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Abstract

This paper investigates the effect of surface structure and chemistry on the wetting properties of
nanostructured porous anodic alumina (PAA). Measurements of the equilibrium apparent contact angle
(APCA) were first taken on as produced hydrophilic nanoporous alumina with a range of pore diameters
from 10 to 170 nm, yielding a range of contact angles from 10 to 100°. The PAAs were then coated with a
fluorosilane to change the surface chemistry of the nanostructures. The same trend was observed as in the
hydrophilic case, but the contact angles increased from 106 to 150° for pores sizes ranging from 10 to 100
nm for the hydrophobic PAA. These results probe the limits of the current wetting models such as the
Cassie-Baxter and Wenzel equations for nanostructured materials. A geometric model has been developed

using the equation proposed by Marmur to explain the wetting properties of the bare- and silanized-PAA.
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1. Introduction

The wetting properties of porous materials are traditionally modelled using either the Cassie-Baxter or the
Wenzel equations. The former considers a heterogeneous wetting regime, with two or more species with
differing contact angles [1]. When the second species is air, the cosine of the apparent contact angle

(APCA) can be represented by the following equation:
cosf, = f(cosd, +1)-1 1)
where 0.5, is the Cassie-Baxter contact angle, &, the Young contact angle on a flat smooth surface and f

the surface fraction of solid wet by the liquid. The latter accounts for the effect of surface roughness on
the APCA via a roughness factor, r, which constitutes a ratio of the actual surface to its flat smooth
projection [2]:

cos @, =rcosé, )
In the first case, the liquid droplet sits above the solid surface and air pockets. In the latter, water
penetrates between the crevices of the rough surface. Intermediate cases between these two models can
occur, and can be represented by the inhomogeneous wetting regime proposed by Marmur [3]:

cosd=r,fcos@ +f -1 (3)
The above equation reduces to Eg. (1) for a non-rough, porous surface (rf =1) and to Eq. 2 (2) for a

non-porous, rough surface( f= 1) , when the second species is air.

There has been extensive work to determine a transition between the two regimes [4] and to define a
theoretical framework starting from thermodynamic considerations [3, 5, 6]. More recently though, the
very validity of both models for surface with nanoscale features has been called into question, with some
attributing changes in contact angle to local variations in the line tension due to surface roughness or
heterogeneity [7, 8]. Environmental scanning electron microscopy analysis of liquid droplets on high
aspect ratio pillar structures has shown the presence of a precursor film which develops at the contact line

of the droplet. As a result, the contact line is no longer continuous but breaks down into a distinct set of
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interfaces, negating the idea of a macroscopic contact angle [5, 9]. Similarly, contact angle variation has

been attributed to the pinning of the contact line rather than the variations in the contact area [10, 11].

Porous anodic alumina (PAA) is a nanostructured material prepared by the electrochemical anodization of
aluminium. PAAs are currently used in a variety of areas, ranging from filtration to material templating
and as coatings for electronic devices [12-17]. Their attractiveness resides in the possibility of accurately
controlling pore size and pore spacing via the anodization parameters, making them an excellent model
for systematic studies of material properties at the nanoscale [18]. Wetting of nanoporous alumina by
polymers has been used to alter their surface chemistry (i.e. to increase the hydrophobicity) or to fabricate
polymer nanotubes [19]. Other studies have modified the surface chemistry and roughness of the alumina
systematically by etching the PAA into pillar-like structures and coating with a fluoropolymer to obtain
superhydrophobic behaviour (>150°) [20]. In the latter case, a transitional state [21] between Wenzel and
Cassie-Baxter was used to explain the observed wetting behaviour, with the pore walls partially wetted by
the liquid along with air trapped within the pores. Another recent study also used PAAs to investigate the
apparent transition between Wenzel and Cassie-Baxter regimes for pore sizes in the 100-450 nm range
[22]. The authors suggest that for the smallest pore sizes investigated, partial wetting of the pore could be
observed, whereas for the larger pore diameters the contact angle of the droplet was bigger due to the
pores being filled with air. The authors referred to the former case as a ‘partial’ Wenzel state. Another
study looked at the wetting of capped and open PAAs with pore diameters ranging from 40 to 200 nm
[23]. Here the authors used the Cassie-Baxter equation, which reported large variations in porosity values
with anodization voltage, in contrast with the established notion that porosity values are quasi-constant
for PAASs [24, 25]. Interestingly, the two studies above used very different values for the Young’s contact
angle (the flat, smooth and uniform alumina): 85° in the former [22], and 35° in the latter [23]. Both are
very high for alumina, a hydrophilic, high energy solid [26]. A more accepted value for this kind of
material is in the order of 10-15° as has been found in previous studies of non-porous alumina [18, 27].
Additionally, the wettability of PAA by different solvents has also been investigated, where four different

PAAs with varying pore diameters were analysed (specific diameters values were achieved via etching of
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the pores) [18]. The study focused on the interaction between the properties of the liquids (mainly
considering the dielectric constant and dipolar moment of the solvents) and the solid surface. It found that
DMSO and DMF would fully fill the pores due to the equilibrium between the polar and surface tension
properties, whereas water would not fully fill the pores, thus resulting in an increase in contact angle. In
all these studies, the Cassie-Baxter and/or the Wenzel equations have been used to model the
experimental results obtained. As discussed above, though, the very validity of both models at the
nanoscale has been called into question by theoretical studies. In this paper, PAA are used to demonstrate

the limitations of both models for wetting by water of nanostructured porous surfaces.

2. Experimental Methods

2.1 PAA Fabrication

High purity (99.99%, 10 mm diameter) aluminium discs (Alfa Aesar) were annealed in air at 500 °C for
60 minutes, degreased in acetone, and subsequently electropolished (1:4 v/iv HCIO4/EtOH) prior to the
first step of anodization. The pristine substrates were then anodized at 10 - 25V and 30-80 V in 0.5 M
sulfuric acid (H,SO,4) and 0.3 M oxalic acid (H,C,0,) electrolytes, respectively, for 20 minutes (see Table
S1 in the supplementary information for details on anodization). The alumina formed from the first step
was subsequently removed by wet chemical etching using a 1:1 mixture of 6 wt% HsPO, and 1.8 wt%
H,CrO,4 at 60 °C for 15 minutes [18]. Immediately after the oxide removal the substrate was anodized
again (with the same conditions as in the first step) for 5-6 hours for the sulfuric and 10-12 hours for the
oxalic electrolyte, respectively. PAAs were also silanized using a simple process developed by Aran et al.
[28]. Briefly, 40 pl of fluorooctyltrichlorosilane (FOTS) were dropped into 40 ml of n-hexane. Each PAA
sample was then placed inside the FOTS-hexane solution for 1 hour with gentle agitation. The PAAs were
then taken out of the solution, rinsed and placed in an oven at 100 °C for 1 hour. The samples were then

rinsed with acetone and left to dry.
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2.2 Characterization of PAA
The pore diameter(Dp), interpore spacing (D, ), barrier layer thickness (B) and porosity (p) were

each measured via statistical image analysis of SEM micrographs and atomic force microscopy (AFM)
images. A Carl Zeiss XB1540 Gemini® FESEM microscope and AFM Veeco Multimode with Nanoscope
111 controller were used in this work. The images were also subsequently analyzed with ImageJ and
Gwyddion Software packages. Membrane thickness (L) was measured using a micrometer with £ 5 um

accuracy.

Contact angle measurements were made using the sessile droplet method in air at room temperature with
5 pL droplets of di-ionized (DI) water as the solvent. The alumina substrate was washed with DI water
and HPLC grade ethanol and then thoroughly dried with an Argon stream. The alumina substrate was
then placed on the goniometer and still images were obtained using a Discovery VMS-001 USB
microscope (Veho). The subsequent images were used to calculate the contact angle of the droplet,
utilizing Dropsnake software with the ImageJ imaging process package [18]. Each data point is an

average of 6 measurements within the error + 2°.

SEM micrographs of the porous structure are shown in Fig. 1 (a)-(c). A regular pore structure was
observed for all samples, with limited branching only observed in the sample with the smallest average
pore diameter (Fig. 1 (a)). Cross-sections of the membranes were obtained via focused ion beam
sectioning, confirming the regularity of the pore structure along the membrane thickness and confirming
the pore channels were capped at one end (Fig. 1 (€)). From the results obtained using the SEM and AFM
micrographs the average pore diameter and porosity have been related to the anodization voltage. The
proportionality constant between average pore diameter and anodization voltage (1.25 nm V') supports
previous findings [24]. The porosity varies in the 10-20% range for all membranes, as reported in

literature [24]. Numerical values of all quantities measured are reported in Table S1.
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Fig. 1. FE-SEM image of ordered PAAs top surface (a) average D, =13 nm (10 V, 0.5 M sulfuric, 0°C);
(b) average D, =30 nm (25 V, 0.5 M sulfuric, 0°C); (c) average D, =44 nm (40 V, 0.3 M oxalic, 14°C);

(d-e) FE-SEM of capped PAAs bottom surface; (f) Cross section of PAA and barrier oxide layer.

3. Results and Discussion

The equilibrium APCA of water on the PAAs increases linearly with pore diameter in the range
investigated (10-100 nm) up to approximately 100° for the bare alumina and 150° for the silanized case
(Fig. 2). Extrapolation of the contact angle data for D, =0, i.e. for a solid smooth surface yields a
contact angle of ~13° and ~103° for bare-PAA and silanized-PAA, respectively. The extrapolated values

are in good agreement with previously published data [27] and contact angle measurements performed on

a slab of bare (12+2°) and silanized (103£2°) alumina. From data in Fig. 2, it can be seen that the contact
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angle increases linearly with the pore diameter until a critical value, D; , after which the contact angle

increase slows down, more markedly for the silanized surfaces than for the bare PAAs.
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Fig. 2. Water APCA on bare-PAA (e) and silanized-PAA (m) as a function of the average pore diameter,

(error £2°).

For Dp < D;, both curves in Fig. 2 have the same slope ~0.4° nm™, yielding the following relationship
between the cosine of the APCA and pore diameter:

cosb,, =a'6 +x'D, 4)
where ,,, is the experimental contact angle, 6y the Young’s contact angle (CA) on a flat surface (i.e. flat
alumina), o and « are derived experimentally and ; = bare- or silanized-PAA. The equation shows that
the contribution to the contact angle of the surface structure can be decoupled from the surface chemistry
contribution, given by the Young contact angle for the bare and silanized surfaces. The surface chemistry
represents a constant contribution to the contact angle whereas the changing pore diameters result in a

variable contribution to the contact angle i.e. the smaller the structure the closer the contact angle is to the

Young’s contact angle. The combination of both of these factors ultimately increases the contact angle of

both the hydrophilic and the hydrophobic nanostructures. For Dp > D; , it appears that the APCA for the
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silanized surfaces becomes constant around or just below 150°. For the bare surface, after crossing the

90° threshold, the contact angle increase is slowed down compared to the first segment.

As the APCA increases with increasing pore diameter, the Cassie-Baxter equation for a porous, non-
rough surface appears to be the obvious choice to model the experimental data. The porosity alone,
though, is not sufficient to explain the increase in contact angle, as will be discussed later. This can be
attributed to the well-known characteristic of PAAs to have a quasi-constant porosity of approximately
10-20% [24]. This is due to the fact that as the pore size increases, the number of pores decreases
exponentially, leaving the porosity to be quasi-independent from anodization voltage. The limits
associated with the term f in the Cassie-Baxter equation have been addressed in detail elsewhere [5].
Several adapted Cassie-Baxter models have been developed, but all still depend on the solid surface

fraction varying when the structures size increases [7, 29].

If the porosity alone is not responsible for the increase in contact angle, then this has to be associated with
a larger interaction of the liquid with the solid, i.e. some penetration of the liquid inside the pore has to
occur. This phenomenon has been observed for both hydrophilic and hydrophobic porous surfaces [4].

The extent of penetration is given by a balance of the Laplace pressure of the macroscopic liquid drop on

the substrate surface (ﬂj [9, 30] and the resistance to compression of the air in the pores (assuming
r

that it behaves as an ideal gas and that no air escapes from the pores):

p1V1 = pzvz (5)
where p, = p,,, and,
7TD§L
V1 = 4 (6)

When the liquid is partially filling the pore (Fig. 3), then



2y, C0S 6 zD:(L-96)
py = py+ L0280

ndv, === (7)

where ¢ is the pore filling depth (i.e. how deep the droplet goes into the pore — full penetration would
yield 6 = L). All other symbols are described in Fig. 3a. For simplicity, this model considers the bottom

of the pore to be flat (see Fig. S1); however in reality it has the shape of a spherical cap of radius D, /2

(due to the barrier oxide layer). Given that DL >10°, the error associated with this is in the order of
p

0.1%. The Laplace pressure exercised by the droplet is significantly different for the two surfaces, given
the different wetting properties (Fig. 3b). In fact, it somewhat mirrors the APCA behaviour shown in Fig.
2. It is noted here that since the drop diameter for the lowest contact angles in the bare alumina case is
larger than the capillary number for water, the height of the liquid films was used in lieu of the radius to

calculate the Laplace pressure [4].
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Fig. 3. (a) Schematic of water droplet penetration inside cylindrical channels of length L and diameter
D, for a silanized, hydrophobic, PAA. The liquid penetrates inside the pores by a deptho <L, as a

function of water drop diameter, r and pressure of air trapped inside the pore. (b) Laplace pressure of

water droplets on silanized (m) and bare (®) PAAs as a function of pore diameter.
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For Dp < D;, the dependency of cosine of the APCA on the pore diameter can be modelled using the

inhomogeneous wetting regime (Eg. (3)). Comparing Eqg. (3) and (4), one obtains that:

f=1-xD, 8)
a

r = 9

t=1_.D 9)

As 1, is defined as the ratio between the actual wet surface and its smooth projection, in the case of the

PAA:s it is defined as [3]:

r=1+ 10
f (1_ p) Dp ( )
ZﬂDz /4 2
. P nzD
where the porosity p ==L = ® . Here n is the number of pores and A, the drop-solid

A 4A
contact surface for each value of D . The second relation is only valid when the pore size distribution is

narrow, as is the case for the PAAs used here [18]. This expression for r, results in an excellent

agreement with experimental data, for D, < D; (Fig. 4).

As can be observed from Fig. 4, f decreases with increasing pore diameter, ideally down to 0 when
D, =1/x, where i is obtained experimentally from Eq. (3). The fact that f decreases might appear to

be in contradiction with the experimental evidence that pore filling increases with increasing pore
diameter. In reality, the effect of the reduction of the drop-solid surface has to be taken into account and
this is significantly larger than the increase given by the liquid filling the pore. As such, f can be defined

as:

f=(1- p)% (1)

10
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where A, is the droplet area on a flat, smooth surface where @ =6, . When 6 =0, r, =1 and f =1, it

corresponds to a flat, smooth surface, Ay = A,. On the other hand, when D, =1/x,then f ~10° =0,

as the macroscopic droplet size would ideally coincide with a single pore diameter, with no liquid in

contact with the PAA surface except for the (small) portion of pore wall wet by the liquid. This case,

though, is never reached as can be seen in Fig. 4, where the values for r, and f obtained using Eq. (10)
and (11) deviate from experimental data. The reason for this behaviour is discussed below. The inflection

point corresponds with D, = D, as in Fig. 2.

The behaviour for Dp > D; is discussed below separately for the silanized- and bare-PAAs.
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Fig. 4. (a) parameter (m) f =1-xD, and (o) f :(l— p)%; (b) (eo)r, :1 aD and (o)
K

4p5

14+ —M7
k +(1_ p) Dp

for silanized PAAs as a function of pore diameter. The behaviour is similar for the bare

PAAs.

By substituting the expressions for r, and f in Marmur’s model [3], a good correlation with

experimental data is obtained (Fig. 5, with the Cassie-Baxter and Wenzel equations for the silanized

PAAs drawn in bold dashed lines).

11
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Fig. 5. Cosine of the APCA for experimental data (m), (®) and model data (o), (o) data for the silanized
and bare PAAs derived from Eq. (3), respectively. The Cassie-Baxter and Wenzel models are shown as

dashed lines, based on Eq. (1) and (2), respectively.

3.1 Wetting of (hydrophobic) Silanized PAAs

For the silanized PAAs, the Laplace pressure first increases linearly starting from a value as low as 32 Pa
followed by a quasi-constant value around 100 Pa. Previous experiments in the literature have shown that
pressure can induce a wetting transition from a Cassie-Baxter to a Wenzel-type behaviour [4, 9]. It is
quite clear that for the smallest pores, there is little to no penetration of the liquid inside the pores of
silanized PAAs, consistent with Cassie-Baxter behaviour. In fact, the Laplace pressure of the water
droplet formed for the case of the PAA with the smallest pore size is below the 50-100 Pa threshold for
inducing penetration, as reported in the literature [4, 9]. As the APCA increases, the Laplace pressure

increases and penetration of water inside the pores occurs, leading to a Wenzel-like behaviour. Above

D; , though, the cosine of the APCA is about -0.8, somewhat short of the -1 value that one would obtain

12
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if the whole pore were to be filled with water in an ideal Wenzel behaviour. This is attributed to the fact
that the pore is not completely filled and the pore filling depth, ¢, is a function not only of the PAA

geometric characteristics, pore diameter and pore length, but also of the Laplace pressure of the

overlaying droplet. A full Wenzel case (5 =L,r,=r> 1) could indeed be achieved by applying further

external pressure, as shown in the literature [4]. It should be noted that this could occur only if all the air
present in the pores were to be replaced by water. While some evolution of air bubbles out of hydrophilic
PAA pores through a liquid droplet has been observed before [22], the same behaviour appears unrealistic

for a hydrophobic surface.

3.2 Wetting of (hydrophilic) Bare PAAs

As can be seen in Fig. 2, the contact angle increase for the bare case is more linear than that for the
silanized PAAs. It could also be argued that it is fully linear and no slow-down is observed, within the
margin of error of experimental data. The shape of the Laplace pressure curve points in the latter direction
within experimental error, though the overall value of the pressure is much lower, just at or below the
threshold for liquid penetration for hydrophilic surfaces reported in the literature [9]. It should be noted,
however, that since the bare PAAs are very hydrophilic, there is a strong capillary pressure for the liquid
to enter the pore, and none are withstanding the resistance of the air trapped in the pores. The rationale for
the APCA change with pore diameter is opposite to that of the silanized substrates: The pores are initially
penetrated by water and, as the pore size increases, more and more air is trapped in the pores leading to a
higher contact angle. As discussed in the introduction, a previous study has looked at the wetting
behaviour of bare PAAs with pores in the 100-450 nm range [22], with a wetting transition from the

Wengzel to Cassie-Baxter regime above 250 nm. This was justified, in particular, by assuming the Young
contact angle for alumina to be 6, =85°. This is a high value for alumina, a high energy solid [26]. In

addition, as suggested earlier, literature data of the contact angle of water on alumina is more closely

aligned with the 10-12° value reported here. The experimental results from [22] have been combined with

13
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the ones reported in this paper (Fig. 6, o and e, respectively) showing good agreement in a linear
correlation between the contact angle and the pore diameter. These results lead to challenging the model
proposed in [22], as the transition between the Wenzel and Cassie-Baxter regimes starts for much smaller
pores than what has been previously analysed. The results can be explained assuming the inhomogeneous

wetting regime in Eq. (3) with the parameters in Eq. (10) and (11).
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Fig. 6. Comparison of contact angle values for water on bare, hydrophilic PAAs: this study (e, error +

2°), and (o, error bars from paper) Ran et. al. [22].

Finally, it is noted here that the linear variation of contact angle with increasing pore diameter (and
anodization voltage) in Fig. 3 is conserved when passing from samples anodized in sulfuric, in oxalic and
in phosphoric acid (Table S1). While it is well-known that anions from the electrolytes are incorporated in
the alumina during the anodization process [24], no significant differences in contact angle due to the
presence of anions are expected, since they will not significantly alter the charge state of the alumina

surface [27, 31]

14
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4. Conclusions

This study has systematically tested the wetting properties of nanoscale pore bare- and silanized- PAAs.
By varying the anodization parameters the wettability of the bare-PAA was changed, thereby yielding
APCA from 10° to 100° which were dependent on the pore diameter, but not on the porosity,
highlighting a limit of the Cassie-Baxter equation in modelling porous nanostructures with constant
porosity values for increasing pore size. The surface chemistry of the PAA samples was modified using
FOTS to investigate the effect of surface chemistry and structure of the PAA on the APCA and further
support the findings that in this particular case the Cassie-Baxter and Wenzel equations do not model the
experimental findings. The comparison of the wetting behaviour of the two surfaces allowed the
contributions to wetting given by the surface nanostructure and chemistry to be separated. The
inhomogeneous regime was successfully adapted to model the experimental data with analytical
expressions for the two model parameters, even for the smallest pore sizes, without the need to use the

line tension to fit the experimental data.
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