Θ`Γ∈Seq

AX;Θ`Γ)∗

I

$f%

?

α
- (Prf × Seq)× I∗

id×$f%∗

?

Note that our reification function reify defined in Figure 14 is exactly of this shape.
In this case AX;Θ`Γ is the set of uniform winning strategies on JX; Θ ` ΓK. The function
specifies, for each strategy, the root-level proof rule and the derived strategies that are
given as input to reify coinductively. In the case that σ is bounded, we have seen that
the process terminates and reify(σ) is a finite proof.

In fact, we note that this family of maps are still well defined if AX;Θ`Γ is the set
TotX;Θ`Γ of uniform total strategies on JX; Θ ` ΓK. In particular, the composition of a
total strategy and an isomorphism is a total strategy; the composition of a total strategy
and a projection is a total strategy; and the completeness axioms in Section 7.3 hold
with respect to total strategies. This procedure provides, for each total strategy on
X; Θ ` Γ, a proof rule Px concluding X; Θ ` Γ from X1; Θ1 ` Γ1, . . . , Xn; Θn ` Γn and
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total strategies on each JXi; Θi ` ΓiK. We write this map as reifX;Θ`Γ.

∑
X;Θ`Γ∈Seq

TotX;Θ`Γ
reif- (Prf × Seq)× (

∑
X;Θ`Γ∈Seq

TotX;Θ`Γ)∗

I

reify = $reif%

?

α
- (Prf × Seq)× I∗

id× reify∗

?

Thus we can take the anamorphism of this map yielding a map from total strategies
on JX; Θ ` ΓK to IX;Θ`Γ, as required.

7.6.6. Soundness and Uniqueness

We can show that given any winning strategy σ, reify(σ) is the unique infinitary
analytic proof p such that Jreify(p)K = σ.

For soundness, we first introduce some auxiliary notions.

Definition Let σ and τ be strategies on A. We say that σ =n τ if each play in σ of
length at most n is in τ , and each play in τ of length at most n is in σ.

It is clear that =n is an equivalence relation, and σ = τ if and only if σ =n τ for each
n ∈ N. We can lift the relation =n to uniform total strategies pointwise.

Proposition 7.12. 1. If σ =n τ and ρ is an isomorphism then σ ◦ ρ =n τ ◦ ρ. If
σ =n τ and ρ is an isomorphism then ρ ◦ σ =n ρ ◦ τ .

2. If σ =n τ and ρ =n δ then 〈σ, ρ〉 =n 〈τ, δ〉. If σ =n τ then σ ◦ πi =n τ ◦ πi.

3. If σ =n τ then Λ(σ) =n Λ(τ). If σ =n τ then σ ( id =n+2 τ ( id.

4. If σ1 =n σ2 and τ1 =n τ2 then [σ1, τ1]C,D = [σ2, τ2]C,D. If σ1 =n σ2 then σ1 ◦H =n

σ2 ◦H. If σ1 =n σ2 then σ̂1 =n σ̂2.

Proof Simple verification. 2

Proposition 7.13. For every uniform total strategy σ : J` ΓK, Jreify(σ)K = σ.

Proof We show that for each n, Jreify(σ)K =n σ. The structure of the induction follows
that of Proposition 7.11, lexicographically on

〈n, tl+(Γ), hd+(Γ), tl−(Γ), hd−(Γ), L(X,Θ)〉.

In each particular case, the reasoning follows the proof of Proposition 7.6 using =n in
the inductive hypothesis rather than =, and propagating this to the main equation using
Proposition 7.12. In the case of Γ = >, N we use the inductive hypothesis with a smaller
n, using the final clause in Proposition 7.12. 2

Proposition 7.14. Given any infinitary analytic proof p, reify(JpK) = p.
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Proof Since id = $α%, we know that id is the unique morphism f such that:

IΓ
α- (Prf × Seq)× I∗

IΓ

f

? α- (Prf × Seq)× I∗

id× f∗

?

Thus to show that reify ◦ J−K = id it is sufficient to show that α ◦ reify ◦ J−K =
id× (reify ◦ J−K)∗ ◦α, i.e. that for each infinitary analytic proof p we have α(reify(JpK)) =
(id× (reify ◦ J−K)∗)(α(p)).

• For binary rules Px we must show that

reify(JPx(p1, p2)K) = Px(reify(Jp1K), reify(Jp2K)).

• For unary rules Px we must show that reify(JPx(p))K = Px(reify(JpK)).

• For nullary rules Px we must show that reify(JPxK) = Px.

For each proof rule, we have already shown this in the proof of Proposition 7.7. Propo-
sition 7.9 ensures that the proof applies in this setting. 2

7.6.7. Full Completeness and Normalisation

We have thus shown:

Theorem 7.15. Each total strategy σ on ` Γ is the denotation of a unique infinitary
analytic proof reify(σ).

We hence have a bijection between infinitary analytic proofs of a formula, and total
strategies on the denotation of that formula, via the semantics. Since any proof in WS1
can be given semantics as a winning strategy, and winning strategies are total, we may
reify the semantics of a WS1 proof to generate its infinitary normal form reify(JpK).

Theorem 7.16. For each WS1 proof p, there is a unique infinitary analytic proof q such
that JpK = JqK.

Proof Let q = reify(JpK). Then JqK = Jreify(JpK)K = JpK by Proposition 7.13. If q′ is an
infinitary analytic proof with Jq′K = JpK then Jq′K = JqK and so reify(Jq′K) = reify(JqK) and
Proposition 7.14 ensures that q′ = q. 2

While infinitary analytic proofs may denote strategies that are not winning, any infinitary
analytic proof generated as a result of the above normalisation denotes a winning strategy.
The above result also ensures that proofs p1 and p2 in WS1 denote the same strategy if
and only if their normal forms (as infinitary analytic proofs) are identical.
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8. Further Directions

In this paper, we have given some simple examples of “stateful proofs”. We aim to
investigate further examples in more expressive logics, and to specify additional prop-
erties of programs in more powerful programming languages (such as the games-based
language in e.g. [30]). Further extensions to our work which may be required in order to
do so include:

• WS1 has been presented as a general first-order logic. By adding axioms, we may
specify and study programs in particular domains. For example, can we derive a
version of Peano Arithmetic in which proofs have constructive, stateful content (cf
[10])?

• Extension with propositional variables (and potentially, second-order quantifica-
tion) would allow generic “copycat strategies” to be captured. On the programming
side, this would allow us to model languages with polymorphism.

• We have interpreted the exponentials as greatest fixpoints. Adding general induc-
tive and coinductive types, as in µLJ [8] would extend WS1 to a rich collection of
datatypes (including finite and infinite lists, for example).
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