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Abstract

Manganese oxide materials are attracting considerable interest for clean energy storage ap-

plications such as rechargeable Li-ion and Li-air batteries, and electrochemical capacitors. The

electrochemical behavior of nanostructured mesoporous β -MnO2 is in sharp constrast to the

bulk crystalline system, which can intercalate little or no lithium; this is not fully understood

on the atomic scale. Here, electrochemical properties of β -MnO2 are investigated using den-

sity functional theory with Hubbard U corrections (DFT+U). We find good agreement between

the measured experimental voltage, 3.0 V, and our calculated value of 3.2 V. We consider the

pathways for lithium migration and find a small barrier of 0.17 eV for bulk β -MnO2 which

is likely to contribute to its good performance as a lithium intercalation cathode in the meso-

porous form. However, by explicit calculation of surface to bulk ion migration we find a

higher barrier of > 0.6 eV for lithium insertion at the (101) surface, that dominates the equi-

librium morphology. This is likely to limit the practical use of bulk samples, and demonstrates
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the quantitative importance of surface to bulk ion migration in Li-ion cathodes and superca-

pacitors. Based on the calculation of the electrostatic potential near the surface we propose

an efficient method to screen systems for the importance of surface migration effects. Such

insight is valuable for the future optimization of manganese oxide nanomaterials for energy

storage devices.

Keywords: lithium battery; surface; supercapacitor; DFT; cathode; manganese oxides

Introduction

Energy storage for hybrid electric vehicles and renewable energy sources is a pressing technolog-

ical challenge for which Li-ion batteries and supercapacitors are key candidate systems. Due to

rising future needs there has been an intensive research effort to search for an alternative to the lay-

ered LiCoO2 system conventionally used in rechargeable Li-ion batteries.1–4 Co-based materials

pose problems due to high cost and environmental hazards upon disposal. Therefore, manganese

based oxides have been a promising class of materials for electrochemical energy storage.5–10

β -MnO2 has been extensively investigated as a cathode for rechargeable Li-ion cells, but early

work showed that bulk samples did not permit significant Li-ion intercalation.7,10,11 Initial work

on β -MnO2 supercapacitors12 also indicated lower capacitance than for other polymorphs such

as hollandite MnO2. Yet recent investigations have reinvigorated interest in the material. Meso-

porous10,13,14 and needle-like nanostructured15,16 β -MnO2 have been shown to allow good inter-

calation of Li-ions. Both pore size and wall thickness of the mesoporous structures have been

demonstrated to affect the rate capability.9 The mesoporous β -MnO2 cell has a capacity10 of 284

mAh/g and good cycling stability. Recent studies of kinetics using ac impedance measurements17

have demonstrated increased Li-ion diffusion in nanosized materials. Additionally, β -MnO2 has

shown promise as a catalyst for the oxygen reduction reaction that is the basis of the Li-air battery

system18,19 and as a supercapacitor electrode material.12,20 The formation of nanostructured small

particles has been shown to dramatically increase the capacitance20 of β -MnO2 to 294 F g−1,
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compared to ∼9 F g−1 for bulk cyrstals.12

However, the fundamental basis for the constrasting intercalation properties of nanostructured

mesoporous β -MnO2 and bulk crystalline β -MnO2 is not fully understood. To understand the

factors influencing their electrochemical and nanoionic behavior it is clear that greater knowledge

of the diffusion pathways and activation energies that govern Li-ion mobility within the bulk and at

the surface is needed on the atomic scale. Motivated by renewed interest in β -MnO2, we perform

an ab initio study of its intercalation behavior extending our recent computational work on lithium

battery materials.21,22 Of key interest is how mesoporous structuring enables intercalation into β -

MnO2. Indeed, the rapidly growing interest in nanostructuring of many electrode materials23,24

calls for investigation of the influence of surfaces and interfaces. It is known that, in many cases,

nanomaterials have enabled higher intercalation/deintercalation rates (and hence higher power) by

reducing the diffusion path length to facilitate fast Li-ion transport, and by increasing the surface

area to promote Li-ion exchange across the electrode/electrolyte boundary.

We organise our results as follows. First, results on the prediction of the Li-ion intercalation

voltage and the associated structural changes are compared to experiment. We then consider tran-

sition state calculations of the Li-ion migration properties in bulk migration of β -MnO2. Finally,

we explicitly treat the migration from the surface to bulk in β -MnO2.

Figure 1 shows the crystal structure of β -MnO2 where the approximate MnO6 octahedra are

indicated by polyhedra. β -MnO2 occurs in the rutile structure25 with only corner sharing octahedra

in-plane that create 1×1 tunnels clearly visible along the c-axis in Figure 1(a). These tunnels are

expected to play a key role in the ion migration considered in this work. Migration paths A and B in

Figure 1(a) involve movement between these tunnels, while path C in Figure 1(b) is characterised

by movement along these tunnels. We will return to consider the energetics of these migration

paths in detail.

Lithium insertion into mixed β -MnO2 and ramsdellite MnO2 has previously been studied by

Maphanga et al. using interatomic forcefield methods.26 In that work, finite temperature molec-

ular dynamics calculations indicated the presence of increased twinning and a tendency to form
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Figure 1: Crystal structure of β -MnO2 showing the connecting MnO6 octahedra and the inter-
calated Li-ions viewed (a) along the c-axis and (b) obliquely. Red spheres are oxygen, purple
manganese and green lithium. The thin black lines indicate the conventional unit cell. Migration
paths indicated by bold arrows are associated with the calculated migration barriers in Table 2.

ramsdellite units upon the intercalation of lithium. Sayle et al.27 have also investigated β -MnO2

using interatomic potentials and have considered the microstructure, nanoparticle formation and

mechanical properties in detail using large-scale molecular dynamics methods.

Previous DFT based studies on β -MnO2 have considered hydrogen insertion,28 the phase sta-

bility of competing polymorphs,29 Ruetschi defects in nanosheets,30 and magnetic properties.31,32

Given the promising experimental results for intercalation of Li-ions into mesoporous β -MnO2

there is a need to extend these studies to understand the Li-ion intercalation processes. In par-

ticular to determine why nanostructured and mesoporous crystals may improve the properties so

greatly.

Koudriachova et al. have previously studied the intercalation properties of nanostructured rutile

TiO2 by ab initio methods. This work highlighted anisotropic diffusion and the ability of local

structural distortions to create Li-ion traps that inhibit diffusion.33 They also argued that short

diffusion lengths and increased structural flexibility near the surface of nanostructures reduces

these effects.34
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Methods

We have calculated the electronic structure using the Generalized Gradient Approximation35 (GGA)

with Hubbard U corrections GGA+U. The VASP36 code was employed using PAW potentials. The

cutoff for the planewave basis set was 520 eV. A minimum of 6×6×6 k-points was used for each

calculation. Where stated in the results the all electron full-potenial code Wien2k37 was also em-

ployed. Here RKmax was set to 7.0 and the radii of the muffin tins was 2.01 a0 for manganese, 1.51

a0 for oxygen and 1.51 a0 for lithium.

The value of the U parameter for our GGA+U calculations was determined ab initio using

Wien2k.38,39 For β -MnO2 we obtain UEff = 5.5 eV and after lithium intercalation we obtain UEff =

4.7 eV for Li-β -MnO2. To obtain intercalation voltages we require a single value of U for both

the delithiated and lithiated materials. We therefore follow the practice in previous studies40 and

use the average from the two calculations, UEff = (U − J) = 5.1 eV, for the spherical part of the

interaction for the remainder of this study. All calculations were performed in a ferromagnetic

spin polarized configuration with the fully localized limit double counting correction.41 Since the

exchange interaction is poorly screened in solids38,42 we employ an atomic limit value J = 1.0 eV

for β -MnO2, an approach extensively justified in previous work.43

Results and Discussion

Structures and Voltages

Pristine β -MnO2 occurs in the tetragonal space group P4/mnm (# 136) with lattice parameters44

a = b = 4.398 Å and c = 2.873 Å. Intercalation of Li-ions in mesoporous β -MnO2 occurs by

a two-phase reaction on first discharge9 to form β -LiMnO2 with a voltage of approximately 3.0

V.10 X-ray diffraction results45 indicate that the intercalation reduces the tetragonal symmetry to

orthorhombic space group Pnnm (# 58). The lattice parameters are a = 5.1419(7) Å, b = 5.003(2)

Å and c = 2.8131(8) Å representing a contraction of the c-axis with an accompanying expansion
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in-plane. This is attributed to the Jahn-Teller distortion when Li-ion intercalation causes Mn4+ to

become Mn3+.

In Table 1 we show the GGA+U predicted lattice parameters for β -MnO2 and its lithiated

structure via a two-phase reaction. If we first consider β -MnO2, the lattice parameters predicted

by GGA+U agree with those from experiment to within 3%, but the usual tendency for GGA+U to

overestimate the unit cell volume is evident. For the lithiated β -LiMnO2 structure, the Jahn-Teller

distortion experimentally results in a c-axis reduced by 2% while the a-axis has expanded by 17%

and the b-axis by 14%. The GGA+U results shown in Table 1 also predict this contracted structure.

All of the GGA+U lattice parameters lie within 3% of those from experiment. It should be noted

that the experimental data for β -LiMnO2 is derived from mesoporous samples and this may affect

the structure.

Table 1: Calculated and experimental10,45 lattice parameters for β -MnO2 and its lithiated form.
Cell voltages are also included for β -LiMnO2.

β -MnO2 a Å b Å c Å V (V)
GGA+U 4.442 4.442 2.933 -

Experiment 4.398 4.398 2.873 -
β -LiMnO2

GGA+U 5.204 5.148 2.853 3.2
Experiment 5.141 5.003 2.813 3.0

Experimentally the intercalation voltage of mesoporous β -MnO2 is 3.0 V10 for the two phase

process. From our GGA+U total energy calculations for bulk β -MnO2 we obtain a value of 3.2

V. The small difference between our GGA+U result and experiment is typical of the accuracy ob-

tained with this method over a large class of intercalation compounds.46 Furthermore, structural

contributions to the total energy due to the mesoporous structure are not accounted for in our calcu-

lations. Nevertheless, despite the fact that bulk β -MnO2 permits little intercalation experimentally,

the accuracy of our calculated voltage indicates good reproduction of the key contributions to the

thermodynamics of intercalation in mesoporous β -MnO2. The result also makes clear that the

inability to intercalate into bulk β -MnO2 is not because the process is thermodynamically unfa-

vorable, but is due to kinetic barriers.
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Bulk Migration

Lithium migration properties are important to the rate at which a battery may charge/discharge

and hence deliver power. Materials may intercalate with suitable thermodynamics for the voltage,

but poor migration rate properties can render them of no practical use, such as MoO3.47,48 Un-

derstanding the difficulty of inserting even minor amounts of lithium into bulk β -MnO2 is a key

problem.

In Fig. 1 we show the three probable paths for migration of Li-ions in the dilute limit of bulk

β -MnO2. Path A corresponds to migration in the a,b-plane (along [010] and symmetry equiva-

lent [100]). Path B is migration simultaneously along the c-axis and in the a,b-plane (along [111]

and symmetry equivalent paths). Path C is migration along the 1×1 c-axis tunnel (directed along

[001]). Using the nudged elastic band method the migration barriers were calculated in the dilute

limit of a 4×4×6 supercell corresponding to one lithium in a unit cell of 192 formula units. Table 2

lists the migration barriers. It is clear that migration along the c-axis (path C) is the most favor-

able path with a barrier of 0.17 eV. Paths A and B both involve migration between 1×1 tunnels

and possess very high migration barriers > 2 eV. This is due to the fact that migration between

the c-axis tunnels requires large distortion of the MnO6 octahedra which incurs a large energy

cost. Our migration barriers therefore imply that lithium diffusion in bulk β -MnO2 is primarily

one-dimensional(1D). Large anisotropy in Li-ion diffusion has also been observed experimen-

tally49 and from ab initio calculations50 in rutile TiO2. Furthermore, previous work on olivine

materials51,52 has emphasized the capacity for 1D diffusion to make Li-ion transport susceptible

to blocking defects. The tendency for polymorphism, microtwinning and grain boundary forma-

tion in MnO2 has also been highlighted27 for its influence on the intercalation properties of bulk

β -MnO2.

The low migration barrier of 0.17 eV for path C indicates why the rate performance of the

mesoporous form of β -MnO2 is so good. Jiao et al.10 found that the dishcarge capacity fell by

only 19 % when the discharge rate is increased from 15 to 300 mA/g. Also, since the facile c-axis

migration in bulk β -MnO2 is principally along c-axis it is likely that lithium may only enter the
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Table 2: Energy barriers and Li-Li distances for the lithium migration paths in bulk β -MnO2
shown in Fig. 1.

Path Description ∆E (eV) Dist. (Å)
A Along [010] 7.33 4.44
B Along [111] 2.22 3.48
C Along [001] 0.17 2.94

material via surfaces with a component perpendicular to this direction. The mesoporous and nano-

crystals that allow cycling are likely to give greater exposure of these surfaces, a topic we will

return to.

Surface Migration

The importance of surfaces and interfaces to both ionic and electronic conductivity in nanoionic

materials has been highlighted.53 The influence of Li-ion migration at surfaces on electrode kinet-

ics may be explored using theoretical means. However, while surface energies and morphologies

of cathode materials have previously been studied,54–56 explicit work on Li-ion migration barriers

at surfaces is lacking. In Figure 2 we show an adaptation of the equilibrium crystal morphology de-

termined by using interatomic potential methods.57 The simulated morphology is consistent with

the macroscopic shape of β -MnO2 determined by scanning electron microscopy(SEM).18,58,59

Figure 2(a) shows an oblique view, while 2(b) shows a view along c-axis and demonstrates that

access to the route of facile c-axis migration is only available at the (101) and symmetry equivalent

surfaces. The prominence of the (101) surface is consistent with previous ab intitio work on rutile

MnO2
60 and TiO2.61 Consequently, it is likely that this is the surface through which most lithium

must migrate into bulk crystals.

Using a slab of 288 atoms (cleaved with symmetric (101) surfaces terminated by an oxygen

layer and having a vacuum of 12 Å) the Li-ion migration from the surface to the bulk-like slab

center has been studied using VASP. One lithium atom was inserted into this slab and the total

energy with full structural relaxation evaluated at 42 depths of insertion between the surface and

centre of the slab. Constrained minimisation was used to hold the depth of the Li-ion fixed while
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all other degrees of freedom are relaxed. The results are shown in Fig. 3. The key finding is

that the initial barrier to Li-ion insertion at the surface is > 0.6 eV, which is much greater than

the bulk migration energy of 0.17 eV. The small plateau in the Li-ion site energy at a depth of

∼1.3 Å has an energy well that is too shallow to be a stable lattice cite. This barrier of > 0.6 eV

occurs predominantly over the first 5 Å after the Li-ion passes the outermost surface oxygen layer.

Furthermore, between 10 and 15 Å in depth it can be seen that the migration is becoming bulk-like

with a barrier close to 0.17 eV.

Figure 2: The predicted equilibrium morphology57 of β -MnO2 (a) from an oblique view and (b)
along c-axis. Adapted from the results of reference.57

In addition to the migration barrier calculated from total energies, Fig. 3 also depicts the elec-

trostatic potential experienced by a positive charge with the formal charge +1e of a Li-ion along

the path of the migration. This has been calculated by the sum of the ionic and Hartree potentials in

a delithiated slab. The ionic potential is due to the nuclear charge and core electrons. The Hartree

potential is the electrostatic potential due to the valence electrons in the system, the distribution of

which is calculated explicity by the density functional theory method we employ. From Fig. 3 it is

clear that there is a strong correspondence between the locations of the peaks in the electrostatic

potential and the peaks in the plot of the Li-ion site energy. However, the associated electron is able

to screen the potential from the Li-ion. Furthermore, effects of chemical bonding will influence the

site energy and these factors together make the correspondence, while useful and computationally

efficient, qualitative. From the correspondence outlined above, the Li-ion site energies near the
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surface in Fig. 3 appear to be predominantly affected by the large oscillations in the electrostatic

potential. As the ion passes further towards the bulk the oscillations in electrostatic potential be-

come smaller and will still influence the site energy. However, bonding and structural relaxation

effects may then have a proportionately greater role in determining the site energy as we approach

the bulk-like region.

Figure 3: The surface to bulk Li-ion migration barrier at the (101) surface of β -MnO2 is shown
along with the corresponding electrostatic potential in the lower panel. Upper panel schematically
shows the migration path from this surface. Red spheres are oxygen, purple manganese and green
lithium. The green dotted line is a guide to the eye. The vertical dashed line at zero depth is aligned
with the outermost oxygen layer.

As well as the surface potential, structural strain as the lithium ion enters the surface may be a

contributing factor. To quantify the strain we have calculated the ionic displacements of the near

neighbors to the lithium ions at depths of 0, 2, 4.5 and 9.5 Å. The results are shown in Table 3. The

displacements for all depths beyond the surface are non-zero, but it is clear that the displacements

in the bulk-like region near 9.5 Å, averaging 0.128 Å, are similar to those near the surface at 2 and

4.5 Å with averages of 0.150 and 0.126 Å respectively. Therefore, we argue that the main barrier
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between the surface and bulk is due to the surface electrostatic potential rather than structural

strain.

Table 3: Displacements of near neighbors to the Li-ion at intercalation depths of -0.7, 2, 4.5 and
9.5 in Å from the (101) surface. Depths measured relative to the outermost oxygen layer, consistent
with the scale in Fig. 3. The co-planar oxygen atoms are in the same plane as the Li-ion, the plane
being drawn perpendicular to the direction of migration. Note that the surface adsorbed lithium at
-0.7 Å is three-fold coordinate therefore some near neighbours are not applicable (NA).

Li-ion Depth
-0.7 Å 2 Å 4.5 Å 9.5 Å

O1-coplanar NA 0.143 0.145 0.159
O2-coplanar 0.000 0.144 0.140 0.158

O3 0.000 0.121 0.106 0.109
O4 NA 0.166 0.105 0.116
O5 0.000 0.052 0.105 0.078
O6 NA 0.175 0.096 0.121

Mn1-coplanar NA 0.261 0.168 0.141
Mn2-coplanar NA 0.138 0.144 0.142

Average 0.000 0.150 0.126 0.128

To assess the surface to bulk migration barrier at alternative surfaces the (001) surface has been

considered. The (001) surface was chosen as it is calculated57 to have the lowest energy, after

(101), amongst surfaces giving access to the tunnel for c-axis migration. The other surfaces of

lower energy, (110) and (100), do not give access to the c-axis tunnel due to the high migration

barriers A and B presented in Table 2. It is useful to discuss some general properties of the two

surfaces we treat, namely the (101) and the (001). According to the classification of Tasker,62

‘as-cut’ surfaces can be one of three structural types, which are normally referred to as Types I, II

and III. Type I surfaces are formed from layers containing a charge-neutral combination of cations

and anions, and thus have no net dipole perpendicular to the surface plane. For Type II surfaces,

a finite group of atomic layers parallel to the surface form a charge-neutral, repeated unit with no

net dipole normal to the surface normal. For Type III surfaces, by contrast, irrespective of where

the crystal is cut, a dipole moment always exists perpendicular to the surface plane; in this case,

convergent surface energies can only be obtained if the surface layer is reconstructed in some way

to remove the dipole moment. This usually involves removing a suitable number of ions from

one side of the crystal to the other in order to make the crystal slab symmetric about its midpoint.
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In this scheme the (101) surface of β -MnO2 falls into the Type II category, with a repeat unit of

three layers oxygen-manganese-oxygen lying parallel to the surface. The (001) surface, however,

is Type I with charge neutral MnO2 layers parallel to the surface.

Figure 4 shows the migration barrier profile calculated using constrained minimization for the

(001) surface. The largest single barrier, near a depth of 6 Å, is less than 0.3 eV. It is clear that

the barrier to migration at this surface is much smaller than at the (101) surface. The electrostatic

potential associated with the Type I (001) surface, possesses only small variations compared to

that due to the Type II (101) surface. Consequently the metal-oxygen layers dominate and we see

a peak in the migration barrier profile as the lithium passes each one. Based upon this correspon-

dence we suggest that the form of the electrostatic potential in the near surface regions may be used

to efficiently screen systems for the importance of surface migration effects. It is argued that nanos-

tructuring is capable of exposing alternative surfaces, such as the (001), and that this is a means

via which intercalation processes may be enhanced in both Li-ion batteries and supercapacitors.

A further consideration is that in real battery and supercapacitor systems these surfaces will be

surrounded by electrolyte solutions. The charged ions in solution may become adsorbed to surface

sites, particularly at the partial charges of the oxygen terminated surfaces.63 This adsorption is

likely to alter the form of the surface potential and will be the subject of future investigation. The

precise nature of the effects will depend upon the pH and other characteristics of the electrolyte

solution. However, we suggest that due to the finite size of adsorbed ions the addition of a Stern-

type charge layer will largely affect the electrostatic potential in the region outside the surface,

while the primary contribution to the migration barriers in Fig. 3 and Fig. 4 occurs in the initial

sub-surface layers.

It is stressed that we have investigated key low-energy surfaces that allow access to the favored

c-axis tunnel for Li-ion diffusion. Clearly other surfaces may be exposed by nanostructuring, but

due to the very large computational demands of these calculations their treatment warrants future

studies. Nevertheless, this work demonstrates quantitatively that the migration barrier at surfaces

can be the limiting process for ion intercalation. Furthermore, given that supercapacitors rely
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Figure 4: The surface to bulk Li-ion migration barrier at the (001) surface of β -MnO2 is shown
along with the corresponding electrostatic potential in the lower panel. Upper panel schematically
shows the migration path from this surface. Red spheres are oxygen, purple manganese and green
lithium. The green dotted line is a guide to the eye. The vertical dashed line at zero depth is aligned
with the outermost oxygen layer.
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upon ion intercalation for much of their capacitance, it is likely that the same influences are active

in β -MnO2 supercapacitors. Furthermore, it is likely that the impact of surfaces upon the Li-ion

migration characteristics is significant in other cathode and anode materials and this will be subject

of future work.

Conclusions

This investigation has provided new atomic-scale insights into the intercalation properties of β -

MnO2, especially the importance of considering surface effects. The key results include:

1) GGA+U shows good reproduction of experimental crystal structures, including Jahn-Teller dis-

tortions, and lithium intercalation voltages.

2) The migration of Li-ions in bulk β -MnO2 is primarily one-dimensional along the c-axis tunnels

in the rutile structure indicating anisotropic diffusion.

3) The Li-ion migration barrier from the (101) surface to bulk is > 0.6 eV and dominates over the

bulk migration barrier of 0.17 eV. This surface migration barrier is likely to influence the difficulty

in intercalating lithium into bulk samples of β -MnO2, and suggests why intercalation is switched

on by moving to nanostructured crystals. Indeed, such intrinsic differences in the Li-ion mobility

in the bulk and at the surfaces may be key factors in the intercalation behavior of nanostructured

versus bulk crystalline systems for many materials.

4) Based on the calculation of the electrostatic potential near the surface, and its correlation with

the Li-ion migration at that surface, we suggest an efficient means to screen systems for the impor-

tance of surface migration effects.

5) This work is a quantitative demonstration of a rate limiting surface to bulk ion migration barrier

which is significant for the kinetics of intercalation/deintercalation and hence for charge/discharge

rates.

6) These results suggest that synthesis techniques such as nano-sizing that are capable of expos-

ing alternative surfaces may enhance intercalation processes in both battery and supercapacitor
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systems.

Given the importance of understanding the ion intercalation process, the results presented in

this paper provide valuable insight for the future optimization of nanostructured manganese oxides

for energy storage devices.
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