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Abstract 

Infrared and impedance spectroscopies were used to investigate the effects of hydration, 

iontophoresis and chemical enhancer (N-acetyl-L-cysteine) treatment on the healthy human nail. 

Although significant shifts to higher wavenumbers were observed for the symmetric and asymmetric 

–CH2 stretching vibrations, the fact that these changes were essentially the same for the three 

treatments suggested that they were principally due to hydration alone. Spectral changes 

associated with amide bonds from nail protein were particularly evident post-treatment with N-

acetyl-L-cysteine. The alternating current conductivity and permittivity of the nail, particularly at low 

frequencies, increased with hydration. Iontophoresis increased the low frequency ac conductivity of 

the nail but had less effect on the nail capacitance/permittivity. Further, the effects seemed to return 

gradually to baseline after termination of current passage. Treatment with N-acetyl-L-cysteine 

produced a greater perturbation, leading to increased low-frequency conductivity and a shift of the 

frequency-dependent conductivity region to a higher frequency. Overall, the effects of iontophoresis 

on both the IR and impedance spectroscopic profiles of the nail were attributable simply to 

increased hydration and similar to those observed after skin iontophoresis. In contrast, both 

spectroscopy techniques indicated that N-acetyl-L-cysteine disrupted nail structure in line with the 

enhancer’s known effect on keratin. 

 

Keywords: N-acetyl-L-cysteine, nail hydration, iontophoresis, infrared spectroscopy, impedance 

spectroscopy. 

 

Abbreviations:  

IR: Infrared spectroscopy 

IS: Impedance spectroscopy 
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Introduction 

Management of nail diseases such as onychomycosis and psoriasis represents an important 

unmet clinical need. Oral and topical drug therapies are currently available, as well as painful 

intralesional injections in nail psoriasis, with nail avulsion as a last choice strategy (1-3). However, 

systemic drug treatment results in significant side effects and potential drug-drug interactions and, 

in the case of nail psoriasis, is not recommended unless there is substantial skin involvement too 

(1). While topical treatments minimize systemic adverse effects, and avoid the pain associated with 

intralesional injections, they have limited efficacy (1-4) due primarily to the nature and structure of 

the nail plate that severely limit drug penetration to the target site of action (5,6). Much research has 

examined strategies to improve drug delivery to and across the nail (6-7) including the use of 

penetration enhancers, such as N-acetyl-L-cysteine which breaks disulphide bonds in keratin, the 

main constituent of the nail plate (6-9). Another approach is iontophoresis (10) which involves drug 

administration to the nail with the application of a small electrical current to enhance molecular 

transport. Indeed, iontophoresis of terbinafine has shown promising results in the treatment of 

onychomycosis (11).  

Both attenuated total reflectance, Fourier transform infrared spectroscopy (ATR-FTIR) and 

impedance spectroscopy (IS) have been used successfully to elucidate how chemical enhancers 

and iontophoresis perturb skin barrier function and the mechanisms by which they promote 

molecular transport across this membrane (12-16). However, application of these two techniques to 

the nail has been infrequent. Photoacoustic and ATR-FTIR spectroscopies have identified 

absorption bands from the lipid and protein present in different layers of the nail (17).  More 

recently, ATR-FTIR has been used (via analysis of the amide I region of the spectrum) to assess 

changes in the secondary structure of nail proteins in patients with chronic fatigue syndrome (18). 

Elsewhere, some differences in the amide I region of the spectra of nails from diabetic and non-

diabetic patients have been noted (19), whereas another FTIR study revealed no changes in the 

spectral features associated with disulphide bonds in nails post-hydration (9). 
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The electrical properties of skin and the effects of current passage, hydration and enhancers 

on this biological membrane have been characterized using impedance spectroscopy (14-16). While 

both current passage and hydration reduced skin impedance, iontophoresis induced a rapid 

decrease in the low-frequency resistive impedance component but had a much smaller effect on 

lipid/protein domains associated with skin capacitance. The effects of iontophoresis on skin 

impedance were increased following pre-treatment with penetration enhancers such as Azone, 

sodium lauryl sulphate and propylene glycol, suggesting that these compounds had disrupted 

stratum corneum structure. With respect to the nail, immersion in water increased its conductance, 

mostly at frequencies above 10Hz (20), and the latter effect was later shown to be a function of 

frequency and of absolute water content (21). However, little is known about the effects of 

iontophoresis and penetration enhancers on the electrical properties of the human nail. Importantly, 

the appendegeal route, which provides a key pathway for current passage across the skin (22), is 

not present in the nail plate making the extrapolation of skin impedance spectroscopy data to the 

nail problematic. 

This work aimed to use ATR-FTIR and IS to investigate the effects of hydration, 

iontophoresis, and N-acetyl-L-cysteine (a recognised penetration enhancer) on the healthy nail. 
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Materials and Methods 

Materials: Ag wire (1 mm, 99.99%), AgCl (99.999%), Pt (0.5 mm wire, 99.99%), NaCl (99.5%) and 

N-acetyl-L-cysteine (99.0%) were purchased from Sigma Aldrich (Gillingham, UK). 

Nails: Nail clippings, at least 8 mm long, were donated by healthy volunteers after informed consent 

(Bath REC 06/Q2001/80).  

Iontophoresis: Side-by-side glass diffusion cells equipped with a Teflon nail adaptor (Side-Bi-Side, 

PermeGear Inc., Bethlehem, PA) were used. The area of the nail exposed to current passage 

during either iontophoresis or impedance spectroscopy experiments was 0.2 cm2. Ag/AgCl 

electrodes were made as previously described (23) and positioned approximately 2 cm from the nail 

surface. Iontophoresis was performed using a power supply (Kepco APH 1000M, Flushing, NY). 

The current was set to 0.1 mA (0.5 mA.cm-2) in most experiments (see below) and the voltage 

limited to a maximum of 60 V. The electrolyte in both the anodal and cathodal chambers was 154 

mM NaCl in deionised water.  

ATR-FTIR: A Perkin Elmer Spectrum 100 with a diamond universal ATR attachment and an MCT 

detector was used to scan the nail samples. The reflectance crystal was 2 mm in diameter. Each 

spectrum was the average of eight scans from 4000-650 cm-1 with an interval of 1 cm-1. Two to five 

sites on the same nail were scanned and averaged unless otherwise indicated. Each scan took 30 

seconds and the time required for completing five scans was approximately 4-5 minutes. 

Preliminary work indicated that, while spectral changes occurred within the time required for data 

acquisition (probably due to nail dehydration), these were less than those due to inter-nail variability. 

In the iontophoresis experiments, “exposed” and “edge” scans were taken from the area (0.2 cm2) 

directly exposed to the passage of current and from the adjacent areas, respectively. A force (40±3 

N) was applied to the nails to facilitate good contact with the crystal. Five peak positions, the 

asymmetric and symmetric -CH2 vibrations (~2920 and 2850 cm-1), and the amide I, II and III bands 

(~1640, 1540 and 1240 cm-1) from protein, were determined from the first derivatives of the scans. 

Impedance Spectroscopy (IS): IS was performed using a Solartron 1296 Impedance / Gain-Phase 

Analyzer and a 1260 Dielectric Interface. A small alternating voltage of varying frequency was 
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applied across the nail and the conductive and capacitive components of the nail altered the 

resulting current amplitude and phase angle. Sweeps were taken from 1Hz to 1MHz, 10 points per 

decade, with amplitude of 0.25 Vrms and 0 V offset.  

The alternating current (ac) conductivity (, admittance) was calculated using Eqn.1: 

     (Eqn.1) 

where Z′ and Z″ are the real and imaginary parts of the impedance, A is the sample area and t is the 

sample thickness. The real part of the relative permittivity (r) was calculated using Eqn. 2: 

   (Eqn.2) 

where ω is the angular frequency and 0 is the permittivity of free space (8.8541x10-12 Fm-1). 

Experiments: Two types of experiments were performed and used 22 nails in total. A first group of 

experiments used FT-IR to compare the effects caused on the nail by iontophoresis, hydration and 

by the penetration enhancer, N-acetyl-L-cysteine. These experiments used a total of 18 nails 

collected from four volunteers. The second group of experiments used impedance spectroscopy to 

examine the effects of iontophoresis, N-acetyl-L-cysteine and hydration on the frequency dependent 

conductivity and permittivity. Four nails collected from two volunteers were used for these 

experiments. 

ATR-FTIR experiments compared the effects of hydration, iontophoresis and treatment with the 

penetration enhancer, N-acetyl-L-cysteine. These experiments comprised two series of studies. In 

the first, the nails were initially hydrated for 10 minutes in deionised water and an ATR-FTIR 

spectrum of each was taken as detailed above. In most cases, five spectra were taken from various 

positions on the same nail. The nails were then divided randomly into three groups of 6, which were 

examined as detailed in Table I. In the second series, range-finding experiments were conducted 

similarly to those just described with modification of either the intensity or the duration of current 

application, as outlined in Table I. 

IS experiments were likewise performed in two discrete series. In the first, three nails underwent 

sequential steps of hydration, iontophoresis and N-acetyl-L-cysteine treatments. After each step, the 
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nails were dried at 45ºC and then rehydrated during which impedance sweeps were recorded. The 

protocol followed was: (a) The nails were hydrated for 10 minutes in deionised water and 

maintained at room temperature for 1 hour. They were then sandwiched between the two halves of 

the iontophoresis cells and rehydrated (154 mM NaCl) from dry with impedance sweeps from 1 Hz - 

1 MHz being taken every 5 minutes for the next 15 hours.  (b) Immediately after and while still 

hydrated, the nails were submitted to 45 minutes of iontophoresis at 0.1 mA (154 mM NaCl). Then, 

and again keeping the nails hydrated, impedance sweeps from 1 Hz - 1 MHz were performed every 

5 minutes for 1 hour. The nails were next removed from the cells and dried at 45ºC for 20 hours. 

The nails were subsequently replaced in the cells and fully hydrated once more with impedance 

sweeps from 1 Hz - 1 MHz again recorded every 5 minutes for 15 hours. Finally, the nails were 

removed from the cells.  (c) Still hydrated, the nails were soaked in 10% w/v N-acetyl-L-cysteine for 

5 hours and then placed in deionised water for 2 hours (with the water refreshed at 20 and 60 

minutes) to remove the penetration enhancer. Afterwards, the nails were dried at 45ºC for 5 hours, 

then replaced in the cells and hydrated with impedance sweeps from 1Hz - 1 MHz performed every 

5 minutes for 15 hours.   

The second series of experiments addressed the fact that the previous protocol had applied 

iontophoresis to nails which have been extensively hydrated, whereas in practical applications much 

shorter periods (than the 15 h used before) are likely. Two nails were therefore subjected to 

iontophoresis using a modified procedure as follows:  (i) The nails were sandwiched between the 

two halves of the iontophoresis cells and hydrated for 10 minutes in water with an impedance 

sweep (from 1 Hz to 1 MHz) taken every minute.  (ii) Iontophoresis was then applied immediately for 

45 minutes at 0.1 mA. Impedance spectroscopy was undertaken as soon as iontophoresis stopped 

with sweeps every five minutes (1Hz-1MHz) for 15 hours.  (iii) The nails were removed from the 

cells, dried at 45ºC for 20 hours, replaced in the cells and then rehydrated with further impedance 

sweeps from 1 Hz - 1 MHz performed every 5 minutes for the next 15 hours. 

Statistics: The data are presented as mean ± standard deviation of the sample (SD). Five two-way 

ANOVAs on the factors “treatment” and “nail” compared the frequencies assigned to the –CH2 

symmetric, -CH2 asymmetric vibrations and to the amide I, II and III peaks before (control, 10 
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minutes hydration) and after treatment (iontophoresis edge, iontophoresis middle, penetration 

enhancer, hydration). The level of statistical significance was fixed at p0.05.  The shifts in the peak 

maxima for the –CH2 symmetric, -CH2 asymmetric vibrations and for the amide I, II and III bands 

were calculated as:  

Frequency shift (cm-1) = Peak maxima post treatment – Peak maxima control,10 minutes hydration 

using each nail as its own control. Subsequently, the frequency shifts were compared by five one-

way ANOVAs followed by the corresponding Bonferroni’s multiple comparison tests. The level of 

statistical significance was also fixed at p0.05 

 

Results 

ATR-FTIR experiments: Representative ATR-FTIR spectra of a dry nail, a control nail (after 10 

minutes hydration), of treated nails and of the enhancer N-acetyl-L-cysteine are shown in Figure 1. 

Nails had to be hydrated for a short while before application of iontophoresis (10) so that they 

became sufficiently flexible to fit into the diffusion cells and, in this work, to facilitate contact with the 

ATR-FTIR crystal. While it was possible to scan dry nails, the ATR-FTIR spectra obtained in this 

way have insufficient quality, probably due to poor contact. However, nails became considerably 

hydrated within 10 minutes, and it has been reported that this uptake can be as much as 0.3-0.5 g 

H2O / g dry tissue (21,24,25). Wessel et al. (24) used NIR-FT-Raman to investigate the kinetics of 

water penetration into nails and reported a saturation of water uptake after 10 minutes. Martinsen et 

al. (21) also reported a rapid change in the electrical properties of the nail when the relative humidity 

was increased from 54% to 68%, with the effects reaching a plateau after ~1 hour. Consequently, to 

discriminate the effects of iontophoresis from those due to the 10 minute hydration, and thereby 

enable a better comparison between the three treatments, all nails were submitted to the same 10 

minutes hydration time. Similarly, all nails were submitted to a 10 minute hydration post-treatment 

before recording the ATR-FTIR spectra to bring all the samples to comparable hydration conditions 

and close to those in which the control measurements had been made. Therefore, there is a 
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possibility that any reversible effects of current and N-acetyl-L-cysteine are no longer detectable 

after this 10 minute hydration.  

Figure 2 shows the peak maxima (-CH2 symmetric, -CH2 asymmetric and amide I) determined for 

individual nails, before and after treatment, and illustrates the level of inter- and intra- nail variability 

observed in these experiments. Table II shows, for the first series of IR experiments, the averaged 

wavenumbers of the -CH2 symmetric, -CH2 asymmetric vibrational peak frequencies, as well as 

those of the amide I, II and III signals before and after treatment. The series of two-way ANOVAs 

indicated that the factor “nail” (i.e., the inter-nail variability) was always significant (p<0.05) with the 

only exception being the “amide II” for the edge- and exposed- iontophoresis groups. In fact, the 

inter-nail variability explained 61-81% of the variance associated with the lipid peaks, 40-91% for 

the amide I and III peaks, and 23-62% for the amide II peaks. The effects of N-acetyl-L-cysteine, 

hydration and the passage of current (through exposed areas) were significant (p<0.05) in some 

cases. As expected, iontophoresis caused no changes to the “edge” area of the nails not directly 

exposed to current passage. Both the –CH2 symmetric and asymmetric absorbances shifted 

significantly (p<0.05) to higher wavenumbers with hydration and when treated with the penetration 

enhancer; on the other hand, iontophoresis only increased significantly (p<0.05) the frequency of 

the asymmetric -CH2 vibration. The three treatments significantly (p<0.05) shifted the amide I peak 

to a lower wavenumber whereas hydration and N-acetyl-L-cysteine significantly (p<0.05) increased 

the frequency of the amide II and III peaks.  Table III and Figure 3 show the results of the second 

series of IR experiments; the only significant change (p<0.05) was a shift to higher wavenumbers for 

the asymmetric –CH2.  

Figure 4 shows the frequency shifts caused by current passage, N-acetyl-L-cysteine and hydration 

in the five regions of interest. The five one-way ANOVAs found no significant differences among the 

treatments with the exception of a greater shift (p<0.05) caused by the enhancer on the amide II 

band. 

IS experiments: The changes in ac conductivity and relative permittivity as a function of frequency 

for a representative nail sample (Nail 1) during its complete hydration in the first set of IS 

experiments are shown in Figures 5A and 5B, respectively. Both parameters increased with time, 
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particularly at low frequency, and most change occurred within the first hour of hydration, followed 

by a more gradual evolution thereafter. The ac conductivity (Figure 5A) is almost frequency 

independent at low frequencies (<102Hz); however, at higher frequencies (>103 Hz), it increases 

essentially linearly, following ‘universal’ power law behaviour (26) such that, 

() = () + A
n 

where  is angular frequency, n is a constant (0<n<1), A is a constant and  is the low frequency 

(dc) conductivity.  A similar power law dispersion is observed for the relative permittivity (Figure 5B), 

which can be expressed as: 

() = Dn-1
 + ∞  

where D is a constant and ∞ is the limit of permittivity at high frequency. For the nail plate there is a 

rapid decrease of the relative permittivity with frequency and () approaches a constant value at 

high frequency (~106 Hz in Fig 5B).   

Figure 6 shows single impedance sweeps for three nails, including Nail 1, at different steps 

in the first series of IS experiments. The ac conductivity increased following iontophoresis, but 

slowly returned towards the value measured after full hydration (Figure 6A); the permeation 

enhancer caused a larger increase in the conductivity at low frequency.  

The change in relative permittivity with iontophoresis (Figure 6B) was less significant than 

the change in conductivity. However, the change after treatment with the permeation enhancer was 

greater. The magnitude of the change was larger at low frequencies and then converged at higher 

frequencies (~106 Hz). Under most of the conditions studied, there were two inflections of the 

permittivity-frequency curves, seen at approximately 1 kHz and 30 kHz, while the post-permeation 

enhancement curves show inflections at approximately 20 kHz and 200 kHz.  

Figure 7 shows the change in nail impedance at a fixed frequency (10 kHz) as a function of 

time of hydration for two different nails. The two curves correspond to the 10 minute period of 

hydration, to the IS sweep after iontophoresis, and to the second hydration in the second series of 

IS experiments. The gap (solid line) in the data coincides with the period of iontophoresis when it 
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was impossible to collect impedance data. It can be seen that the rate of hydration was broadly 

similar whether iontophoresis had occurred before or not. 

 

Discussion 

The peak frequencies of the symmetric and asymmetric –CH2 vibrational bands were similar 

to those reported previously for human nail clippings (17) and for human stratum corneum (27,28); 

those of the amide peaks also agreed well with earlier observations (17-19).  In one published case, 

however, the amide II absorption was not seen in the IR spectra of some healthy nails (but did 

appear in those taken from diabetic patients) (19), perhaps due to the fact that the nails were 

ground and combined with KBr into a pellet before recording the spectra. Alternatively, this may 

simply be an extreme reflection of the inter- and intra-nail variability observed in the experiments of 

the current work: all IR peaks investigated showed significant variation between nails from different 

volunteers and between positions on the same nail from a single individual (Figure 2). 

 Tables II and III, and Figure 4, show the changes in the IR spectra of nail clippings caused 

by current passage, N-acetyl-L-cysteine and hydration. In the case of iontophoresis, significant (p< 

0.05) frequency shifts were only detected in that part of the nail directly exposed to current passage; 

the “edge” data therefore provide additional control measurements. The results of the simple 

hydration experiment permitted the effects due to current passage and to the penetration enhancer 

to be discriminated since both of these treatments also involved exposure of the nail to aqueous 

solutions for prolonged times.  

 In general, hydration, iontophoresis and penetration enhancer treatment each increased 

(modestly, but with statistical significance) the –CH2 stretching frequencies; only the shifts recorded 

in the nail “edge” control experiments were negligible.  In stratum corneum (SC), such ‘blue’ shifts 

have been associated (following carefully designed IR experiments coupled with sensitive 

differential scanning calorimetry) with increased intercellular lipid acyl chain disorder (29). The 

effects of iontophoresis on the –CH2 vibrational bands from the nail have not been reported before, 

but the small increases in peak frequencies observed are in agreement with those measured in 
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human SC in vitro and in vivo after application of current densities up to 0.5 mA/cm2 (27,28,30).  

Nevertheless, it is noteworthy that the impact of iontophoresis on the –CH2 vibrational bands was no 

different from that of either hydration alone or treatment with N-acetyl-L-cysteine (Table II, Figure 4), 

suggesting that all the changes observed were simply the result of hydration.  However, even this 

interpretation has been questioned when similar results from the SC were obtained. Hydration 

significantly increases the broad O-H vibrational band centred around 3300 cm-1 and this has the 

effect of displacing the –CH2 signals, which sit on the shoulder of the O-H absorbance to higher 

wavenumbers (an effect demonstrated when the SC was hydrated with D2O rather than H2O) (31).  

In short, therefore, the perturbation of the relatively low lipid content of the nail by hydration, 

iontophoresis and penetration enhancer treatment is at most rather small and unlikely, it appears, to 

play much of a role in terms of altered permeability. 

The amide I band, primarily due to the stretching vibration of the carbonyl functional group, 

typically appears in the range 1600-1690 cm-1 depending on the protein backbone conformation and 

the hydrogen bonding pattern (32). This band is significantly modified by the presence of water 

(30,32,33). The amide II band (1480-1575 cm-1) primarily reflects in-plane N-H bending (40-60%) 

and C-N stretching vibrations (18-40%) (32), and is less sensitive to water than the amide I band 

(30,32,33). Finally, the origin of the amide III band (1229-1301 cm-1) is more complex and depends, 

for example, on the nature of amino acid side-chains and hydrogen bonding (32). Hydration and 

especially penetration enhancer treatment significantly decreased the absorbance maximum of the 

amide I band and significantly increased those of the amide II and amide III bands; iontophoresis 

also decreased amide I but had no significant effect on the other two (Table II, Figure 4), a finding 

which is consistent with previous IR measurements on SC protein post-current passage (27,30), 

and with earlier work on human nails using near-IR FT-Raman spectroscopy that revealed only 

minor changes in protein-associated bands post-hydration (24). The effects of N-acetyl-L-cysteine 

on the amide signals are the most notable of the treatments considered in the current work, in 

accord with this enhancer’s ability to break disulphide bonds and to provoke conformational 

changes and increased water access to additional sites in the protein (6,7,8). Corroborating this 
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deduction is recent evidence from scanning electron microscopy and mercury intrusion porosimetry 

(9) that N-acetyl-L-cysteine increases the apparent surface porosity of human nails to a significantly 

greater extent than simple hydration. 

The type of universal frequency response observed in the impedance spectroscopy 

experiments summarised in Figure 5 is typical of a resistor-capacitor (R-C) network (34). The nail 

can be considered as a complex network of conductive (R) and capacitive (C) sites. For biological 

materials such as skin and nail, the conductive sites can be considered as current pathways (35) 

and the capacitive sites are non-conductive regions; in skin, the lipid milieu has been suggested as 

a source of reactive (capacitive) contributions (15). If the frequency response of the individual 

components in the network is considered, the conductivity of the resistors (R-1) are frequency 

independent while the conductivity (admittance) of the capacitors (C) increase linearly with 

frequency. At low frequencies, R-1 >> C and currents flow preferentially through the conductive 

sites and the ac conductivity is frequency independent, as observed at frequencies below 102 Hz in 

Figure 5A.  As the frequency is increased, the capacitor admittance becomes increasingly more 

dominant and, when C >> R-1, a frequency dispersion is observed (see frequencies above 104 Hz 

in Figure 5A).  The end result is that the ac conductivity rises with fractional powers of frequency, as 

in Figure 5A, and the network capacitance falls (Figure 5B).  When the nail is hydrated, and the 

water content increases, the fraction of conductive sites increases and the frequency-independent 

conductivity increases in magnitude (Figure 5A). The greater degree of hydration also leads to the 

frequency dispersion moving to higher frequencies, which must be achieved before the capacitive 

sites can contribute to conductivity (i.e., the condition C >> R-1).     

The nail also exhibits a higher relative permittivity with increasing hydration, as has been 

noted before (21,36), particularly at low frequencies (< 102 Hz) where very high values of εr (in 

excess of 104) are achieved. These high relative permittivity values at low frequency are likely to be 

a result of significant conductivity in the material and have been observed in other conductor-

insulator systems (34,37), including a number of biological tissues (38). At high frequencies, where 

currents flow preferentially through the capacitive sites, the relative permittivity eventually converges 
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to a low value (~30), which is independent of the level of hydration. This suggests that, while 

hydration increases the overall conductivity of the conductive pathways in the nail, and thus both the 

dc conductivity and low frequency permittivity, it influences the higher frequency permittivity to a 

lesser extent. It has been proposed (21) that the capacitance is also dependent upon the mobility of 

the keratin chains.   

The permeation enhancer produced a large increase in the conductivity at low frequency 

(Figure 6A) and a shift to higher frequency of the frequency-dependent region. The effect of 

iontophoresis is to increase the low frequency conductivity compared to its initial fully hydrated 

state, but the increase is relatively small in comparison to that of the permeation enhancer and the 

change from dry to fully hydrated. Comparing Figures 6A and 6B, it can be seen that iontophoresis 

increases the low frequency conductivity of nail but that it has fewer effects on lipid/protein domains 

associated with capacitance, in agreement with work on skin (14-16). Nail keratins are a complex 

mixture of hard and soft keratins, keratin filament-associated proteins and other proteins and the 

structure is stabilized via inter- and intra- molecular disulfide bonds, as well as hydrogen, peptide 

and other bonds (39). It has been suggested (24) that hydration loosens the nail structure, by 

modifying the van der Waal’s forces, hydrogen bonding and ionic interactions between matrix and 

fibre proteins. In fact, water has been considered as a nail permeation enhancer (7). The treatment 

with N-acetyl-L-cysteine further disrupts the structure by breaking disulphide bonds and causes 

increased swelling (40). On the other hand, both hydration and N-acetyl-L-cysteine alter nail 

microstructure, increasing its porosity (9). This is consistent with ion transport being facilitated (i.e., 

increased conductivity) through the swollen, more porous structure as implied by the IS data since 

the fraction of conductive sites is increasing. The larger conductivity changes observed for the N-

acetyl-L-cysteine treated nails indicates that the structure has been more perturbed which is in good 

agreement with previous findings (9) and with the IR data in Figure 4 and Table II. In the case of 

iontophoresis, ion transport is further facilitated and the nail conductivity at low frequency is slightly 

increased due to the increased concentration of ions in the membrane. 
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Both IS and IR data point out that iontophoresis effects are mostly caused through enhanced 

hydration of the nail. Further, the relatively quick return to baseline values observed 45 minutes 

post-iontophoresis (Figure 5) is in agreement with the recovery of transonychial water loss post nail 

iontophoresis observed in vivo (41). Similarly, both techniques suggest that N-acetyl-L-cysteine 

provokes a more intense disruption of nail structure. Finally, it should be stressed that the findings 

reported here concern nail clippings from healthy human volunteers; it follows that further research 

will be necessary to characterize the spectroscopic properties of diseased nails and the extent to 

which they are modified by the drug transport enhancement techniques employed. 

 

Conclusions 

IR and impedance spectroscopies have been used to characterize the effects of hydration, 

iontophoresis, and N-acetyl-L-cysteine on human nail plate. The results from the two approaches 

were complementary and consistently demonstrated that (a) the impact of iontophoresis did not 

significantly differ from that of hydration alone, and (b) the penetration enhancer disrupted nail 

structure to a measurable extent.  It follows, therefore, that IR and IS tools may prove useful in the 

development and optimisation of topical drug delivery systems to treat nail disease. 
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Table I: ATR-FTIR experimental design 

 

ATR-FTIR 

experiments 
Procedures (number of replicate measurements)  

  

Series 1a 
(a) Immerse in 154 mM NaCl for 1 hour (n = 6 nails x 5 sites/nail) 

 (b) Iontophoresis in 154 mM NaCl at 0.1 mAb for 1 hour (n = 6 nails x 2-5 sites/nail) 

 (c) Soak in 10% w/v PEc for 5 hours, wash for 2 hoursd (n = 6 nails x 5 sites/nail) 

  

Series 2a 
(a) Iontophoresis in 154 mM NaCl at 0.1 mAb for 0.5 hour (n = 1 nail x  2 sites) 

 (b) Iontophoresis in 154 mM NaCl at 0.1 mAb for 2 hours (n = e2 nails x 1 site) 

 (c) Iontophoresis in 154 mM NaCl at 1.5 mAf,g for 1 hour (n = 1 nail x 2 sites ) 

 

a
After each of these treatments, the nails were hydrated in deionised water for 10 minutes and FTIR spectra 

were recorded to determine the shifts in the position of the lipid-associated asymmetric and symmetric –CH2 

absorbances, and of the amide I, II and III peaks from protein. 

b
Equivalent to 0.5 mA cm

-2
.  

c
PE = N-acetyl-L-cysteine. 

d
Nails were washed twice in deionised water, which was refreshed twice at 20 and 60 minutes into the 

washing procedure. 

e
Two sections of a large thumbnail were used in two replicate experiments 

f
The maximum voltage output of the DC power supply was increased for the 1.5 mA experiment to allow 

precise delivery of a constant current. 

g
Equivalent to 7.5 mA cm

-2
.  
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Table II:  Maxima (mean ± SD; n=6 nails, 2-5 measurements per nail) of five IR spectral 

absorbances recorded in the first series of ATR-FTIR experiments (see Table 1).  Upper values in 

italics are pre-treatment control measurements taken after a 10-minute period of hydration. Lower 

values are the results following each treatment.  

 

Absorbance Control (edge)
a 

1h – 0.1 mA (edge)
a 

Control (exposed)
b 

1h – 0.1 mA (exposed)
b 

Control 

1h - Hydration 

Control 

5h – 10% w/v  

N-acetyl-L-cysteine 

Asymmetric  

-CH2 

2918.8 ± 1.0 

2918.8 ± 0.7 

2919.1 ± 1.0 

2919.7 ± 1.2
c
 

2920.0 ± 1.4 

2920.4 ± 1.5
c
 

2919.9 ± 0.9 

2920.7 ± 1.2
c
 

Symmetric 

-CH2 

2850.8 ± 0.7 

2850.6 ± 0.6 

2851.1 ± 0.7 

2851.4 ± 0.8 

2851.4 ± 0.8 

2851.7 ± 0.8
c
 

2851.5 ± 0.6 

2851.8 ± 0.7
c
 

Amide I 1641.3 ± 2.7 

1641.4 ± 0.6 

1641.4 ±3.4 

1639.9 ± 3.1
c
 

1636.5 ± 4.6 

1635.5 ± 4.5
c
 

1636.1 ± 2.5 

1633.4 ± 2.0
c
 

Amide II 1536.8 ± 0.3 

1536.6 ± 0.6 

1537.0 ± 0.4 

1537.5 ± 0.3 

1536.4 ± 0.9 

1536.9 ± 0.8
c
 

1535.9 ± 0.8 

1538.0 ± 1.3
c
 

Amide III 1239.6 ± 1.7 

1239.4 ± 1.5 

1240.8 ± 2.0 

1241.7 ± 2.3 

1239.38 ± 0.8 

1241.2 ± 1.5
c
 

1240.1 ± 1.1 

1242.8 ± 2.1
c
 

 

a
“Edge” scans were recorded on areas of the nail sandwiched between the two halves of the diffusion cell and 

were not exposed to current passage.  

b
“Exposed” scans were recorded from the area of nail across which current passage occurred. 

*Significantly different (P < 0.05) than the corresponding control. 



 

22 

 

Table III: Mean IR spectral absorbance maxima recorded in the range finding, second series of 

ATR-FTIR experiments (see Table 1).  Top values in italics correspond to control FT-IR scans taken 

10 minutes hydration. Bottom values correspond to FT-IR scans taken after the corresponding 

iontophoretic treatment. The scans were taken in the area of the nail exposed to current passage. 

 

Absorbance aControl 

b2h - 0.1 mA 

aControl 

a0.5h - 0.1 mA 

aControl 

a1h - 1.5 mA 

Asymmetric  

-CH2 

2919.4  

2920.4  

c2918.8 

c2918.8 

2919.6  

2921.3  

Symmetric    

-CH2 

2851.3  

2851.8  

c2850.8 

2852.6  

2851.6  

c2852.3 

Amide I 1639.6  

1640.2  

1639.9  

1640.6  

1638.3  

1633.0  

Amide II 1537.1  

1537.1  

1537.1  

1536.1  

1537.4  

1537.5  

Amide III 1239.8  

1238.8  

1242.6  

1240.4  

1240.5  

1242.3  

an = 1 nail x 2 sites. 

bn = 2 nails x 1 site. 

cn = 1 nail x 1 site. 
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Figure 1. Representative ATR-FTIR spectra of [a] human fingernail clippings (dry, after 10 

minutes hydration; 1 hour in 154 mM NaCl; 1h – 0.1 mA iontophoresis and 5 h in 10% 

N-acetyl-L-cysteine) and [b] pure N-acetyl-L-cysteine. Dotted lines indicate peak 

positions targeted: A: asymmetric –CH2 stretching; B: symmetric –CH2 stretching; C: 

amide I; D: amide II; E: amide III. 
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Figure 2. Inter- and intra- variability of the IR peak maxima assigned to the asymmetric –CH2 

stretching; symmetric –CH2 stretching and amide I band for control (10 minutes 

hydrated) and treated nails: PE (exposure for 5 hours to a 10% w/v aqueous solution 

of N-acetyl-L-cysteine), hydration (1 hour in 154 mM NaCl) and iontophoresis (1 hour 

at 0.1 mA). Each bar corresponds to one nail; bars with the same pattern in each panel 

correspond to the same nail. 
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Figure 3.  Maxima of –CH2 symmetric, -CH2 asymmetric and amide I peaks recorded from nails 

exposed to different iontophoresis ‘doses’ (expressed as intensity x time (mAh)). The 

shifts were measured in the area of nail across which current passage occurred. 
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Figure 4.  Shifts in IR peak maxima (mean ± SD; n=6 nails) following (a) hydration for 1 hour in 

154 mM NaCl, (b) iontophoresis for 1 hour at 0.1 mA, and (c) exposure for 5 hours to a 

10% w/v aqueous solution of N-acetyl-L-cysteine. The control, pre-treatment values 

were determined on the same nails after 10 minutes hydration in water. (a) and (b) 

identify pairs of treatments causing a significantly (p<0.05) different shift. 
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Figure 5.  Conductivity (A) and relative permittivity (B) of a nail (Nail 1) during hydration over a 

15-hour period. 
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Figure 6.  Conductivity (A) and relative permittivity (B) of three nails measured during the first 

series of impedance spectroscopy experiments. 
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Figure 7.  Nail impedance at 10 kHz recorded for two nails during various stages of hydration 

during protocol the second series of impedance spectroscopy experiments. 
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