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Abstract 17 

This paper demonstrates for the first time the feasibility of utilizing waste mussel shells for the 18 

synthesis of hydroxyapatite, Ca10(PO4)6(OH)2 (denoted as HAP) to be used as a greener, 19 

renewable photocatalyst for recalcitrant wastewater remediation. HAP was synthesised from 20 

Perna Canaliculus (green-lipped mussel) shells using a novel pyrolysis-wet slurry precipitation 21 

process. The physicochemical properties of the HAP were characterized using X-ray Diffraction 22 

(XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy 23 

(SEM). The HAP produced was of comparable quality to commercial (Sulzer Metco) HAP. The 24 

synthesized HAP had good photocatalytic activity, whereby methylene blue (a model textile 25 

wastewater compound) and its azo dye breakdown products were degraded with an initial rate of 26 

2.5 x10
-8 

mol L
-1

 min
-1

. The overall azo dye degradation was nearly 54% within 6 hours and 62% 27 

within 24 hours in an oxygen saturated feed in a batch reactor using a HAP concentration of 2.0 28 

g/L, methylene blue concentration of 5 mg/L, UV irradiation wavelength of 254 nm and a 29 

stirring speed of 300 rpm. The kinetics were well described by three first order reactions in 30 

series, reflecting the reaction pathway from methylene blue to azo dye intermediates, then to 31 

smaller more highly oxidised intermediates and finally degradation of the recalcitrants. The final 32 

two steps of the reaction had significantly slower rates than the initial step (rates constants of 6.2 33 

x 10
-3

 min
-1

, 1.2x10
-3 

min
-1

 and approximately (due to limited data points) 1.6x10
-4 

min
-1

 for the 34 

first, second and third step respectively), which tie in with this mechanism, however it could also 35 

indicate that the reaction is either product inhibited and/or affected by catalyst deactivation. 36 

FTIR analysis of the post-reaction HAP revealed surface PO4
3-

 group loss. Since there is good 37 

photocatalytic activity with oxygen in limited and excess supply during the photoreaction, this 38 

indicates the possibility of lattice oxygen participation in the photocatalytic reaction, which 39 



 

3 

needs to be characterised more fully. However, overall, these results indicate that the HAP 40 

derived from the mussel shells is a promising greener, renewable photocatalyst for the 41 

photocatalytic degradation of wastewater components. 42 

 43 

Keywords: Hydroxyapatite; photocatalysis; wastewater treatment; waste material recycle; 44 

reaction mechanism, methylene blue. 45 

  46 
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1. Introduction 47 

Mussel farming is a fast growing industry around the world (and especially in New Zealand 48 

where this research is based), and the increase in the production of the mussels generates a 49 

concomitantly large amount of mussel shell waste. Recent regulations and strategies on the 50 

aquaculture waste have opened up new opportunities to sustainable development which has also 51 

encouraged the application of environmental technologies (Gaya and Abdullah, 2008; Chong et 52 

al., 2010). In particular, mussel shells are a calcium-rich resource that can be used to produce 53 

calcium oxide (lime). This lime can be used in several different ways in environmental 54 

technologies, for example in a study conducted by Currie et al. (2007), lime from mussel shells 55 

was shown to be able to remove about 90% of phosphates in water. A further study carried out 56 

by Abeynaike et al. (2011) indicated that mussel shells can also be converted into hydroxyapatite 57 

(HAP) with potential for use as value-added products. Therefore, by utilising shell waste for the 58 

purposes of water and wastewater treatment, two existing problems can be solved: pollution 59 

remediation and the transformation of a significant existing waste material into a useful 60 

commodity. 61 

 62 

HAP is widely used in bone regeneration and dental materials since it is the major inorganic 63 

component in natural bones and teeth (Sivakumar and Manjubala, 2001; Ji et al., 2009). It has 64 

also been widely used as an adsorbent in various applications such as in hydrogenation and 65 

wastewater treatment (Zahouily et al., 2003; Reddy et al., 2007). The stoichiometric form of 66 

HAP is Ca10(PO4)6(OH)2 where the Ca/P molar ratio is 1.67. HAP has been applied as a catalyst 67 

in various applications such as for dehydration and dehydrogenation reactions (Abeynaike et al., 68 

2008; Tsuchida et al., 2008; Boucetta et al., 2009; Khachani et al., 2010), synthesis of chalcone 69 
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derivatives (Solhy et al., 2010), gas-phase oxidation reactions (Jun et al., 2004; Zhang et al., 70 

2008; Domínguez et al., 2009) and also as a photocatalyst in a select few gas-phase 71 

photocatalysis processes (Hu et al., 2007; Reddy et al., 2007; Ji et al., 2009; Liu et al., 2010). 72 

Very few studies have evaluated HAP as an aqueous phase photocatalyst in its own right – those 73 

that have (e.g. Sheng et al., 2011) have only investigated a very limited range of reaction 74 

conditions and reactants and have not looked at a wide range of reaction conditions, types of 75 

HAP, different reactants and the reaction mechanism. This work therefore aims to begin to fill 76 

this knowledge gap, where HAP will be evaluated more extensively than before as an aqueous 77 

phase photocatalyst for the remediation of a model dye wastewater containing methylene blue. 78 

 79 

Photocatalysis is a rapidly developing wastewater treatment technology, gradually attracting 80 

more interest due to its ability to fully mineralise various compounds and so is a potentially 81 

important application for HAP. Photocatalysis can be defined as acceleration of a photoreaction 82 

by the presence of a catalyst (Mills and Le Hunte, 1997; Gaya and Abdullah, 2008; Castello, 83 

2009). Photocatalysis is best applied when the more common wastewater treatment technologies 84 

such as biological degradation, sedimentation, adsorption, flocculation, filtration and reverse 85 

osmosis are insufficiently effective (Soon and Hameed, 2010) and where the compound cannot 86 

be recovered and needs to be made less toxic and more biodegradable by the photocatalytic 87 

oxidative degradation reaction. Three components must be present in order for the heterogeneous 88 

photocatalytic reaction to take place: an emitted photon (with appropriate wavelength), a 89 

catalytic material (usually a solid catalyst) and a strong oxidizing agent which in most cases is 90 

oxygen (De Lasa et al., 2005). The most commonly used and most active photocatalysts are 91 

powdered semi-conductors such as titanium dioxide (Akpan and Hameed, 2009; Khataee and 92 
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Kasiri, 2010; Boiarkina et al., 2011) and zinc oxide (Ali et al., 2010, 2011). However the 93 

problems with these catalysts are that they are expensive and consist of metals that have limited 94 

availability on Earth. Using HAP as a photocatalyst overcomes this problem – it contains readily 95 

and widely available atoms (Rakovan, 2002; Al‐Qasas and Rohani, 2005), can be made from 96 

renewable sources (such as waste mussel shells, as in the present work) and, depending on the 97 

required purity, can be inexpensive to make.  98 

In this work the model wastewater compound tested is methylene blue, which is a commonly 99 

used compound as the exemplar for azo dye and textile dye wastewaters. It has been extensively 100 

studied throughout photocatalysis literature (Houas et al., 2001; Ali et al., 2010, 2011; Boiarkina 101 

et al., 2011) and is even the model compound used in the standard method for assessing 102 

photocatalysts (Mills, 2012). Therefore it is the ideal compound to benchmark the degradation 103 

using the novel HAP photocatalysts synthesised in this work.  104 

Therefore the aim of this paper is to characterise the feasibility of using HAP synthesised from 105 

mussel shells as a renewable photocatalyst for the remediation of a model dye wastewater.  106 

 107 

2. Materials and Methods 108 

2.1. Materials 109 

Green Lipped Mussel shells were kindly donated by Sanford Ltd (New Zealand) and originate 110 

from their Marlborough processing plant. Potassium dihydrogen phosphate (KH2PO4) from 111 

Sigma-Aldrich (99% pure) was employed in the formation of HAP, methylene blue was obtained 112 

from Sigma-Aldrich (85% pure) and 99.5% pure oxygen by BOC gases was used for 113 

oxygenation of the reactant solution. A calcium carbonate standard (99.5% purity) was obtained 114 
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from Sigma-Aldrich. A reagent-grade commercially available HAP powder (Sulzer Metco, 115 

Australia) was employed as a comparative standard. All reagents were used as received, unless 116 

otherwise stated. The water employed in all the studies was deionised water (from an ELGA 117 

Maxima Ultra purifier system).  118 

2.2. Methods 119 

2.2.1. Synthesis of HAP 120 

Calcium oxide was produced by calcination of waste mussel shells in an in-house fabricated tube 121 

furnace under nitrogen flow as described previously (Jones et al., 2011). A wet precipitation 122 

method was used in order to prepare the HAP. First, calcium hydroxide with a concentration of 123 

0.1M was prepared from calcium oxide that was converted from the raw shell, then was left in 124 

deionized water overnight in a sealed reactor.  A 0.06M phosphate solution was prepared from 125 

potassium dihydrogen phosphate dissolved in deionized water. Specific concentrations for the 126 

calcium hydroxide suspension and the phosphate solution were used in order to produce 127 

stoichiometric HAP (i.e. HAP with a Ca/P ratio of 1.67). The phosphate solution was added into 128 

the HAP reactor by a peristaltic pump (Cole-Parmer MasterFlex, model 7519-06). The solution 129 

was stirred over a period of 5 hours under a nitrogen atmosphere to produce a milky white 130 

suspension containing a precipitate. The resultant solid was separated from the solution by a 131 

centrifuge and dried in an oven at 110
o
C overnight. The resultant solid is designated as ‘as-132 

synthesised HAP’. Part of this material was further processed by heat treatment (pyrolysis in a 133 

nitrogen atmosphere in the same tube furnace used for calcination) at 800
o
C for 5 hours. This 134 

material is designated as ‘heat treated HAP’.  135 

 136 
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2.2.2. Photocatalytic Degradation Experiments 137 

The photocatalysis experiments were carried out in an in-house custom-made stainless steel UV 138 

reactor, described elsewhere (Ali et al., 2010). Two 200 mL beakers were used as reaction 139 

vessels. The beakers were filled with 150mL of methylene blue containing 2.0 g/L of heat treated 140 

HAP powder as photocatalyst  (as-synthesized HAP was not tested in this work).  141 

<Fig. 1 here> 142 

Photocatalysis experiments were conducted under both oxygen rich (saturated pure oxygen 143 

bubbled into the reaction solution) and oxygen limited (no oxygen bubbled into the reaction 144 

solution) conditions. Under limited oxidant supply conditions, the HAP photocatalysts were 145 

effectively examined under the ‘toughest’ reaction regime, where the only oxidant is from the 146 

dissolved oxygen within the reaction solution. Additional oxygen can only be provided by mass 147 

transfer from the surface of this solution, meaning that the overall reaction rate could be mass 148 

transfer limited by the supply of oxidant. In other work (Ali et al., 2010, 2011), this has provided 149 

an insight into the oxygen participation during photocatalysis. Prior to illumination, the 150 

suspension was magnetically stirred in the dark for 30 min, corresponding to the time needed to 151 

establish the adsorption/desorption equilibrium at room temperature. Stirring was maintained to 152 

keep the mixture in suspension during the irradiation. At regular intervals, samples of 1.0 mL 153 

were withdrawn. Before analysis, the samples were centrifuged to separate the HAP particles. 154 

Methylene blue concentration was evaluated by UV-Vis spectroscopy (Lambda 35 UV-Visible 155 

Perkin Elmer), measuring the peak at 662 nm. Note that this peak does not give a pure response 156 

for methylene blue throughout the reaction and will also be contributed to by the absorbance of 157 

azo dye photocatalytic reaction intermediates such as Azure A, Azure B and Azure C (Ali et al., 158 
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2010, 2011). The strongest response is however from methylene blue, which has its strongest 159 

absorbance at this wavelength (see Supplementary Material for peak wavelengths comparison of 160 

the reaction intermediates), however because of the contributions from the other azo dyes (which 161 

are formed by the photocatalytic reaction), the concentration derived from this measurement will 162 

be presented and interpreted as ‘azo dye’ concentration rather than methylene blue alone.  163 

To get a ‘pure’ concentrations, the aqueous azo dye reaction intermediates and products 164 

concentrations (along with a pure methylene blue concentration) were evaluated by high 165 

performance liquid chromatography using the method, reagents and instrument detailed in 166 

Boiarkina et al. (2011). The concentration of methylene blue was determined by calibration 167 

using external standards. Note that UV-Vis and HPLC determination of the reaction progress and 168 

reaction intermediates and products is used in this work and not measures of mineralisation such 169 

as total organic carbon (TOC), since mineralisation is not the aim of this photocatalytic 170 

degradation; a partial oxidation to more biodegradable products is. This is desired, since the 171 

authors believe that it is a waste of energy and reactor size to fully mineralise wastewater 172 

pollutants, when a partial degradation can make most pollutants more biodegradable and 173 

therefore amenable to inexpensive and widely available biological wastewater treatment (such as 174 

by aerobic and anaerobic digestion in activated sludge wastewater treatment plants). This paper 175 

does not address the biodegradability of the products formed however (since this is beyond the 176 

scope of the work), but by determining what is being formed (via HPLC) puts the authors in a 177 

good position to understand what reaction products are formed when and therefore quantify the 178 

extent of partial degradation. Also by knowing the identities of the reaction products, more 179 

biodegradable products can be identified through literature search (if required). The 180 
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biodegradability of the reaction products however is not a focus of the current paper and will be 181 

explored in future publications. 182 

The pH of the reaction solution was taken before and after reaction (pH 330i from WTW, 183 

Germany). The intensity of the UV lamp was measured using a UV probe (SUV 20.1A2Y2 from 184 

IL Metronic Sensortechnik). UV intensity measurements were monitored periodically to ensure a 185 

consistent intensity was maintained over the experimental period.  186 

Two sets of control experiments were also conducted under oxygen rich conditions: firstly an 187 

evaluation of the photolysis of methylene blue at the same concentrations used during 188 

photocatalysis – here reactions were run under equivalent conditions to the photocatalysis runs 189 

but in the absence of photocatalyst; secondly reactions were run in the absence of UV (in the 190 

dark) over the reaction period to quantify the effect of adsorption over this time. 191 

Note that all reactions were repeated at least once and error bars the mean  one standard 192 

deviation. 193 

 194 

2.2.3. Characterization of HAP 195 

Characterisation of the raw shell powder, pyrolysed powder, Ca(OH)2 and HAP produced (both 196 

as-synthesised and heat treated), as well as the HAP after the photocatalysis reaction, was carried 197 

out using Fourier Transform Infra-red (FTIR) spectroscopy, X-Ray Diffraction (XRD) analysis 198 

and Scanning Electron Microscopy (SEM). FTIR was carried out with a Perkin Elmer Spectrum 199 

100 using powder on a KRS-5 diamond attenuated total reflectance (ATR) system with the 200 

wavenumbers recorded from 380 to 4000 cm
-1

, in line with other methods used for HAP 201 
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(Rodriguez-Lorenzo and Vallet-Regi, 2000; Al‐Qasas and Rohani, 2005; Mostafa, 2005). The 202 

spectra produced were compared to spectra from several references (Koutsopoulos, 2002; 203 

Al‐Qasas and Rohani, 2005; Resende et al., 2006; Tanaka et al., 2012) allowing the key peaks to 204 

be identified. 205 

The X-ray diffraction (XRD) analyses were performed using a Bruker D8 Advance X-ray 206 

diffractometer operating with a 40-kv Cu Kα X-ray source. Scans were carried out in the 2 207 

range of 10 to 80
o
 with a 0.02

o
 step size and a 1 s step time.  208 

The morphologies of granular samples were observed using an FEI Quanta 200 FEG scanning 209 

electron microscope (5 kV accelerating voltage). Prior to imaging, the samples were double 210 

coated with platinum using a Polaron SC 7640 Sputter Coater (2 minutes coating time) to 211 

prevent charging.  212 

 213 

3. Results and Discussion 214 

3.1. Conversion of shells to lime by pyrolysis 215 

Pyrolysis of mussel shells at a temperature of 800
o
C results in the decomposition of the 216 

limestone as per equation (1):  217 

CaCO3   CaO + CO2           (1)      218 

 219 

<Table 1 here> 220 
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The mass loss at 540
o
C was consistent with results reported by Jones et al. (2011) where typical 221 

mass loss under the calcination temperature of 700
o
C was between 3 and 5%. Since there is no 222 

lime formed at this temperature, the mass loss can be used to determine the amount of adsorbed 223 

moisture and the proteinaceous content of the shell. The pyrolysis of raw shell at 800
o
C resulted 224 

in mass loss ranging from 44 to 48% including the mass loss of organic material. Subtracting the 225 

organic content determined from the mass loss of the sample heated at 540
o
C, allows 226 

determination of the mass loss during the transformation of carbonate to oxide, and this can be 227 

used to determine the extent of transformation from CaCO3 to CaO based on a theoretical mass 228 

loss on full conversion of 44%. As shown in Table 1, for these samples the transformation was 229 

between 93.6 and 99.5 % complete.  230 

Fig. 2 shows XRD patterns for the raw mussel shell powder and powder pyrolysed at 800
o
C. For 231 

the raw shell powder, all the observed peaks were identified as calcium carbonate with an 232 

aragonite crystal structure (Kuriyavar et al., 2000; Nan et al., 2008; Galvan-Ruiz et al., 2009).  233 

Following the pyrolysis process at a temperature of 800
o
C, the pattern was dominated by peaks 234 

from lime, with a small amount of calcium carbonate remaining in the sample in the form of 235 

calcite due to the polymorphic transformation of carbonate that takes place when heating the 236 

shells above 400
o
C (Davis and Adams, 1965; Perić et al., 1996; Resende et al., 2006; Parker et 237 

al., 2010; Jones et al., 2011). The FTIR spectra of raw mussel shells and calcium carbonate with 238 

99.5% purity are shown in Fig. 3. Comparing the spectra from a commercial calcium carbonate 239 

(with a purity of 99.5%) to the raw shells, the sharp intense bands around 1400 cm
-1

, 877 cm
-1

 240 

and 700 cm
-1

 confirm a very close similarity. These bands correspond to the C-O bond from 241 

carbonate (Kuriyavar et al., 2000; Nan et al., 2008; Galvan-Ruiz et al., 2009). In addition, the 242 

bands around 700-704 cm
-1

 correspond to an aragonite polymorph (Kuriyavar et al., 2000; Nan 243 
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et al., 2008).  The FTIR spectrum in 3(c) shows a band around 3640 cm
-1

 attributed to hydroxyl 244 

stretching where this band appears due to adsorbed water and –OH species perturbed due to 245 

hydrogen bonding (Resende et al., 2006; Galvan-Ruiz et al., 2009). The band at 1416 246 

corresponds to C-O bond from carbonate while the band around 875 cm
-1

 and 500 cm
-1

 247 

corresponds to Ca-O bonds (Galvan-Ruiz et al., 2009). This again indicates that lime has formed 248 

with an unconverted calcium carbonate residual. 249 

<Fig. 2 here> 250 

<Fig. 3 here> 251 

The SEM images shown in Fig. 4 indicate that there are structural changes that occur during the 252 

pyrolysis, consistent with those observed in previous studies (Abeynaike et al., 2011; Jones et 253 

al., 2011). Fig. 4a and 4c show that the raw mussel shells have well-defined edges and are 254 

fragmented to reveal a layered structure common in mollusks. In Fig. 4b, it can be seen that the 255 

edges were not well-defined. In Fig. 4d, it can be seen that there are some relief lines on the 256 

particle surfaces resulting from the high temperature during calcination. For the pyrolysed shells, 257 

the coarsening of particles can be observed as shown in Fig. 4b and 4d.  The morphology of the 258 

raw mussel shells differed considerably from the calcium oxide indicating that the calcination 259 

process releases CO2 as shown in Equation (1) and creates some cavities. This structure of the 260 

calcined shells helps to react with deionised water to hydrolyse the calcium oxide to calcium 261 

hydroxide in order to form a solid suspension/slurry of calcium hydroxide for the preparation of 262 

HAP. 263 

<Fig. 4 here> 264 

  265 
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3.2. Formation of HAP from the shell-derived lime 266 

HAP was synthesized in a semi-batch reactor via a heterogeneous reaction where the potassium 267 

dihydrogen phosphate was being dosed into a stirred solid suspension of calcium hydroxide. The 268 

precipitates from the reaction were washed several times using deionised water and further dried 269 

overnight in an oven at 110
o
C. The overall reaction for this mechanism is shown by equation (2): 270 

10Ca(OH)2  +  6 KH2PO4      Ca10(PO4)6(OH)2 + 6KOH + 12 H2O  (2) 271 

Characterization of as-synthesised and heat treated powders by FTIR and XRD (Fig. 5 and 6) 272 

confirmed that HAP was produced. The XRD pattern for the as-synthesised HAP (Fig. 5a) 273 

confirms that although HAP was formed (full peak match to reference XRD patterns as reported 274 

by Koutsopoulos, S., 2002; N.S. Al-Qasas and S. Rohani; Tsuchida et al., 2008; Wang et al., 275 

2010), there was still a small trace of calcite remaining from the original calcination process 276 

since the transformation of the raw shell to lime is between 93.6 to 99.5% as shown in Table 1.  277 

Similar findings were observed in the FTIR spectrum for the as-synthesised HAP as shown in 278 

Fig. 6a where the band at 1417 cm
-1

 corresponds to the CO3
2-

 group.  The existence of CO3
2-

 ions 279 

in the HAP could also be due to the adsorption of CO2 in the atmosphere during the preparation 280 

of HAP (Rodriguez-Lorenzo and Vallet-Regi, 2000; Tanaka et al., 2012; Khalid et al., 2013). It 281 

should be noted that the synthesis of HAP done in this work were done in a nitrogen atmosphere 282 

in order to minimise the possibilities of the incorporation of the CO3
2-

 in the lattice. The calcite 283 

was not detected for the heat treated HAP as shown by the XRD pattern in Fig. 5b however, 284 

either indicating that some of the remain calcite was converted to lime via calcination during this 285 

final heat treatment as in previous work (Jones et al., 2011), or that the calcite or lime (that is 286 

expected to form in the heat treated HAP) could not be detected by the XRD - the XRD detection 287 
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limit is 5-10% (Cullity, 1956). Note that Khalid et al. (2013) has similar findings on the decrease 288 

in the intensity of CO3
2-

 ions in the FTIR spectrum when HAP powders were heat treated.  289 

<Fig. 5 here> 290 

The FTIR analyses for the as-synthesised, heat treated and commercial (Sulzer Metco) HAP 291 

shown in Fig. 6 again confirmed that HAP was formed from the shell material, with the PO4
3-

 292 

and OH
-1

 groups characteristic of HAP: the bands at 962, 874 and 559 cm
-1

 correspond to the 293 

PO4
3-

 group (Tanaka et al.; Reddy et al., 2007; Wang et al., 2010). Based on several studies done 294 

on HAP as photocatalyst, the PO3
4-

 group is believed to play important roles in the photocatalytic 295 

reactions (Nishikawa, 2004a; Pratap Reddy et al., 2007; Reddy et al., 2007). The electron state 296 

of the surface PO3
4-

 group changes and create a vacancy on the HAP and consequently will cause 297 

the formation of O2
- 

through the electron transfer to O2 in the atmosphere. The FTIR spectra of 298 

the as-synthesised HAP (Fig. 6a), showed a broad band around 3300 cm
-1

 which is due to 299 

absorbed water, whereas this broad band does not appear in either the heat treated or the 300 

commercial HAP. This shows that this water is not strongly bound and can be removed via 301 

drying if this is needed. The IR spectra for both the heat treated and commercial HAP (Fig. 6b) 302 

show a band around 3572 cm
-1

 assigned to the hydroxyl group (Tanaka et al.; Wang et al., 2010).  303 

Based on the study done by H. Tanaka et al. (2013), this hydroxyl group plays the important role 304 

in the photocatalytic decomposition of dimethyl sulphide where this decomposition through UV 305 

irradiation took place on the surface P-OH groups of HAP, which may be due to the formation of 306 

surface P-OH radicals. 307 

<Fig. 6 here> 308 
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 The intense sharp bands around 1087, 962, 600 and 474 cm
-1

 seen in both the heat treated and 309 

commercial HAP, which correspond to the PO4
3-

 group, confirm that the HAP synthesised from 310 

the shell waste material was similar to that of the commercial powder. From the EDS spectrum 311 

for the as-synthesised and heat treated HAP, shown in Fig. 7a and 7b respectively, it can be seen 312 

that both materials are composed of calcium, carbon, oxygen and phosphorous. However, traces 313 

of potassium were also observed in both samples. This is perhaps due to the material being 314 

insufficiently washed with water and future work will look at optimising this washing stage. It is 315 

important to wash the precipitate with high water purity because the apatite lattice readily 316 

incorporates foreign elements into the structure (Gross and Berndt, 2002). 317 

<Fig. 7 here> 318 

From the EDS analysis, the Ca/P ratio for both samples were calculated and for the as- 319 

synthesised HAP, the Ca/P ratio was 1.61 while for the heat treated sample the ratio was 1.66 320 

which is very close to the stoichiometric HAP ratio of 1.67. 321 

 322 

3.3. Photocatalytic Degradation of Methylene Blue by HAP 323 

The results of the degradation of Methylene Blue in photolysis (UV lit in the absence of 324 

catalyst), under dark (i.e. adsorption only) and with UV lit oxygen limited and oxygen rich 325 

conditions are shown in Fig. 8.  326 

<Fig. 8 here> 327 

Fig. 8 shows that photolysis of methylene blue was negligible, indicating that the degradation of 328 

methylene blue in the presence of HAP is likely to be due to photocatalysis. The photolytic 329 
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degradation of methylene blue in this reactor has been also shown to be negligible in previous 330 

work in the same laboratory (Ali et al., 2010).  331 

The dark adsorption experiments shown in Fig. 8 show that adsorption to the HAP at the loading 332 

used (methylene blue at 5 mg/L and heat treated HAP at 2.0 g/L) was negligible. This indicates 333 

that adsorption is likely to be a minor methylene blue removal mechanism in this system 334 

(assuming that adsorption properties do not change significantly in the presence of UV light).  335 

When UV light (at 254 nm) was present, photocatalysis occurred under both oxygen rich and 336 

oxygen limited conditions. Degradation (here monitored via decolorisation at a UV-Vis 337 

wavelength of 662 nm which is characteristic of the primary degradation of methylene blue) was 338 

observed for the first 90 minutes only with an overall degradation of only 1.8% and no further 339 

decrease with time. It can be seen that the degradation was higher when oxygen (the oxidant) is 340 

present and the reasons for this are discussed below. Under oxygen limited conditions the 341 

degradation was around 39% after 6 hours and showed no further change when extending the 342 

time to 24 hours. For the oxygen rich conditions, at 6 hours the degradation was around 54% and 343 

increased further with time, reaching 62% after 24 hours.  344 

Overall Fig. 8 therefore shows that HAP derived from mussel shells is a photocatalyst in the 345 

presence of UV light when used in aqueous solutions. This therefore opens up the possibilities of 346 

using HAP for pollution remediation through the transformation of a significant existing waste 347 

material - waste sea shells. Furthermore, this shows that a greener photocatalyst is available, 348 

produced from readily and widely available atoms and synthesised from renewable and 349 

potentially recycled sources (if for example the phosphates are taken from wastewaters). 350 

However, the key issue is – how good a photocatalyst is it? 351 
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When compared to another HAP, the shell-derived HAP appears to be a superior photocatalyst. 352 

Fig. 9 shows a comparison of mussel shell derived heat treated HAP and the Sulzer Metco 353 

commercially sourced HAP for the photocatalytic degradation of methylene blue under oxygen 354 

rich conditions. This shows that the mussel shell derived HAP is the more effective photocatalyst 355 

over the reaction period studied. The difference in performance between the two is most likely 356 

due to the differences in material properties outlined in Sections 3.1 and 3.2. It is suspected that 357 

the difference in performance is from the CO3
2-

 ions in the shell-derived heat treated HAP as 358 

shown in Fig. 6b. The exact nature of this performance enhancement has yet to be determined. 359 

<Fig. 9 here> 360 

<Fig. 10 here> 361 

A kinetic analysis of the data with the heat treated HAP as photocatalyst in Fig. 8 is shown in 362 

Fig. 10 and Table 2. A first order kinetic model analysis is used as these are commonly used in 363 

photocatalysis research (as the simplification of the Langmuir-Hinshelwood kinetic model when 364 

there are dilute reactant concentrations) and have in particular been used in several studies 365 

quantifying the kinetics of photocatalytic dye oxidation in aqueous systems (Houas et al., 2001; 366 

Rauf et al., 2010). Fig. 10 is the resulting first-order-reaction analysis of methylene blue 367 

degradation with heat treated HAP. Note that the semi log data does not produce a single straight 368 

line, hence does not fit a simple first order reaction model for the entire period of the reaction. A 369 

series of first order reactions (as shown in Fig.10) is often found to be appropriate for advanced 370 

oxidation reactions, since the degradation can be broken down in to several different dominant 371 

reaction steps, such as primary degradation of the reactant, several secondary degradation steps 372 

corresponding to the oxidation to major stable/recalcitrant classes of reaction intermediate and 373 
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finally mineralization (Houas et al., 2001; Ali et al., 2011). This is an accepted kinetic modeling 374 

strategy for both non-catalytic and heterogeneously catalyzed wet oxidation reactions (Li et al., 375 

1991; Belkacemi et al., 2000), a technology which also degrades compounds via a free radical 376 

oxidation mechanism (Patterson et al., 2001b). It is not widely used for photocatalysis since the 377 

primary degradation of the reactant is often dominant and so fast that many reactions can be 378 

fitted with a single first order expression – this is however not the case for the HAP 379 

photocatalysis reactions here and so the reactions of the intermediates need to be accounted for 380 

in the kinetics. It is found that the degradation of methylene blue and its azo dye reaction 381 

intermediates is well modeled by a three step series of first order reactions. This reflects the 382 

expected reaction pathway: first from methylene blue to azo dye intermediates (which should 383 

have the fastest rate, since methylene blue has the strongest response in the UV-Vis 384 

measurement used in this work), then secondary degradation of the azo dyes to smaller more 385 

highly oxidised intermediates (that do not show UV absorbance at 662 nm) and finally 386 

degradation of the recalcitrant coloured reaction intermediates. This directly relates to the 387 

currently understood pathways of methylene blue photocatalytic degradation (Ali et al., 2011). 388 

Fig. 11 shows the concentration of MB and the peak areas of the reaction intermediates/products 389 

as measured by HPLC during the course of a typical reaction and indicates that these pathways 390 

most likely apply for the photcatalysis of MB with HAP also. In particular, these results show 391 

that like many other studies of the photocatalytic degradation of MB, azure B is the major 392 

reaction intermediate/product (Ali et al., 2011). Fig. 11 also indicates that the reaction rate for all 393 

of the component reactions slows considerably between the 5 and 10 hour reaction time – this is 394 

inclusive of the degradation of MB as well as the formation and degradation of azure A, azure B, 395 
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azure C and thionin. A full analysis of these reaction pathways and kinetics will be covered in a 396 

future publication. 397 

<Fig. 11 here> 398 

The first order reaction rate constants for three first order kinetic regions are shown in Table 2. 399 

These show the trend expected from the methylene blue reaction mechanism: fast primary 400 

degradation, slower secondary degradation, with the degradation of the recalcitrant intermediates 401 

being the slowest reaction stage. However it also could indicate that the reaction is either product 402 

inhibited and/or affected by catalyst deactivation – and so this was therefore investigated further.  403 

Note that due to limited data in the final stages of the reaction, the authors are less confident on 404 

the value with the rate constant for the third and final reaction stage, compared to the first two 405 

stages of the reaction. Further work is needed to refine this value. However, the rate and rate 406 

constants are representative of the overall change in concentration seen during this time and 407 

serve to demonstrate that the rate is slower during this period. 408 

<Table 2 here> 409 

Fig. 12 shows a comparison between heat treated HAP photodegradation of MB at two different 410 

stirring speeds: 300 and 600 rpm. These results show that there is no significant difference in 411 

degradation extent and therefore reaction rate between the two sets of data (within the error 412 

range of the data). This indicates that external mass transfer resistances are not significant at the 413 

stirring speeds used. The true photocatalytic reaction kinetics have therefore been measured and 414 

quantified in the preceding analysis. 415 

<Fig. 12 here> 416 
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Overall, these results are consistent with the fact that dissolved oxygen can easily scavenge an 417 

electron at the surface of a UV-irradiated semiconductor metal oxide, which aids in the 418 

separation of photo-generated charges and decreases the recombination of generated electron-419 

hole pairs (Nishikawa and Omamiuda, 2002). In other words, oxygen provides the oxidant 420 

source in indirect oxidation through the production of radical species (most likely hydroxyl 421 

radicals here) and so having an excess of it present should increase the oxidation rate, as 422 

observed. There is an analogy to this in previous gaseous HAP photocatalytic work where 423 

Nishikawa & Omamiuda (2002) reported that an increase in the photocatalytic degradation of 424 

methyl mercaptane by hydroxyapatite corresponded to an increase in the amount of superoxide 425 

(O2
-

) species which were generated due to the UV irradiation – the main species that would be 426 

generated by indirect oxidation in a dry gas phase photooxidation. The formation of radicals on 427 

HAP through UV irradiation in the gas phase is also reported in other papers from the same 428 

research group (Nishikawa and Omamiuda, 2002; Nishikawa, 2003; Nishikawa, 2004a; 429 

Nishikawa, 2004b, 2007). Nishikawa & Omamiuda (2002) have indicated that the oxygen 430 

vacancy is formed on HAP by UV irradiation and suggest that the activation of oxygen takes 431 

place by the formation of the labile superoxide radicals due to electron transfer to O2 in the 432 

atmosphere (Nishikawa and Omamiuda, 2002). It is likely that in the aqueous environment of the 433 

current experiments, a similar mechanism is occurring, but with hydroxyl radical species (such 434 

as HO

) being formed instead of the superoxide radicals, as dictated by the expected aqueous 435 

equilibrium reactions of these species (Dannacher and Schlenker, 1996; Patterson et al., 2001a, 436 

b) and as found in conventional semi-conductor photocatalysis (Hoffmann et al., 1995). 437 

However, if this is the case, then this mechanism cannot be used to explain the photocatalytic 438 

reaction proceeding in the absence of sufficient oxygen, as in the oxygen limited case. Here, the 439 
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only available oxygen is from the residual oxygen within the reaction solution and any that can 440 

mass transfer from the surface of the solution into the bulk solution.  441 

Comparative FTIR spectra of the heat treated HAP powder before and after the photocatalytic 442 

reaction are shown in Fig. 13. This figure reveals that the absorbance intensity due to the PO4
3-

 443 

group at 1087, 960, 594 and 470 cm
-1

 are drastically decreased after photocatalytic reaction. A 444 

similar trend was observed for the band at 1019 cm
-1

 which corresponds to the HPO4
2-

 in non-445 

stoichiometric HAP. The formation of radicals on HAP by a photocatalytic reaction have been 446 

reported by several researchers. The changes of surface PO4
3-

 group and generation of trapped 447 

electron suggest the appearance of oxygen vacancy by UV irradiation (Nishikawa and 448 

Omamiuda, 2002; Nishikawa, 2003; Nishikawa, 2004a). This indicates that the phosphate group 449 

(the moiety containing oxygen in HAP) could be dissolved during the reaction. This is not 450 

expected at the pH that the HAP was subjected to in this reaction (the pH of the solution before 451 

the photocatalytic reaction was 6.7 and following the reaction was slightly higher at 7.8), since 452 

HAP is sparingly soluble at pHs above 4.2 (De Groot et al., 1990; Ferna´ndez et al., 1999). This 453 

may therefore indicate that there is photocatalytic dissolution of HAP. Furthermore, since there 454 

is photocatalytic activity in the absence of an oxidant, this may also indicate that the lattice 455 

oxygen is being used instead, in a Mars van Krevelen type mechanism. A parallel to this lies in 456 

the work of Ali et al. (2010; 2011) who used nanostructured ZnO thin films in methylene blue 457 

photocatalysis. In this work, it was demonstrated that photocatalysis occurred in the absence of 458 

oxidant (as it does here) and through confirming more rapid dissolution of the ZnO under these 459 

conditions, it was hypothesized that this was likely to be through a Mars Van Krevelen type 460 

mechanism, where lattice oxygen from the ZnO films were consumed under oxygen limited 461 

conditions. The effect was more pronounced in less crystalline structures (i.e. more defects, 462 
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which aid photo-dissolution). Similar results are seen in this work, so it is therefore possible that 463 

the same may also be happening with the HAP here. 464 

Therefore, the decrease in the absorbance intensity due to PO4
3-

 and HPO4
2-

 in Fig. 13 may 465 

indicate that these groups are being photo-dissolved in order for the lattice oxygen to participate 466 

in the redox reactions degrading the methylene blue. This is perhaps due to the trapped electron 467 

generated by the UV irradiation forming surface P-OH radicals on HAP. This photo-degradation 468 

would also deactivate the HAP photocatalyst, which may also be a contributing factor to the drop 469 

in reaction rate in the latter stages of the reaction as outlined earlier.  470 

<Fig. 13 here> 471 

This all indicates that like the ZnO photocatalysts, the HAP photocatalytic reaction mechanism 472 

in both the solid and liquid phases are not fully understood and is different to what is expected 473 

from the currently available photocatalysis literature. Further work is therefore continuing, 474 

characterising a full range of HAP structures and photocatalytic reaction mechanisms in both the 475 

solid and liquid phases, determining the optimal conditions and operating envelope for 476 

stabilising this photocatalyst deactivation pathway whilst maintaining acceptable photocatalytic 477 

activity. 478 

 479 

4.  Conclusions 480 

It has been demonstrated that it is possible to use waste mussel shells (Perna Canaliculus) as a 481 

calcium source to form lime (calcium oxide) and then hydroxyapatite (HAP) by first pyrolysis at 482 

800
o
C and then a wet precipitation method at room temperature and without pH control in a short 483 

5 hours reaction time. A further heat treatment at 800
o
C increased the crystallinity of the HAP 484 
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formed. The HAP produced was comparable to a commercial HAP, although the as-synthesised 485 

material contained residual calcite due to incomplete calcination. This calcite was removed by 486 

the subsequent heat treatment step following HAP production.  487 

It has been shown for the first time that this mussel derived HAP can be used as a photocatalyst 488 

for the degradation of aqueous pollutants. Methylene blue was successfully degraded (primarily 489 

measured as decolourization at a UV-Vis wavelength of 662 nm) by the heat treated HAP 490 

photocatalyst under both oxygen limited and oxygen rich conditions. Under oxygen limited 491 

conditions, the degradation of methylene blue was approximately 39% after 6 hours and showed 492 

no further increase with longer durations. For the oxygen rich conditions, degradation during the 493 

initial 6 hours was approximately 54% and increased to 62% after 24 hours. The 494 

photodegradation of methylene blue in the presence of HAP as photocatalyst is well modelled by 495 

a series of three first-order- reactions with the first stage reaction rate constant is 6.2 x 10
-3 

min
-1

, 496 

followed by 1.2 x 10
-3

 min
-1

 for the second stage and finally approximately (due to limited data 497 

in this kinetic stage) 1.6 x 10
-4 

min
-1

 for the third stage with an average reaction rate of 2.5 x 10
-8 

498 

mol L
-1

min
-1 

over all three stages. These three reaction stages reflect the currently understood 499 

photocatalytic reaction pathway: primary degradation of methylene blue to azo dye 500 

intermediates, then secondary degradation to smaller more highly oxidised intermediates and 501 

finally degradation of recalcitrants. The final two steps of the reaction had significantly slower 502 

rates than the initial step, which tie in with this mechanism, however it also could indicate that 503 

the reaction is either product inhibited and/or affected by catalyst deactivation. FTIR analysis of 504 

the HAP before and after the photocatalysis experiments showed a decrease in the absorbance 505 

intensity of PO4
3-

 and HPO4
2-

, indicating photo-dissolution of the HAP. This is perhaps due to 506 

trapped electrons generated by the UV irradiation forming surface P-OH
.
 radicals on HAP, which 507 
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can participate as the oxygen and/or oxidant source for the reactions under oxygen limited 508 

conditions, but therefore also causing catalyst deactivation through dissolution. This indicates 509 

that the photocatalytic reaction mechanism in both the solid and liquid phases is different to what 510 

is normally expected from the currently available photocatalysis literature, providing a platform 511 

for future work exploring the materials and operating envelopes for stabilising this photocatalyst 512 

deactivation pathway whilst maintaining acceptable photocatalytic activity. 513 

Overall this project indicates that waste mussel shells can be converted into a HAP photocatalyst 514 

with good photocatalytic activity. This potentially provides a greener route for recovering and 515 

recycling waste shells into hydroxyapatite which can be used as alternative photocatalyst in the 516 

photocatalytic degradation of wastewater components. 517 
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