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Abstract

Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels. Most animal cells express mixtures of the three
IP3R subtypes encoded by vertebrate genomes. Adenophostin A (AdA) is the most potent naturally occurring agonist of IP3R
and it shares with IP3 the essential features of all IP3R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-
hydroxyl of IP3. The two essential phosphate groups contribute to closure of the clam-like IP3-binding core (IBC), and
thereby IP3R activation, by binding to each of its sides (the a- and b-domains). Regulation of the three subtypes of IP3R by
AdA and its analogues has not been examined in cells expressing defined homogenous populations of IP3R. We measured
Ca2+ release evoked by synthetic adenophostin A (AdA) and its analogues in permeabilized DT40 cells devoid of native IP3R
and stably expressing single subtypes of mammalian IP3R. The determinants of high-affinity binding of AdA and its
analogues were indistinguishable for each IP3R subtype. The results are consistent with a cation-p interaction between the
adenine of AdA and a conserved arginine within the IBC a-domain contributing to closure of the IBC. The two
complementary contacts between AdA and the a-domain (cation-p interaction and 30-phosphate) allow activation of IP3R
by an analogue of AdA (30-dephospho-AdA) that lacks a phosphate group equivalent to the essential 5-phosphate of IP3.
These data provide the first structure-activity analyses of key AdA analogues using homogenous populations of all
mammalian IP3R subtypes. They demonstrate that differences in the Ca2+ signals evoked by AdA analogues are unlikely to
be due to selective regulation of IP3R subtypes.
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Introduction

Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular

Ca2+ channels that are expressed in almost all animal cells. They

allow release of Ca2+ from intracellular stores in response to the

many stimuli that activate phospholipase C [1,2]. The genomes of

vertebrates encode three closely related IP3R subtypes (IP3R1-3),

and most cells from vertebrates express functional IP3R that are

homo- or hetero-tetrameric assemblies of these IP3R subtypes and

their splice variants [3]. The physiological significance of this IP3R

diversity is poorly understood, and nor are there ligands that

usefully discriminate between IP3R subtypes. It is, however, clear

that activation of IP3R is initiated by binding of IP3 to the

conserved IP3-binding core (IBC, residues 224-604 of IP3R1) of

each IP3R subunit [4]. Mixed populations of IP3R in native cells

make it difficult to define unambiguously the functional properties

of each IP3R subtype. Stable heterologous expression of mamma-

lian IP3R in the only vertebrate cell line engineered to lack all

endogenous IP3R (DT40 KO cells) [5] provides an effective means

of addressing this difficulty [6]. We previously used DT40 cells

expressing homogeneous populations of each mammalian IP3R

subtype to define structure-activity relationships for key endoge-

nous and synthetic inositol phosphates [7]. Here, we extend the

approach to examine the interactions of each IP3R subtype with

adenophostin A (1, AdA) and its most important analogues [8]

(Figure 1A).

AdA, originally isolated from Penicillium brevicompactum [9,10]

and later synthesized [11], is a potent agonist of IP3R. It is also

resistant to degradation by the enzymes that degrade IP3 via

phosphorylation or dephosphorylation [10]. Although AdA is

based on a glucose ring, rather than the inositol ring of IP3, its

structure retains the key functional groups of IP3 that are known to

be essential for IP3 activity at IP3R [12] (Figure 1A). Considerable

evidence supports the original suggestion [10] that the essential

4,5-bisphosphate and 6-hydroxyl of IP3 are effectively mimicked

by the 40,30-bisphosphate and 20-hydroxyl of AdA (red highlights

in Figure 1A). The interactions that allow AdA to bind to IP3R

with about 10-fold greater affinity than IP3 have been more

difficult to resolve. One view was that the 29-phosphate of AdA is

equivalent to the 1-phosphate of IP3 and, like the latter [13] (blue

in Figure 1A), contributes to high-affinity binding to the IBC. The

suggestion was that the 29-phosphate of AdA forms a stronger

interaction with the IBC than does the 1-phosphate of IP3. Our

recent analyses have challenged this idea and instead suggest that a

cation-p interaction between the adenine ring of AdA and a

guanidinium side chain of an arginine residue within the a-domain

of the IBC (R504 in IP3R1) may be a more important determinant

of the increased affinity of AdA for IP3R [12].
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The high-affinity and metabolic stability of AdA have generated

considerable interest in both the synthesis of AdA analogues and

their application to analyses of IP3R activation and associated

changes in cytosolic Ca2+ signalling [12]. There has, however,

been no systematic analysis of the activities of AdA or its analogues

with defined populations of homogenous IP3R subtypes. The need

for such analyses is particularly important in attempting to explain

results in which Ca2+ signals evoked by IP3 differ from those

evoked by AdA [14,15,16,17,18,19,20,21], or where different

analogues of AdA evoke different cellular responses [reviewed in

12,22]. Here we use DT40 cells in which all endogenous IP3R

have been genetically inactivated [5] to stably express homogenous

populations of mammalian IP3R subtypes and thereby define

structure-activity relationships for AdA and its key analogues for

each IP3R subtype.

Materials and Methods

Materials
Sources of most reagents were provided in a previous

publication [7]. The structures of the ligands used and their

abbreviations are shown in Figure 1A. IP3 was from Alexis

Biochemicals (Nottingham, UK). AdA [23], imidophostin [24],

ribophostin [25], furanophostin [26], manno-AdA and xylo-AdA

[27], 30-dephospho AdA and 40-dephospho AdA [28], and 29-

dephospho AdA were synthesized, purified and characterized as

previously described.

Measurement Ca2+ Release by IP3 Receptors
From quantitative analyses of western blots using antisera that

selectively recognise each IP3R subtype or react equally with all

three subtypes, we established that in the DT40 cells used, levels of

IP3R expression (relative to IP3R3) were IP3R1 (7168%, n = 3),

IP3R2 (4865%) and IP3R3 (100%) [7]. It is impracticable to

achieve identical levels of IP3R expression for each cell line, and

differences (albeit modest in our cell lines) may affect both the size

of the IP3-sensitive Ca2+ pool and its sensitivity to IP3 [29]. The

different levels of IP3R expression do not compromise the analyses

reported here, which are entirely concerned with relative potencies

of AdA analogues for each IP3R subtype (see below).

A comprehensive description of the methods used to measure

free [Ca2+] within the endoplasmic reticulum of permeabilized

DT40 cells was provided in preceding publications [7,30]. Briefly,

the endoplasmic reticulum of DT40 cells stably expressing each of

the three mammalian IP3R subtypes was loaded with a low-affinity

Ca2+ indicator (Mag fluo-4) [30]. After permeabilization of the

plasma membrane with saponin (10 mg/mL, ,4 min, 37uC), the

permeabilized cells in cytosol-like medium (CLM) were distributed

into 96-well plates at 20uC. Addition of MgATP (1.5 mM) then

allowed active Ca2+ accumulation, which was monitored at

intervals of ,1 s using a FlexStation 3 fluorescence plate-reader

(MDS Analytical Devices). CLM had the following composition:

140 mM KCl, 20 mM NaCl, 1 mM EGTA, 20 mM Pipes, pH 7,

free [Ca2+] ,220 nM (after addition of MgATP), and carbonyl

cyanide 4-trifluoromethoxy-phenyl hydrazone (FCCP, 10 mM) to

inhibit mitochondrial Ca2+ uptake. After 150 s, when the stores

had loaded to steady-state with Ca2+, IP3, AdA or its analogues

was added with thapsigargin (1 mM) to prevent further Ca2+

uptake, and after a further 30 s, the response was recorded.

Agonist-evoked Ca2+ release was expressed as a fraction of that

released by ionomycin (1 mM) [30]. All experiments were

performed at 20uC.

Statistical Analysis
Concentration-effect relationships were fitted to Hill equations

using GraphPad Prism (version 5.0) from which Hill coefficients

(h), the fraction of the intracellular Ca2+ stores released by

maximally effective concentrations of agonist, and pEC50 values (-

log EC50) were calculated. For convenience some results are

presented as EC50 values, but all statistical comparisons use pEC50

values. Within each experiment, the pEC50 for AdA was

determined to allow paired comparisons with values obtained for

each AdA analogue. These are reported as DpEC50, where:

DpEC50~pECAdA
50 {pEC

analogue
50

We note that Table 1 reports pooled results from experiments

collected over a considerable period, whereas DpEC50 values, like

those shown in Table 2, compare only paired values. The latter

provide the most robust means of comparing agonist potencies.

Results are expressed as means 6 SEM from n independent

experiments, with each experiment performed in triplicate.

Statistical comparisons used Student’s t-test or ANOVA

followed by Bonferroni’s post hoc test, as appropriate, with

P,0.05 considered significant. Because not all comparisons of

the relative potencies of AdA and IP3 were paired, the SEM of this

DpEC50 value was calculated from:

SEM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

z
1

n2

sp

s

where, sp is the estimate of the population variance:

sp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1{1ð Þs2

1z n2{1ð Þs2
2

n1{n2{2

s

where, s1 and s2 are the sample standard deviations, and n1 and n2

are the sample sizes [31].

Results

Quantal Ca2+ Release Evoked by AdA and IP3

The kinetics of IP3-evoked Ca2+ release from intracellular stores

are unexpectedly complex. It is widely observed that under

conditions where Ca2+ uptake into the endoplasmic reticulum

(ER) is inhibited, submaximally effective concentrations of IP3

rapidly release only a fraction of the IP3-sensitive Ca2+ stores [32].

Thereafter, there is either no, or a massively reduced, effect of IP3

on the rate of Ca2+ release. The mechanisms underlying this

pattern of response, known as quantal Ca2+ release [33], remain

Figure 1. Structures of the analogues of AdA used. (A) Key moieties within IP3 and AdA are highlighted in matching colours to indicate their
proposed structural equivalence. (B and C). The Ca2+ contents of the intracellular stores of populations of permeabilized DT40-IP3R1 cells are shown
after addition of ATP to allow active Ca2+ uptake, and then addition of the indicated concentrations of IP3 or AdA with thapsigargin (1 mM) to inhibit
further Ca2+ uptake. The traces, which are typical of those from all subsequent analyses, show the average response from 2 wells on a single plate.
The results demonstrate that both IP3 and AdA evoke quantal Ca2+ release.
doi:10.1371/journal.pone.0058027.g001
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unclear. It may require desensitization of IP3R as the Ca2+ content

of the ER declines [34] or heterogeneity among IP3-senstive Ca2+

stores [35]. The results shown in Figures 1B and C confirm that

the Ca2+ release evoked by submaximal concentrations of either

IP3 or AdA from permeabilized DT40-IP3R1 cells is quantal.

These observations provide the justification for all subsequent

experiments in which the concentration-dependent effects of IP3

or AdA were measured 30 s after their addition (see Methods).

AdA is a Potent Agonist of All Three IP3 Receptor
Subtypes

The results shown in Figure 2 and Tables 1 and 2 demonstrate

that AdA is ,10-times more potent than IP3 at each IP3R subtype,

and for each subtype, maximally effective concentrations of IP3

and AdA release the same fraction of the intracellular Ca2+ stores.

This is consistent with many analyses of IP3 and AdA in a variety

of cell types using both functional and binding assays, in which

AdA behaves as a full agonist with ,10-fold greater affinity than

IP3 [reviewed in 8]. Our results do, however, provide the first

direct demonstration that AdA interacts similarly with all three

IP3R subtypes. Subsequent experiments examine the interactions

between key analogues of IP3 and AdA with each IP3R subtype.

Trimming the Adenosine Moiety of AdA Reduces its
Potency at All IP3 Receptor Subtypes

Systematic trimming of the adenosine moiety of AdA succes-

sively produces imidophostin (which lacks the pyrimidine ring of

AdA), ribophostin (in which a methoxy group replaces the adenine

moiety of AdA) and furanophostin (in which only the furanoid ring

remains) (Figure 1A). Maximally effective concentrations of each

of these analogues released the same fraction of the intracellular

Ca2+ stores as AdA in cells expressing each of the three IP3R

subtypes, and each analogue was ,5-10-fold less potent than AdA

(Figure 3, Tables 1 and 2). These results are consistent with

previous analyses of IP3R in hepatocytes, which express predom-

inantly IP3R2 [24,36], with analyses of binding of ribophostin and

furanophostin to an N-terminal fragment of IP3R1 [12], and with

evidence from other analogues that trimming the adenosine

Figure 2. AdA is a potent agonist of all three IP3 receptor
subtypes. (A) Concentration-dependent effects of AdA on Ca2+ release
from the intracellular stores of cells expressing IP3R1, IP3R2 or IP3R3. All
results are expressed as percentages of the Ca2+ release evoked by
ionomycin. The same colour codes are used in all subsequent figures.
(B) Comparison, for each IP3R subtype, of the Ca2+ release evoked by IP3

and AdA. Results are means 6 SEM from the number of independent
experiments given in Table 1. Here, and in many subsequent figures,
some error bars are smaller than the symbols.
doi:10.1371/journal.pone.0058027.g002

Table 2. Relative potencies of AdA analogues at different IP3

receptor subtypes.

IP3R1 IP3R2 IP3R3

IP3 1.0260.02 0.960.30 1.160.30

Imidophostin 0.7860.15 0.7860.08 0.8160.04

Ribophostin 0.8260.18 0.9660.20 1.0660.07

Furanophostin 0.9260.13 0.8360.14 1.2560.05

Manno-AdA 0.7460.08 0.7960.18 0.9860.08

Xylo-AdA 20.0160.07 20.360.27 0.0560.08

29-dephospho-AdA 1.2460.33 1.6060.18 1.6860.16

30-dephospho-
AdAa

4.0360.09 4.4760.30 4.1360.14

From paired comparisons with AdA, the potency (DpEC50) of the analogues
relative to AdA is shown for each IP3R subtype. Results are means 6 SEM, with n
provided in Table 1. ND, not determined. aBecause the very low affinity of 30-
dephospho AdA for IP3R made it impracticable to stimulate cells with a
maximally effective concentration, ‘DpEC50’ for 30-dephospho AdA was
estimated by comparing concentrations of it and AdA that evoked the same
sub-maximal Ca2+ release.
doi:10.1371/journal.pone.0058027.t002
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moiety decreases affinity for cerebellar IP3R, which are largely

IP3R1 [37].

These results are consistent with our earlier conclusion that the

10-fold greater affinity of AdA relative to IP3 requires the adenine

moiety of AdA positioned to allow it to form a cation-p interaction

with Arg-504 in the a-domain of the IBC of IP3R1, a residue that

is conserved in all IP3R subtypes [8,12] (Figure 3G). We suggest

that this interaction of AdA with IP3R is likely to be similar for all

IP3R subtypes.

Hydroxyl Moieties that are Important for IP3 Binding are
Less Important for Binding of AdA

The 50-CH2OH and 20-OH substituents of the glucose ring of

AdA are thought to mimic the 3-OH and 6-OH of IP3,

respectively (Figure 1A). A structure equivalent to the 6-OH of

IP3 is an essential feature of all inositol phosphate analogues that

bind to IP3R [13,38,39] and inversion of its orientation from

equatorial to axial reduces affinity by more than 100-fold at all

IP3R subtypes [40]. It is therefore surprising, but consistent with

previous analyses of native hepatic IP3R [36], that manno-AdA,

which differs from AdA only in the orientation of its 20-OH,

should be only 5- to 10-fold less potent than AdA at each IP3R

subtype (Figures 4A and B, Tables 1 and 2). Why, when the 6-OH

of IP3 and 20-OH of AdA seem to be analogous in the ligand

structures, should these moieties make such different contributions

to the interactions of IP3 and AdA with IP3R?

The 6-OH of IP3 interacts, through a water molecule, with a

lysine residue (K569) in the IBC [41] and, by interacting with the

adjacent 1-phosphate, it has also been proposed to influence the

behaviour of the 4,5-bisphosphate moiety of IP3 [42]. The latter

interaction is unlikely to contribute to AdA binding because the

structures equivalent to the 6-OH (20-OH of AdA) and the 1-

phosphate of IP3 (29-phosphate of AdA) are in different rings in

AdA (Figure 1A). We suggest that the lesser importance in AdA of

a structure equivalent to the essential 6-OH of IP3 comes from this

hydroxyl mediating a relatively minor interaction with K569 in

AdA, whereas for IP3 it contributes also to appropriately orienting

the critical 4,5-bisphosphate moiety.

The 3-OH group, although less important than the 6-OH, is

another feature of IP3 that contributes to high-affinity binding

[43]. Our recent analyses of the functional effects of 3-deoxy-IP3

established that it was ,40-fold less potent than IP3 at all three

IP3R subtypes [7]. This is consistent with earlier work showing

that 3-deoxy-IP3 and analogues with other modifications of the 3-

position have reduced affinity for the three IP3R subtypes [40].

However, the equivalent modification of AdA, removal of its 50-

CH2OH to give xylo-AdA (Figure 1A), had no significant effect on

its potency at any IP3R subtype (Figures 4C and D, Tables 1 and

2). This is consistent with a previous functional analysis of hepatic

IP3R, where xylo-AdA was only marginally less potent than AdA

(DpEC50 ,0.28) [36]. Our results suggest that despite the

apparent structural similarity between the 3-OH of IP3 and the

50-CH2OH of AdA (Figure 1A), the two hydroxyl groups do not

contribute similarly to ligand binding. Previous analyses of IP3

analogues suggested that replacing the 3-OH with the larger

CH2OH moiety caused the affinity to decrease by no more than 7-

fold [40]. A partial explanation for the lack of effect of removing

the 50-CH2OH of AdA may therefore be that this moiety is less

readily accommodated than a hydroxyl group in the IBC. This

would suggest that an analogue of AdA in which the 50-CH2OH is

replaced by 50-OH might bind with increased affinity. We are

unaware of such an analogue having been synthesized. The larger

substituent at the 50-position of AdA is, however, unlikely to

provide the sole explanation for it making no discernible

contribution to binding.

The 29-phosphate of AdA is not a Super-optimal Mimic of
the 1-phosphate of IP3

It has been suggested that the 29-phosphate of AdA interacts

with the IBC in a manner that allows it to behave as a super-

optimal mimic of the 1-phosphate of IP3 [44,45]. However, our

recent study combining structure-activity analyses with mutagen-

esis of the binding site suggest that the 1-phosphate of IP3 is more

important for binding than is the 29-phosphate of AdA [12].

Removal of the 1-phosphate from IP3 (to give (4,5)IP2) caused its

potency and affinity for IP3R1 to decrease by ,100-fold [12],

whereas removal of the 29-phosphate from AdA (29-dephospho

AdA) causes a decrease in potency of ,17-fold in IP3R1 (Figure 5)

and ,40-fold decreases in potency were obtained with 29-

dephospho AdA and IP3R2 and IP3R3 (Figure 5, Table 1 and

2). These results establish that for all three IP3R subtypes, the

enhanced affinity of AdA is not due to its 29-phosphate interacting

more effectively than the 1-phosphate of IP3 with the IBC.

A Bisphosphate Moiety is not Essential for Activation of
IP3 Receptors by AdA

All known active analogues of IP3 have structures equivalent to

its 4,5-bisphosphate moiety [13]. Structures of the IBC with and

without IP3 bound provide a rationale for this requirement by

revealing that these two phosphate groups contact opposite sides

(the a- and b-domains) of the clam-like IBC, closure of which

initiates IP3R activation [4,41]. Substantial evidence suggests that

the 40,30-bisphosphate moiety of AdA mimics the critical 4,5-

bisphosphate of IP3 [8] (Figure 1A).

40-dephospho-AdA at concentrations up to 300 mM failed to

evoke Ca2+ release via any IP3R subtype (Figure 6A). This is

consistent with previous analyses by both functional and binding

assays of IP3R1 [28,46]. 30-dephospho-AdA did, however, cause

detectable Ca2+ release albeit with much reduced potency

(Figure 6B). The synthetic route used to prepare 30-dephospho-

AdA makes it extremely unlikely that the activity could be due to

minor contamination with AdA or related structures with a vicinal

bisphosphate moiety. Maximal attainable concentrations of 30-

dephospho-AdA (300 mM) failed to release the entire IP3-sensitive

Ca2+ store, but comparison of the concentrations required to

achieve the same submaximal Ca2+ release suggests that 30-

dephospho-AdA is ,10,000-fold less potent than AdA at all three

IP3R subtypes. With such a massive reduction in potency the lesser

sensitivity of DT40-IP3R3 cells to AdA means that even the

highest practicable concentration of 30-dephospho-AdA (300 mM)

is close to the threshold for detecting Ca2+ release (Figure 6B).

Figure 3. Trimming the adenosine moiety of AdA reduces potency. (A–F) Effects of imidophostin (A), ribophostin (C) and furanophostin (E)
on Ca2+ release via each of the three IP3R subtypes, and the same analogues compared with AdA (B, D and F). Results are means 6 S.E.M. from 3
independent experiments. (G) A cation-p interaction between the adenine of AdA and R504 within the a-domain of the IBC is proposed to stabilize
AdA binding (left). Closure of the clam-like IBC is proposed to be mediated by interactions between the 30-phosphate of AdA and the a-domain of
the IBC (blue ribbon), and between the 40-phosphate and the b-domain of the IBC (green ribbon). In 30-dephospho AdA, a cation-p interaction
between AdA and the IBC a-domain is proposed to be sufficient to allow some effective closure of the clam. R504 is conserved in all three
mammalian IP3R subtypes (right).
doi:10.1371/journal.pone.0058027.g003
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Figure 4. Hydroxyl groups within the glucose ring of AdA are unimportant. (A–D) Effects of manno-AdA (A) and xylo-AdA (C) on Ca2+

release via each IP3R subtype, and the same analogues compared with AdA (B and D). Results are means 6 S.E.M. from 3 independent experiments.
doi:10.1371/journal.pone.0058027.g004
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The inability of high concentrations of 30-dephospho-AdA to

release the entire IP3-sensitive Ca2+ store is likely to be due solely

to its reduced affinity rather than reduced efficacy. A concentra-

tion of 30-dephospho-AdA (30 mM) that caused detectable Ca2+

release via IP3R1 (,2165%) had no effect on the sensitivity of the

Ca2+ release evoked by a subsequent addition of IP3. The pEC50

was 7.0060.02 and 7.0460.06 (n = 3) for (1,4,5)IP3 alone and in

the presence of 30-dephospho-AdA, respectively (Figure 6C). A

partial agonist would be expected to shift the sensitivity to higher

concentrations of IP3. These results suggest that 30-dephospho-

AdA is a low-affinity full agonist of IP3R.

These results extend our previous analyses of IP3R1 by

demonstrating that for all IP3R subtypes, the 40-phosphate group

of AdA is essential for activity, whereas the 30-phosphate is

important but not essential. 30-dephospho-AdA is the only known

agonist of IP3R to lack a structure equivalent to the 4,5-

bisphosphate moiety of IP3.

Discussion

AdA is a high-affinity full agonist of IP3R that has been

extensively used to explore the behaviour of IP3R [reviewed in8].

The activity of AdA has been confirmed in many cell types, but

hitherto there has been no assessment of its activity in homogenous

populations of IP3R subtypes. We have demonstrated that AdA is

,10-fold more potent than IP3R at each IP3R subtype (Figure 2,

Tables 1 and 2), and the structural determinants of its high-affinity

interaction with IP3R are similar for all three IP3R subtypes.

Contrary to an earlier suggestion that the 29-phosphate of AdA

mediates its enhanced affinity by forming a stronger interaction

with the IBC than the analogous 1-phosphate of IP3, we find that

the 1-phosphate makes a greater contribution to IP3 binding than

does the 29-phosphate of AdA (Figure 5) [12]. A more likely

explanation for the enhanced affinity of AdA is a cation-p
interaction between its adenine moiety and R504 within the a-

subunit of the IBC (Figure 3G) [28]. That explanation is supported

by results for each IP3R subtype showing that truncation of the

adenosine moiety of AdA brings the potency of the resulting

analogues (imidophostin, ribophostin and furanophostin) close to

that of IP3 (Figure 3).

A key step in the initial activation of IP3R by IP3 appears to be

closure of its clam-like IBC as the 4-phosphate of IP3 contacts one

side of the clam (its b-domain) and the 5-phosphate contacts the

other side (a-domain) [4]. That mechanism provides a satisfying

explanation for the long-standing observation that all inositol

phosphates that activate IP3R share this essential 4,5-bisphosphate

moiety. AdA is different in that its 40-phosphate (analogous to the

4-phosphate of IP3, Figure 1A) is essential, but 30-dephospho-AdA

retains activity at all three IP3R subtypes, albeit with very low

affinity (Figure 6). We suggest that for AdA, the need for the

bisphosphate moiety to cause closure of the IBC can be partially

replaced for all IP3R subtypes by having an interaction between

the adenine of AdA and the a-domain substitute for the interaction

between the 30-phosphate (analogous to the 5-phosphate of IP3)

and the a-domain [28]. Finally, whereas the 6-OH and, to a lesser

extent, the 3-OH of IP3 are important for IP3 binding, the

equivalent structures within AdA play lesser roles.

Figure 5. The 29-phosphate of AdA is not the primary cause of
its increased potency. (A) Effects of 29-dephospho AdA on Ca2+

release via each IP3R subtype. (B) The same analogue compared with
AdA. Results are means 6 S.E.M. from 3–4 independent experiments.
doi:10.1371/journal.pone.0058027.g005
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Both store-operated Ca2+ entry, which is triggered by depletion

of IP3-sensitive Ca2+ stores [47], and the spatial organization of

subcellular Ca2+ signals have been reported to be differentially

affected by IP3, AdA or its analogues [14,16,17,19,21,22]. Our

present results, which demonstrate that AdA structure-activity

relationships are similar for all IP3R subtypes, suggest that

different physiological effects of IP3, AdA or its analogues are

more likely to result from differences in their affinities, kinetics or

rates of degradation than from selective interactions with different

IP3R subtypes.
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