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ABSTRACT: The extent to which glass-like kinetics govern
dynamics in protein folding has been heavily debated. Here,
we address the subject with an application of space-time per-
turbation theory to the dynamics of protein folding Markov
State Models (MSMs). Borrowing techniques from the s-
ensemble method, we argue that distinct active and inactive
phases exist for protein folding dynamics, and that kinetics for
specific systems can fall into either dynamical regime. We do
not, however, observe a true glass transition in any system
studied. We go on to discuss how these inactive and active
phases might relate to general protein folding properties.

As a grand challenge in statistical physics, the protein folding
problem has been untangled to the degree that one can now
claim some understanding of its components. The Levinthal
“paradox” serves not as a true paradox, but rather as a remind-
er that proteins navigate a highly optimized free-energy land-
scape to find a unique native state. A rich body of literature
exists concerning this conformational search over a rugged
energy surface and its consequences for protein biology (z,2).

However, present challenges for the field of protein
biophysics are not diminished in stature from those in years
past. While the thermodynamics of the native state are well
understood, knowledge about the kinetics involved in getting
to this folded state is sparse. In recent years, systematically
generated master equation-based models called Markov State
Models (MSMs) have been successful in relating ensemble
thermodynamics to a detailed description of kinetics (3-10).
With each new insight that MSMs provide, however, new ques-
tions about the axioms of protein folding are raised. In particu-
lar, while some protein dynamics are well defined by a canoni-
cal two-state kinetics, MSMs demonstrate that many-state
models are essential for describing dynamics in numerous sys-
tems (10). Additionally, few simple rules have emerged that
relate properties like chain length and secondary structure to
relaxation timescales (3-8, 10). Questions about connections
between thermodynamics and folding kinetics thus remain
open. What factors place a protein in one regime of kinetic
behavior over another?

Central to this discussion are ideas about “glassiness”
in protein dynamics. Early work in protein folding theory pro-
posed a mapping between proteins and spin glasses, frustrated
spin models that are largely applied to magnetic systems
(11,12). The extent to which spin glass kinetics serve as a direct
analogy to protein folding is debatable, but proteins do

demonstrate some elements of glassy behavior in their folding
dynamics. Notably, proteins and glasses share the characteris-
tic of having rugged energy landscapes with deep valleys and
potentially large barriers between states. Ideas of frustration
in low energy states are prevalent in both classes of systems.
Often, the division between random peptide heteropolymers
and natural proteins is marked by a principle of least frustra-
tion. Evolved proteins exhibit single, highly optimized native
states in which interactions are minimally frustrated; by con-
trast, random heteropolymers display more glass-like charac-
teristics, folding into multiple, nearly-degenerate ground
states that may lack structural correlation (11,12). Experi-
mental attempts to observe glass transitions in protein folding
systems have generated mixed results. Much evidence sug-
gests that particular single- and multi-domain proteins exhibit
kinetic traps typical of glass-like systems (13-15). In other sin-
gle-domain systems, however, no evidence for a glass transi-
tion is found even at very low temperatures (16).

Given the success of MSMs in describing folding ki-
netics, a natural question arises from this discussion of glassi-
ness in protein folding: how glassy are the dynamics of MSMs?
Here, we study the kinetics of protein folding MSMs under the
framework of non-equilibrium perturbation theory. Statistical
mechanics in the space-time formalism has introduced the
idea of different non-equilibrium phases, within which dynam-
ical trajectories show distinct behavioral characteristics. In this
Communication, we attempt to identify these behavioral re-
gimes in protein folding trajectories gathered from MSMs. In
particular, we borrow ideas from the “s-ensemble,” a method
for driving dynamics out of equilibrium using a biasing poten-
tial, s (17-20). In the text below, we discuss how one might
apply this non-equilibrium perturbation theory to MSMs, and
we go on to present the results of the s-ensemble approach
carried out on 16 protein folding systems.

In using statistical mechanics in a path-based formal-
ism, we define a trajectory, x(t,s), as a time series of system
configurations over some observation interval, t,s. For the
discrete-space, discrete-time Markov chains studied here, a
trajectory is represented by a simple sequence of the system’s
Markov states, where transitions between states are deter-
mined by the model’s transition probability matrix and occur at
a fixed time interval, 7.

To study dynamics in the s-ensemble, we introduce
the real-valued biasing parameter, s, and the concept of a tra-
jectory activity, K. The activity is an extensive measure of the
“change” in a trajectory; in a spin system, for example, the



activity might be represented by a count of spin flips over a
trajectory. Here, the activity will be measured by the number
of conformational state-to-state transitions, i 2 j, such that =
J, counted over a trajectory of length t,,s. The probability of a
path x(t,s) with activity K'in a given s-ensemble is

—sK
PO, = Pt ) T2

where P'(x(toss)) is the unbiased trajectory probability and Z(s,
tobs) is called the dynamical partition function (17-20). An obvi-
ous analogy exists between s and the inverse temperature B; K
thus assumes the role that energy plays in canonical equilibri-
um statistical mechanics. It is easily confirmed that unbiased
dynamics are recovered when s = o (17-20). In practice, one
can extract all information about biased trajectories from the
s-ensemble transition matrix, written as

T(s) = Ue*+ D
where U and D are matrices containing the off-diagonal and
diagonal elements of the unbiased MSM transition matrix,

respectively. Using this matrix’s partition function, we can
calculate the mean activity per transition in the s-ensemble:

d
K(s) = _glog (Z(s,tops))

A detailed description of how one calculates this partition
function and other quantities from T(s) is included in the SI
(19,20).

To illustrate the effects of s-field perturbations on
protein folding MSMs, we will first look at native state stabili-
ties in our models as a function of the parameters s and t,.
Figure 1 shows the native state probability versus s and t,s for
an MSM of the Fip-35 WW domain.
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Figure 1. Native state probabilities as a function of s for various
values of t,s in the WW domain MSM (Ty,q = 28 Tjgg). For finite
trajectories, native probabilities are calculated at t = t,,5/2.

Looking at Figure 1, one sees that the s-field has similar quali-
tative effects on the native state over all values of ty,s. At neg-
ative s (where activity is enhanced), native state stability is
diminished, as transitions out of the folded state are favored.
At positive s (where activity is restricted), the population of the
folded state first increases, as unfolding transitions simply
become less likely. As s becomes arbitrarily large, however, the

stability of the native state disappears entirely. Here, we ob-
serve an inevitability of the s-ensemble: at large positive s, the
system collapses onto its most “metastable” state (i.e., the
state with the largest self-transition probability) (19, 20). In
general, the curves in Figure 1 reflect the behavior of the native
state in all the MSMs we studied. While native states are
themselves quite metastable, select low-probability states had
larger self-transition probabilities than the native state in all 16
models studied. This observation hints at the existence of
highly metastable states in folding landscapes that are excep-
tionally difficult to access kinetically. Whether these states
have physical relevance or are just artifacts of model construc-
tion, however, is a difficult question to answer. We leave such
investigations, which will likely involve more extensive and
targeted MD sampling, for future work. For the most part, we
will limit ourselves here to looking at unbiased dynamics (s = 0)
through the lens of the s-ensemble.

We should emphasize that, as is made clear in Figure
1, the quantitative nature of the s-ensemble can change drasti-
cally as a function of finite t,s. The value of t,,s thus needs to
be chosen carefully as a parameter. Since this study focuses
on protein folding, we will from now on restrict ourselves to
setting typs = Trolg for all models, where ¢4 is defined by the
longest relaxation timescale in a given MSM.

Plots of the mean activity K as a function of s are use-
ful for studying the different regimes of dynamical behavior in
the s-ensemble. Figure 2 shows three such curves for MSMs of
the Fip-35 WW domain, Protein G, and the protein NTLg, all at
their respective t,ps = Trolg (6, 7, 10). By construction, K(s) vs. s
curves exhibit a crossover in the mean activity: the s-field
drives the system into distinct active and inactive regimes,
separated by a relatively fast decay in activity with s. The na-
ture of these curves at tys = Tryg Vvaries from system to sys-
tem. In many cases (as with Protein G and the WW domain),
the transition is simple and smooth; in a few instances (like
with NTLg), however, fine structure in K(s) vs. s emerges that
marks density transfer between specific Markov states.

In glass-forming systems, singularities in K(s) curves
have been shown to indicate phase transitions between an
active phase and an inactive “dynamical glass” (17). Our pro-
tein folding models, of course, were not designed a priori as
glass-formers, and the transitions between the active and inac-
tive dynamical regimes of MSMs at t,ys = T are much more
gradual than those in glass systems (17,20). Indeed, since pro-
tein molecules are finite in size, they cannot support true dy-
namical phase transitions (17). However, one does expect the
crossovers between active and inactive states to become in-
creasingly sharp in protein systems with long-lived metastable
states and more glassy dynamics.

We can easily discriminate between active (K=1) and
“glass-like” inactive (K=o) regimes within a reasonable varia-
tion of the s-field for all MSMs studied. For the remainder of
this Communication, we will call these regimes the “active”
and “inactive” phases of the dynamics. To facilitate compari-
son between models, we label the midpoint of the K(s) vs. s
curve (K = 0.5) as s*, and we designate that point as the coex-
istence point between the two phases. We emphasize that the
active and inactive regimes that we have found do not corre-
spond directly with the folded and unfolded states of the pro-
tein: see Fig 1 and further discussion in the SI.
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Figure 2: Mean activity per time step, K(s), versus s curves for protein folding MSMs of the Fip35 WW-domain (left, Tgy = 28 Tjg,), Pro-
tein G (middle, Tryy = 1110 Tjeg), and NTLg (right, Tf,q = 3332 Tigg). Similar curves were computed for 13 additional systems; the results of

this analysis are shown in Figure 3.

Are the dynamics in protein folding MSMs inherently active or
glass-like? As seen in Figure 2, the unbiased dynamics of Pro-
tein G and NTLg are in the inactive phase, while those of Fip-35
are well into the active regime. The idea that this dynamical
behavior would vary so drastically between proteins is intri-
guing, since such heterogeneity suggests that different pro-
cesses are at work in driving each protein’s folding kinetics.

Figure 3 shows the value of s at coexistence between
the active and inactive phases as a function of chain length and
folding time for all 16 proteins analyzed. Proteins with positive
values of s* are in the active regime under unbiased dynamics,
while proteins with negative s* are in the inactive regime. As
noted in the SI, the molecular dynamics (MD) data for these 16
systems were collected under various force fields and at differ-
ent temperatures; 15 models (villin being the only exception)
were constructed from explicit solvent datasets (3 — 10).

We indeed see a wide variation in dynamical behav-
ior among the proteins studied. In general, the smallest, fast-
est-folding proteins have the most active dynamics, while the
largest, slowest folding systems are the most inactive. Pro-
teins with intermediate folding timescales (=10 ps) generally
displayed dynamics near to their respective s* values. We do
not see a strong correlation between chain length and dynam-
ical activity. The helix bundle a3D, for instance, is 73 residues
in length, but resides firmly in the active phase. By contrast, all
models with folding times greater than 10 ps were shown to
exist in the inactive phase. Accordingly, a proposed boundary
for dynamically active and inactive proteins in drawn as a hori-
zontal line at 120 ps in Figure 3.

These observations would suggest that dynamical
activity is largely independent of thermodynamic considera-
tions, at least with respect to the extensive free energies of
folding. We also note that the activity K measures relatively
fast motion of the protein (on the time scale Tjg), while the
folding time gy is @ measure of much slower cooperative mo-
tion. Fig 3 indicates a strong correlation between molecular
motion on these two widely separated time scales, across a
range of systems whose molecular size and structure are very
different. One might also posit that the proposed boundary in
Fig. 3 arises because folding kinetics on time scales longer than
10 us are somehow more complex and lead to a different dy-

namical regime. Just what factors contribute to the emer-
gence of these two kinetic regimes, however, are up for de-
bate. Interestingly, all proteins in the inactive phase (with the
exception of villin, discussed below) either contain native -
sheet structures or have shown a propensity for forming B-rich
misfolded states. It is possible that the emergence of B-sheet
dynamics in protein folding is in part responsible for a re-
striction in dynamical activity. We should note that some pro-
teins in the active regime (i.e. WW domain and BBA) also have
native B-sheet structure, suggesting other factors are likely at
play in determining the kinetic partitioning. From a molecular
simulation point of view, the results concerning the dynamics
of the villin headpiece domain are noteworthy. While the villin
MSM constructed from explicit solvent MD data was in the
active phase, the MSM constructed from implicit solvent data
crosses the threshold to the inactive phase. This result sug-
gests that dynamics in GBSA implicit solvent simulations are
inherently more glass-like than dynamics in explicit solvent.

In summary, we have shown that s-field perturba-
tions of protein folding MSMs bring to light two distinct re-
gimes of kinetic behavior. We have characterized the unbiased
dynamics of 16 protein systems through the lens of s-
ensembles, and we have discussed how these active or inactive
dynamics might relate to the properties of specific proteins.

Given that we observe a crossover from active to
inactive behavior but no true phase transition to an inactive
glass phase, our results agree with past consensus about the
role of glassy dynamics in protein folding, i.e., that glass sys-
tems have marked similarities with, but are not directly appli-
cable to, protein-folding systems. With respect to the active
and inactive phases discussed in this paper, the proteins near-
est to the proposed phase boundary in Figure 3 might warrant
further study. In particular, one might see if temperature
changes, specific mutations, or other perturbations would
drive systems over the active-inactive threshold. As stated
previously, the nature of the low-probability states onto which
the MSM s-ensembles collapse is also potentially interesting.
As s-ensemble methods are natural for studying perturbed
MSM dynamics, a number of other intriguing extensions of this
work could be imagined.
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Figure 3: Plot of the s-ensemble parameter at coexistence, s*, as a function of folding time (in ps) and chain length (in number of resi-
dues) for 16 protein folding MSMs. Values of s* for Fs-peptide (1.20) and Chignolin (1.95) were omitted to preserve scale. The magni-
tude of an s-value suggests how far a model’s unbiased dynamics deviate from coexistence between active and glassy phases.
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