
        

Citation for published version:
Li, W, Cosker, D & Brown, M 2013, An anchor patch based optimisation framework for reducing optical flow drift
in long image sequences. in KM Lee, Y Matsushita, JM Rehg & Z Hu (eds), Computer Vision – ACCV 2012: 11th
Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part III.
Lecture Notes in Computer Science, vol. 7726, Springer, Berlin, pp. 112-125, 11th Asian Conference on
Computer Vision (ACCV), UK United Kingdom, 7/11/12.

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

The final publication is available at link.springer.com

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://researchportal.bath.ac.uk/en/publications/an-anchor-patch-based-optimisation-framework-for-reducing-optical-flow-drift-in-long-image-sequences(d67f635c-4bb2-4c20-b13c-742635d13872).html


An Anchor Patch Based Optimization
Framework For Reducing Optical Flow Drift in

Long Image Sequences

Wenbin Li, Darren Cosker and Matthew Brown

Department of Computer Science, University of Bath, Bath, BA2 7AY UK

Abstract. Tracking through long image sequences is a fundamental re-
search issue in computer vision. This task relies on estimating corre-
spondences between image pairs over time where error accumulation in
tracking can result in drift. In this paper, we propose an optimization
framework that utilises a novel Anchor Patch algorithm which signif-
icantly reduces overall tracking errors given long sequences containing
highly deformable objects. The framework may be applied to any track-
ing algorithm that calculates dense correspondences between images, e.g.
optical flow. We demonstrate the success of our approach by showing sig-
nificant tracking error reduction using 6 existing optical flow algorithms
applied to a range of benchmark ground truth sequences. We also pro-
vide quantitative analysis of our approach given synthetic occlusions and
image noise.

1 Introduction

Tracking a set of landmark points through multiple images is a fundamental
research issue in computer vision. We define tracking here as the estimation
of corresponding sets of vertices, pixels or landmark points between a reference
frame and any other frame in the same image sequence. In the last decade, optical
flow has become a popular approach for tracking through image sequences [1–3].
Compared with feature matching methods e.g. [4], optical flow provides sub-pixel
accuracy and dense correspondence between a pair of images. In this paper, we
focus in particular on improving tracking in image sequences using optical flow,
and our contribution applies to this class of algorithm.

One of the main drawbacks of optical flow is drift [5]. Errors accumulated
between frames over time results in movement away from the correct tracking
trajectory. Between single image pairs, this problem may not be noticeable.
However, accumulation when tracking across long sequences can be particularly
problematic. Several authors have previously attempted to reduce optical flow
drift in tracking. DeCarlo et al. [1] introduce contour information on a human
face to improve tracking stability, while Borshukov et al. [2] employ manual
correction. More recently, Bradley et al. [6] proposed an optimization method
constrained by additional tracking information from multiview video sequences.
Beeler et al. [7] then introduced the concept of anchor frames for human face
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tracking. In this approach, the sequence is decomposed into several clips based on
anchor images which are visually similar to a reference frame. Their optimization
method shortens the tracking distance from reference frames to the target frame
to help alleviate errors. However, their approach is domain specific (faces), and
assumes that the entire face will return to a neutral expression (the anchor)
several times throughout the sequence. In general, it is difficult to label anchor
frames on general object sequences with large displacement motion e.g. waving
cloth, as there is usually significant deformation between the reference frame
and the other frames. In addition, repeated patterns are typically not global as
observed in a face (return to a neutral expression). Rather, they occur in smaller
local regions at intermittent intervals.

In this paper, we focus on tracking long video sequences using optical flow al-
gorithms, and specifically concentrate on reducing drift. The general strategy of
our approach is to shorten tracking distances for local regions throughout a long
sequence. Our proposed framework combines long term feature matching with
dense correspondence estimation. It may be applied to the tracking of general
objects with large displacement motion, and results in a significant reduction in
drift. We first detect Anchor Frames for a sequence (Section 4). This provides an
initial set of start points for tracking the sequence. Our main contribution is ex-
tending this approach by proposing the concept of Anchor Patches (Section 5).
These are corresponding points and patches throughout the sequence which are
propagated directly from the reference frame. Our framework substantially re-
duces overall drift on a tracked image sequence, and may be applied to any
optical flow algorithm in a straightforward manner. In our evaluation, we apply
the proposed optimization framework on 6 popular optical flow estimation algo-
rithms to illustrate it’s applicability. We provide analysis of our method using
6 synthetic benchmark sequences (Section 7) generated using a method simi-
lar to [8], three of which are degraded by adding occlusion, gaussian noise and
salt&pepper noise. In addition, we show its applicability on a popular publicly
available real world facial sequence with manually annotated ground truth. We
show that our proposed optimization framework significantly improves tracking
accuracy and reduces overall drift when compared against the baseline optical
flow approaches alone.

Our paper is organized as follows: In Section 2, an overview of our proposed
optimization framework is outlined. Sections 3, 4, 5 and 6 give details of the four
major steps in our framework. In Section 7, we evaluate our approach using 6
optical flow algorithms tested on 6 synthetic benchmark sequences and a real
world facial sequence.

2 System Overview

Our proposed optimization framework reduces overall optical flow drift given
long image sequences, and provides additional robustness against other issues
such as large displacements and occlusions. The major procedure is shown in
Table 1.The aim of our Anchor Patch Optimization Framework (APO) is accu-
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Input: A reference frame, a triangle mesh and an image sequence

Step 1 (Sec. 3): Compute optical flow fields in both forward and backward directions
Step 2 (Sec. 4): Detect anchor frames and propagate the entire mesh to these frames
Step 3 (Sec. 5): Label anchor patches on non-anchor frames
Step 4 (Sec. 6): Track remaining patches from anchor frames to non-anchor frames

Output: A mesh tracked throughout the entire image sequence
Table 1. The major steps of the Anchor Patch optimization framework.

rately tracking a mesh denoted by MR = (VR, ER, FR) from a reference frame
IR to every other frame Ii in the sequence. Mi = (Vi, Ei, Fi) denotes the corre-
sponding mesh on frame Ii. In the following sections, the four major steps are
discussed in detail.

3 Step One: Computing The Optical Flow Field

1i iw 

1i iw  
Reference Frame

iI 1iI 

Fig. 1. Step One. The optical flow fields are computed in both forward (w′
i→i+1)

and backward (w′
i+1→i) directions between every adjacent images pair in the sequence

where the first frame is labelled as a reference frame.

The first step is to compute an optical flow field between every frame and its
successor over a long video sequence in both forward and backward directions
(Figure 1). In our evaluation, we consider application of our APO framework
on a number of dense correspondence optical flow or tracking approaches, e.g.
Brox et al. [5], Classic+NL [9] and ITV-L1 [10]. Let wi→i+1 denote the optical
flow field from frame Ii to frame Ii+1. Similarly we have w′i+1→i denoting the
optical flow field from frame Ii+1 to frame Ii in the backward direction. The
optical flow field between frame Ii and Ij where i < j (Forward direction),
is denoted by wi→j as wi→j =

∑
i<j wi→i+1. Similarly, The optical flow field

between frame Ij and Ii where i < j (Backward direction), is denoted by w′j→i

as w′j→i =
∑

j>i w′j→j−1.

In order to evaluate the optical flow at a specific pixel X = (x, y)T , an Error
Score E(w) is introduced, where w = (u, v)T is the optical flow vector at pixel
X. The pixel X in frame Ii is matched to pixel X′ = (x′, y′)T in frame Ii+1

where X′ = X + w. The Error Score E(w) is calculated as the weighted Root
Mean Square (RMS) error at a 3× 3 pixel area centred on pixel X and X′.
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E(w) =

√
α1d(x, y) + α2dcross(x, y) + α3ddiag(x, y)

α1 + α2 + α3

ddiag(x, y) = d(x− 1, y − 1) + d(x+ 1, y + 1)

+ d(x− 1, y + 1) + d(x+ 1, y − 1)

dcross(x, y) = d(x− 1, y) + d(x+ 1, y) + d(x, y − 1) + d(x, y + 1)

d(x, y) = |Ii(x, y)− Ii+1(x+ u, y + v)|2 (1)

Where α1, α2 and α3 are weights for controlling the contribution of each
pixel in the 3 × 3 area. In our experiments, all these weights are set as α1 = 1,
α2 = 0.25 and α3 = 0.125 which refer to the distance from the centre pixel X of
the area. This Error Score is intended to evaluate the optical flow at a specific
pixel. We also use it to evaluate feature matching scores later in our framework.

4 Step Two: Detecting Anchor Frames

Reference Frame
Anchor Frame

Fig. 2. Step Two. The frames are detected as anchor frames (Red) because of the
similar appearance to the reference (Blue). These anchor frames partition the entire
sequence into several independent clips which allows tracking performing in parallel.

After obtaining our optical flow fields, anchor frames are then detected in
a similar manner to Beeler et al. [7], with the difference that we employ SIFT
for feature matching as opposed to Normalised Cross Correlation (NCC), and
additionally use our Error Score function (Section 3) to evaluate matches. The
main procedure is as follows (Figure 2):

– Feature Capture. A set of SIFT features SR is detected in the reference
frame IR. Note that other features could be employed, but we select SIFT
due to the general high accuracy and robustness.

– Outlier Rejection. The aim of this selection process is removing outliers
from our feature matching. Correspondence matches of the SIFT feature set
SR between the reference frame IR and the target frame Ii are performed.
We select the matches which meet |X−X′| < τ where X is feature position
in IR,

{
X ∈ SR,X = (x, y)T

}
; X′ is the corresponding feature position in

Ii; τ is a threshold which is set as 30 pixels in our experiments. We find this
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simple outlier rejection strategy sufficient for most of cases in our experi-
ments (Section 7). More sophisticated outlier rejection method such as [11]
could also be employed.

– General Error Score. The general error score is computed for every image
as the average of the overall Error Score E(w) (Equation (1)). Frames that
contain the lowest general error score (below a specific threshold) are selected
as anchor frames denoted IA and the other frames are non-anchor frames.
Figure 3 shows this process on our Carton benchmark sequence.
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Fig. 3. The anchor frames are selected based on our general error score which is com-
puted by comparing the reference frame to every other frame in our Carton benchmark
sequence.

After detecting anchor frames which are visually similar to reference frame,
these are used as a basis to partition the entire image sequence into several
independent clips. This also allows computation in the next steps to be performed
in parallel. In addition, the mesh MR is propagated from the reference frame
IR to each anchor frame IA using SIFT matches and a direct optical flow field
between them. More detail can be found in section 6.1. The propagated mesh in
an anchor frame is denoted MA = (VA, EA, FA). Because of large displacement
motion between anchor frames, and the fact that many images in a deformable
sequence may not return to a reference point, these alone are typically insufficient
to provide reliable tracking. In the next section, the Anchor Patch concept will
be introduced to overcome this issue.

5 Step Three: Labeling Anchor Patches

The motivation of the original Anchor Frame method [7] is to provide multiple
Starting Points for tracking. Since error accumulates, the technique is intended
to reduce overall error accumulation across long image sequences. However, as
mentioned in the previous section, large displacement motion contains high de-
grees of freedom (DoF), meaning that most images in a video sequence will have
significant visual differences from the reference frame.

The central observation in long image tracking is that local spatial patterns
throughout a sequence will be repeated - i.e. part of a cloth might return to
the same position several times throughout a video. We take advantage of these



6 Wenbin Li, Darren Cosker and Matthew Brown

Reference Frame
Anchor Frame

Fig. 4. Step Three. Anchor patches (blue patches) are label on non-anchor frames
within every clip using SIFT feature matching and Barycentric Coordinate Mapping
between reference frame and non-anchor frame.

repeating regions in order to track between shorter segments, and thus alleviate
error accumulation. As opposed to an entire image from a sequence acting as an
anchor, an Anchor Patch is defined as a set of individual vertices or an area of
pixels in the non-reference frame (any other frame in the sequence), which are
highly correlated to a specific part of the reference. The benefit of using anchor
patches is to provide additional information for correcting errors when tracking
using optical flow. This technique can also reduce the impact of a low-quality
anchor frame (i.e. one which is too dissimilar from the reference frame). Before
anchoring patches on non-anchor frames, we first obtain a set of high-quality
SIFT feature matches between the reference frame and non-anchor frames, i.e.
those which are not already labelled as the reference frame, or an existing anchor
frame. This process proceeds as follows:

– Feature Capture. Similar to Step Two (Section 4), SIFT is employed to
detect a feature set SR in the reference frame IR.

– Matching Selection. We use the VLfeat matching approach [12] to perform
correspondence matching of SIFT feature sets SR to feature set Si of the non-
anchor frames Ii. Matches are selected where the Error Score (Equation (1))
is below a predefined threshold. This process generates a matches set mR→i

between the reference frame IR and non-anchor frame Ii.

The set of matches mR→i is used as our initial basis for anchoring patch-
es on non-anchor frames. In order to obtain final anchor patches, Barycentric
Coordinate Mapping and Error Refinement are applied as follows:

Barycentric Coordinate Mapping We wish to determine the pixel position
in a non-anchor frame which corresponds to the position of a vertex on the ref-
erence mesh MR in IR. These correspondences provide our baseline for stable
tracking throughout the image sequence. Figure 5 illustrates the process of an-
choring patches where v = (x, y)T denotes a vertex in MR; f∗ = (x∗, y∗)

T , and
denotes SIFT features in the reference frame IR. Similarly, f ′∗ = (x′∗, y

′
∗)

T de-
notes SIFT features in a non-anchor frame Ii. For the non-anchor frame Ii, we
have {fk → f ′k ∈mR→i, k = 1, 2, 3 . . . } which denotes previously obtained cor-
responding SIFT feature matches. We wish to calculate the new vertex position
v′ = (x′, y′)T in the non-anchor frame Ii. We do this by searching for the three
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Fig. 5. Anchoring patches using Barycentric Coordinate Mapping and SIFT features.

nearest SIFT features f∗ in a small 5×5 search window centred on the vertex of
interest v. Next, v′ is calculated by solving the Barycentric Coordinate Mapping
equations as:

[
f1 f2 f3

f ′1 f
′
2 f
′
3

]β1

β2

β3

 =

[
v
v′

]
(2)

Where β∗ are intermediate variables that satisfy β1 +β2 +β3 = 1. In practice
we found this technique to provide an accurate transformation when applied to
small region (5× 5 pixel block). However, more sophisticated (although slower)
interpolation methods such as Thin-plate Spline could also be used. The process
is performed on every vertex in MR.

Error Refinement After Barycentric Coordinate Mapping, candidate anchor
patches denoted by v′∗ are obtained in non-anchor frames Ii. We also have match-
es v∗ → v′∗, the strength of which can be evaluated using our error equation (1).
Using this error, we select final anchor patches in a non-anchor frame Ii using
{P (v′∗)|E(v∗ → v′∗) < η} where η is a predefined threshold.

6 Step Four: Mesh Propagation

The objective of our optimization framework is to track a mesh MR from the
reference frame to every other frame in an image sequence. Given tracking infor-
mation from the following sections, this process is separated into two steps: first,
the mesh MR is propagated from reference frame to anchor frames (section 4
and 6.1). Second, the propagated mesh MA is propagated from anchor frames
to the non-anchor frames within the clip (section 6.2).

6.1 Propagating from the reference frame to anchor frames

The mesh propagation process from the reference frame to the anchor frame is
as follows:
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Anchor Frame

Fig. 6. Step Four. Tracking other patches from the anchor frame and nearest anchor
patches within a clip where the blue patches are anchor patches, selected from Nearest
Anchor Patch.

– Computing the optical flow field. The optical flow field wR→A directly
between the reference frame to the anchor frame is computed.

– Matching selection. For every vertex in MR, high error matches are elim-
inated (see Error Refinement).

– Barycentric Coordinate Mapping. Barycentric Coordinate Mapping is
applied to low error matches.

After this stage, information for every vertex in MR is established from the
reference frame to the anchor frame.

6.2 Propagating from anchor frames to non-anchor frames

The entire image sequence is partitioned into clips which are bound by different
anchor frames. The propagation process can be individually performed within
these clips in parallel. As the non-anchor frames contain anchor patches, this
improves overall tracking stability within these clips. Figure 6 illustrates this
concept. In order to use anchor patches in this process, the concept of a Nearest
Anchor Patch is also defined. For vertex v in MA, the Nearest Anchor Patch of
v on frame Ii is the anchor patch

{
v′i+k|v → v′i+k

}
on non-anchor frame Ii+k

which is nearest to Ii in the image sequence. Figure 7 shows an example where
frame Ii+k is the frame which is nearest to frame Ii in image sequence and
contains anchor patch v′i+k matching to v in anchor frame IA. The main tracking
procedure proceeds as follows:

– Mesh propagation. In order to establish tracking information between
anchor frames and non-anchor frame, the mesh MA is first propagated from
anchor frame IA to non-anchor frames Ii using the previously calculated
optical flow field wA→i from Step One (Section 3).

– Anchor patches propagation. The Nearest Anchor Patch of each vertex
v in MA is searched through the whole clip then propagated to non-anchor
frame Ii using the optical flow field in the forward w∗→i or backward w′i+k→i

direction.
– Conflict eliminating. After propagating the mesh and nearest anchor

patches to non-anchor frame Ii, there may be position conflict on some of the
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Fig. 7. Vertex conflict can happen when mesh and anchor patches are propagated to
target frame Ii. Here v′i+k is an anchor patch that is strongly matched to v.

propagated vertices. As shown in Figure 7, ṽi and ṽ′i are not in the same de-
sired position. In order to eliminate the conflict, the position of {vi|v → vi}
matching to v can be calculated using the sum of all weighted candidate
positions e.g. ṽi and ṽ′i (Eq.3) based on the Error Score.

vi =
E(v → ṽ′i)ṽi + E(v → ṽi)ṽ

′
i

E(v → ṽ′i) + E(v → ṽi)
(3)

Due to the fact that the anchor frames divide the overall sequence into smaller
clips, this allows the mesh propagation in between to be calculated in parallel.
In the next section we perform an evaluation of our framework.

7 Evaluation

We evaluate APO with a range of 6 popular optical flow estimation methods
which are publicly available from the Middlebury Evaluation System [13]. Com-
bined local-global Optical Flow (CLG-TV) [14], Large Displacement Optical Flow
(LDOF) [5] and Classic+NL [9] are state of the art while the Horn and Schunck
(HS) [15], Black and Anandan (BA) [16, 9], Improved TV-L1 (ITV-L1) [10] are
classic optical flow frameworks and also widely used. CLG-TV is a high speed
approach that uses a combination of bilateral filtering and anisotropic regular-
ization and also one of the top three algorithms in the normalized interpolation
error test from Middlebury. LDOF is an integration of rich feature descriptors
and variational optical flow and one of best current optical flow estimation al-
gorithms for large displacement motion. Classic+NL provides high performance
in the Middleburry evaluation by formalizing the median filtering heuristic and
Lorentzian penalty as explicit objective functions in an improved TV-L1 frame-
work. The HS method is a pioneering technique optical flow. BA provides im-
provements to the HS framework by introducing robust quadratic error formula-
tion. ITV-L1 is a recent and increasingly popular optical flow framework which
uses a similar numerical optimization scheme to Classic+NL. Our choice of a
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Information of the Benchmark Sequences
Original Occlusion Guass.N S&P.N Carton Serviette Frank

Image Size (pix.) 500× 500 500× 500 500× 500 500× 500 1024× 768 1024× 768 720× 576
Sequence Length 237 237 237 237 266 307 300
Annotation Points 160 160 160 160 81 63 68

Avg. Feature Amount 364.80 358.32 566.13 1276.50 2498.01 3315.49 2071.11

Table 2. An overview of the benchmark sequences in our evaluation. That includes 4
attributes of image size (pixel), sequence length, number of ground truth annotation
points per frame and average SIFT feature amount per frame.

mixture of newer, state of the art methods, with older traditional approaches, is
to highlight the fact that irrespective of the approach used, our APO framework
provides significantly improved tracking in all cases.

For our evaluation, we compare the optical flow estimation methods pre-
viously mentioned – with and without our optimization framework – on 7 long
benchmark sequences with ground truth. Table 2 gives an overview of the bench-
mark sequences used in our evaluation. In previous work Garg et al. released to
the community a set of ground truth data for evaluating optical flow algorithms
over long sequences. This is as opposed to the Middlebury dataset, which just
considers optical flow between pairs of images, and is therefore not applicable to
our framework. The sequences of Garg et al. contains 60 frames and are generated
using interpolated dense Motion Capture (MOCAP) data from real deformations
of a waving flag [17]. We use the same MOCAP data to generate a long video
sequence and three other degraded sequences, each of which contains 237 frames
of size 500 × 500 pixels. The three degraded sequences are generated in order
to test the robustness of our APO framework under different image conditions.
They are generated by individually adding synthetic occlusions, gaussian noise
and salt & pepper noise with the same parameters described in [8]. In order to
increase the diversity of the sequences, we include three other sequences. One is a
Talking Face Video (Frank) sequence which contains 300 frames with 68 ground
truth annotation points per frame. The other two are also synthetic benchmark
sequences generated using MOCAP data of Salzmann et al. [18] from the carton
and serviette deformations. One contains 266 frames of size 1024×768 while the
other contains 307 frames of the same image size. In addition, we also consider
the effect of the number of SIFT features detected in the frame, and how this af-
fects overall tracking stability of the APO framework. All optical flow algorithms
are applied with default parameter settings from their original papers.

Our baseline optical flow based tracking strategy – for each of the above
algorithms – is performed as follows: First, the optical flow field is computed (in
forward direction) for every pair of adjacent frames in the sequence. We then
mark the initial tracking points in the first frame using the same ground truth
points in the same frame of the sequence (Table 2). The correspondent points
in the next frame are computed based on the optical flow field in between. This
process is repeated until correspondent landmark points are obtained in every
frame of the sequence. The Root Mean Square (RMS) Endpoint Error (EE) [13]
is then calculated against the ground truth annotation points. We then apply
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Average RMS EE (pix)
Methods Original Occlusion Guass.N S&P.N Carton Serviette Frank
BA [16] 6.14 8.03 11.02 7.79 10.56 5.18 17.57

BA + APO 1.722 1.912 7.891 5.041 2.77 1.561 6.60
CLG-TV [14] 8.59 10.93 20.28 33.93 28.94 32.17 19.29

CLG-TV + APO 2.25 2.97 12.31 18.99 6.95 9.43 7.05
HS [15] 29.16 30.44 29.74 29.43 27.69 37.90 31.27

HS + APO 11.68 12.88 17.79 17.21 10.25 10.03 14.19
LDOF [5] 6.21 6.39 16.24 24.14 6.33 5.51 14.73

LDOF + APO 1.753 1.671 11.65 13.12 1.181 1.842 3.121

Classic+NL [9] 7.07 10.61 12.65 9.50 5.72 6.62 17.32
Classic+NL + APO 2.15 3.18 8.312 6.462 1.342 2.033 3.442

ITV-L1 [10] 5.73 8.25 17.29 14.49 5.34 7.11 17.91
ITV-L1 + APO 1.501 2.333 9.533 7.703 1.703 2.36 3.693

Table 3. Average RMS Endpoint Error (EE) comparison of different methods with
our optimization framework on the benchmark sequences.

our APO framework using the same optical flow fields.). Note that the parameter
values relevant to the APO framework are initially and experimentally selected,
but then remain constant in all our evaluations.

Table 3 shows the measurement of average RMS EE in pixels over all the
frames of the sequences. We highlight the top three best RMS EE measures
for each sequence using superscripts next to different values. Notice that APO
significantly reduces the RMS EE compared to the baseline optical flow methods.
Our optimization framework yields the best RMS EE measure in all the cases.
For instance, ITV-L1 with APO performs the best in sequence Original while
LDOF with APO yields the best result in sequence Frank. We also observe that
although in the Guass.Noise and S&P.Noise sequences the improvement is less
than in the unaltered sequences, the overall result is still an improvement with
the addition of APO.

While we concern ourselves primarily with tracking over long sequences in
this paper, we also consider here shorter sequences. In Table 4, the average
RMS EE measures of various methods are compared on the first 30 frames of
our benchmark sequences. We observe similar RMS EE measures as in the long
sequence case (Table 3). The APO framework significantly increases the tracking
accuracy – outperforming the baseline tracking methods in all cases even given
degradation (e.g. Gauss.Noise and S&P.Noise). Moreover, the BA with APO
is also observed to overfit in the noisy sequences while Classic+NL with APO
yields the best measures in both sequences of Gauss.Noise and S&P.Noise.

We also evaluate the effect on tracking accuracy by varying the number
of selected features. Different numbers (50% and 0%) of features are randomly
selected from the initial full detection feature set before performing Anchor Patch
detection. Information on our total number of features can be found in Table 2,
e.g. there are 364.80 features averagely on each frame of the sequence Original.
Table 5 shows an average RMS EE comparison given various numbers of features.
We observe that RMS EE improves given more features in all cases. Another
interesting observation is that our optimization framework provides lower RMS
EE against the baseline tracking strategy even given sparse or no features (0%



12 Wenbin Li, Darren Cosker and Matthew Brown

Average RMS EE (pix) on the First 30 Frames
Methods Original Occlusion Guass.N S&P.N Carton Serviette Frank

BA [16] 1.57 1.72 3.87 2.71 2.37 1.563 8.76
BA + APO 1.413 1.65 3.663 2.132 2.17 1.131 5.40
CLG-TV [14] 2.40 2.60 6.71 8.77 8.10 5.54 8.60

CLG-TV + APO 2.10 2.24 6.53 8.39 4.79 5.11 7.35
HS [15] 33.67 35.70 35.05 34.50 26.16 22.08 12.76

HS + APO 16.11 16.32 13.78 19.37 9.78 6.33 9.19
LDOF [5] 2.38 2.37 3.96 4.03 3.90 2.52 8.51

LDOF + APO 1.152 0.971 3.75 2.66 0.891 1.442 2.821

Classic+NL [9] 1.63 1.76 3.612 2.513 2.18 1.75 8.77
Classic+NL + APO 1.51 1.332 3.541 1.991 1.242 1.68 3.703

ITV-L1 [10] 1.55 1.76 6.27 5.07 2.37 2.01 9.22
ITV-L1 + APO 0.991 1.312 5.77 4.65 1.693 1.71 3.482

Table 4. Average RMS Endpoint Error (EE) comparison of different methods with
our optimization framework on the first 30 frames of the benchmark sequences.

Average RMS EE (pix) on Different Feature Distributions
Methods Original Occlusion Guass.N S&P.N Carton Serviette Frank

BA [16], No APO 6.14 8.03 11.02 7.79 10.56 5.18 17.57
APO, 100% Feature 1.722 1.912 7.891 5.041 2.77 1.561 6.60
APO, 50% Feature 3.64 4.71 8.06 6.12 5.89 2.98 10.63
APO, 0% Feature 5.12 6.44 9.23 7.21 8.69 4.35 12.69

CLG-TV [14], No APO 8.59 10.93 20.28 33.93 28.94 32.17 19.29
APO, 100% Feature 2.25 2.97 12.31 18.99 6.95 9.43 7.05
APO, 50% Feature 4.86 6.51 14.39 22.72 15.36 19.91 12.00
APO, 0% Feature 6.94 9.11 16.83 26.03 23.57 24.03 15.07
HS [15], No APO 29.16 30.44 29.74 29.43 27.69 37.90 31.27

APO, 100% Feature 11.68 12.88 17.79 17.21 10.25 10.03 14.19
APO, 50% Feature 18.13 20.28 20.66 19.91 17.39 25.99 23.45
APO, 0% Feature 24.73 27.11 23.97 23.40 24.09 33.11 29.17
LDOF [5], No APO 6.21 6.39 16.24 24.14 6.33 5.51 14.73
APO, 100% Feature 1.753 1.671 11.65 13.12 1.181 1.842 3.121

APO, 50% Feature 3.21 3.09 12.18 15.02 2.90 3.74 8.66
APO, 0% Feature 5.08 5.24 14.11 18.46 5.45 4.89 11.76

Classic+NL [9], No APO 7.07 10.61 12.65 9.50 5.72 6.62 17.32
APO, 100% Feature 2.15 3.18 8.312 6.462 1.342 2.033 3.442

APO, 50% Feature 4.00 6.39 9.48 7.33 3.89 4.00 10.14
APO, 0% Feature 5.96 7.78 11.64 8.98 4.78 6.00 13.27

ITV-L1 [10], No APO 5.73 8.25 17.29 14.49 5.34 7.11 17.91
APO, 100% Feature 1.501 2.333 9.533 7.703 1.703 2.36 3.693

APO, 50% Feature 3.59 5.17 10.93 8.47 3.41 5.00 10.11
APO, 0% Feature 4.77 6.92 12.50 10.31 4.43 5.95 14.29

Table 5. Average RMS Endpoint Error (EE) comparison on the benchmark sequences
with varying feature distributions.

feature). Note that in this case, our APO framework defaults to using an optical
flow method with just the Anchor Frame approach [7]. Also note – for example
by comparing to Table 3 – that this indicates that the APO framework also
provides significant tracking improvement over using anchor frames alone.

We also make the visual comparisons on two of our sequences, Frank and
Serviette. The former is real world sequence with ground truth annotation points,
while the latter is synthetic sequence overlaid with a ground truth mesh. In
Figure 8, we observe noticeable drift problems given the baseline optical flow
tracking strategy. Also note that the APO framework significantly reduces the
drift problem.
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Ground truth BA CLG-TV HS LDOF Classic+NL ITV-L1
RMS EE 15.45 RMS EE 17.25 RMS EE 25.58 RMS EE 12.38 RMS EE 13.88 RMS EE 14.55

BA+APO CLG-TV+APO HS+APO LDOF+APO Classic+NL+APO ITV-L1+APO
RMS EE 4.35 RMS EE 5.67 RMS EE 11.85 RMS EE 2.82 RMS EE 3.04 RMS EE 3.22

and closeup

(a) Visual comparison of different methods on the frame 88 of the sequence Frank.

Ground truth BA CLG-TV HS LDOF Classic+NL ITV-L1
RMS EE 5.43 RMS EE 39.50 RMS EE 21.44 RMS EE 3.53 RMS EE 7.49 RMS EE 7.01and closeup

BA+APO CLG-TV+APO HS+APO LDOF+APO Classic+NL+APO ITV-L1+APO
RMS EE 1.10 RMS EE 4.03 RMS EE 12.95 RMS EE 1.22 RMS EE 2.67 RMS EE 2.41

(b) Visual comparison of different methods on the frame 192 of the sequence Serviette.

Fig. 8. Visual comparison and RMS EE measures on sequences of Frank and Serviette.

8 Conclusion

In this paper, we have presented an optimization framework based on Anchor
Patches for improving mesh or sparse point set tracking during long video image
sequences. Our optimization framework anchors image regions throughout the
sequence to mitigate the effect of Error Accumulation and Drift. In our evalua-
tion, we have compared APO combined with 6 popular optical flow estimation
algorithms against baseline tracking on 7 benchmark sequences. This includes
6 synthetic benchmark sequences with real world deformation and 1 real world
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sequence. We have demonstrated that APO provides significant tracking im-
provements for dense correspondence based tracking on long video sequences
than using baseline optical flow tracking alone.
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