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Modelling the use of Wolbachia to control dengue fever

transmission

Harriet Hughes1 and N. F. Britton1,2,†

February 13, 2013

Abstract

Experiments and field trials have shown that the intracellular bacterium Wolbachia

may be introduced into populations of the mosquito Aedes aegypti, the primary vector
for dengue fever. In the absence of Wolbachia, a mosquito acquiring the dengue virus
from an infected human enters an exposed (infected but not infectious) period before
becoming infectious itself. A Wolbachia-infected mosquito that acquires dengue (i)
may have a reduced lifespan, so that it is less likely to survive the exposed period and
become infectious, and (ii) may have a reduced ability to transmit dengue, even if it
has survived the exposed period. Wolbachia introduction has therefore been suggested
as a potential dengue control measure. We set up a mathematical model for the system
to investigate this suggestion and to evaluate the desirable properties of the Wolbachia

strain to be introduced. We show that Wolbachia has excellent potential for dengue
control in areas where R0 is not too large. However, if R0 is large, Wolbachia strains
that reduce but do not eliminate dengue transmission have little effect on endemic
steady states or epidemic sizes. Unless control measures to reduce R0 by reducing
mosquito populations are also put in place, it may be worth the extra effort in such
cases to introduce Wolbachia strains that eliminate dengue transmission completely.

1 Introduction

1.1 Dengue fever

Dengue fever has rapidly become the world’s most common vector-borne viral disease. The
recent increase in the geographic distribution of its primary vector, the mosquito Aedes

aegypti, has led to a 30-fold increase in cases over the last 50 years [22], and it is now found
throughout the tropics. Current estimates put the annual number of cases worldwide at
500 million [22], up from 100 million in 1997 [15]. Although dengue fever itself is rarely
fatal, one of its more severe forms, dengue haemorrhagic fever (DHF), is thought to cause
22,000 deaths annually [40], mostly among children. There is currently no vaccination
against the virus, although several are in development and one has reached stage III of
clinical trials [22]. Recent attempts to control transmission have proved unsustainable, so
a new approach is needed [15].

1.2 Wolbachia

Wolbachia, a genus of intracellular bacteria found in arthropods and nematodes, naturally
infects 16% of neotropical insect species [37] and has been artificially introduced into oth-
ers [38, 24]. It is normally present in its host’s eggs (and elsewhere) and is maternally
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transmitted, facilitating its own survival by manipulating reproduction in its host in var-
ious ways, depending on the host species. In mosquitoes it typically induces cytoplasmic
incompatibility (CI), leading to the death (or increased probability of death) of the off-
spring of infected males and uninfected females. Since these offspring are uninfected, this
reduces the proportion of uninfected offspring in the next generation, so giving Wolbachia

a transmission advantage [38]. On the other hand, infection with Wolbachia may affect
host fitness by inducing changes in survival and fecundity [38, 24, 27, 34]. If the fitness
effects are negative (as is usual) the Wolbachia-free steady state is stable, and Wolbachia

can only become established if it initially exceeds a threshold population, determined by
the balance between the advantage conferred by the reproductive manipulation and the
fitness costs [38].

Wolbachia is a potent modulator of pathogen infection and transmission in many in-
sect species, including important vectors of human pathogens [19]. It has recently been
proposed that establishing a Wolbachia infection in an Aedes aegypti population, which
may be accomplished by microinjecting the bacteria into mosquito embryos [24], may lead
to reduced transmission of dengue from mosquitoes to humans. There are two ways in
which Wolbachia-infected mosquitoes may be inferior dengue vectors. First, a Wolbachia

strain that reduces adult survival sufficiently may result in very few infected mosquitoes
reaching the infectious stage [27], since to do so they must survive the relatively long
exposed (infected but not infectious) period for the disease. Second, it has been shown
that infection with Wolbachia can limit a mosquito’s ability to transmit dengue through
its saliva, and experiments with certain strains have shown near-perfect elimination of
the dengue virus from mosquito salivary glands [18]. We shall set up a model that takes
account of these changes in vector fitness and transmission potential.

2 Modelling

We set up a model to study how introducing Wolbachia into an Aedes aegypti population
might affect the spread of dengue fever. In it, models for Wolbachia and dengue infection
are superposed on an underlying model for the dynamics of a stage-structured insect
population. In the absence of density-dependent effects, the insect population may be
modelled by

dN

dT
(T ) = B exp(−mTd)N(T − Td)− dN(T ) = bN(T − Td)− dN(T ).

Here N is the population density of adult female insects, recruitment of offspring to the
adult insect population is delayed by the developmental time Td, d is the per capita death
rate of adult mosquitoes, m is the per capita death rate of pre-adult mosquitoes, and B
is the per capita birth rate. Hence b is the basic per capita recruitment rate, or the rate
of production of adult female mosquitoes for each adult female mosquito alive a time Td

earlier, taking into account density-independent deaths from the pre-adult stage. Density-
dependent effects are then assumed to operate at the larval stage [30, 35], and the model
is modified as in [16] to give

dN

dT
= bN̂F (N̂)− dN(T ), (1)

where N̂(T ) = N(T −Td), and F is a decreasing function with F (0) = 1, and F (x) → 0 as
x → ∞. The model has been parameterised for Aedes aegypti from field data [29, 30] by
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Dye [11], who took F (x) = exp(−hxk), as we shall do when an explicit form is necessary.
Note that Dye interpreted N as the size of a population of mosquitoes (in a particular
temple complex in Bangkok), whereas we interpret it as a population density; this change
will require us to make a correction to Dye’s value of h to account for the area of the
temple complex.

The Wolbachia part of the model simply keeps track of the number of infected and
uninfected offspring to be expected from a given population of infected and uninfected
adults, given that cytoplasmic incompatibility (CI) leads to reduced (or zero) fertility of
uninfected eggs fertilised by infected males. The same principles have been used in discrete-
time population-genetics models ofWolbachia infection [31, 32], following an original model
for CI [7], and in continuous-time population-dynamics models [21, 12], but none of these
incorporated a data-based model for the mosquito population dynamics.

The dengue part of the model is based on standard (Ross) models for malaria [2],
adapted in the usual way to dengue, an immunity-conferring disease, as in [25, 13, 8, 26].

We make the following modelling assumptions.

– There is no age structure in the human population [2]. Humans have equal per
capita birth and death rates, so that the total human population density Nh remains
constant. The death rate of humans from dengue is so low that it may be neglected.

– The adult female mosquito population has a delayed density-dependent recruitment
rate, resulting from larval competition, and a constant per capita death rate [11].
Such a model is appropriate since mosquitoes only have access to a finite number
of potential breeding sites, and density-dependent larval survival has been demon-
strated at such sites [29, 35]. Mosquitoes mate randomly [21, 32], and the proportion
of male and female mosquitoes in each class is equal.

– All parameters are constant, so there is no seasonal variation. In reality the mosquito
population and dengue transmission parameters vary annually with temperature and
humidity, leading to regular epidemics [8]. Taking parameter values from the hot
wet season, when epidemics are most likely, can give an insight as to how these (and
consequently all) epidemics can be prevented.

– Dengue is an SIR disease for humans, with recovery modelled exponentially [2], and
life-long immunity to any given strain [15]. The exposed stage is short, and its
inclusion would have a negligible effect on the results [2]. It has been suggested that
primates may become infected with dengue [15], but if this does occur then it is
unlikely to be significant in urban areas where dengue is most prevalent in humans,
and we shall assume that there is no alternative host. There are four commonly
identified strains of dengue, and the model should be considered as holding for each
one separately. It neglects any interactions between the strains, which are complex
and the subject of much current modelling work [1].

– Dengue is an SEI disease for mosquitoes, with the time spent in the exposed stage
modelled exponentially. The incubation time for dengue in mosquitoes is comparable
to their life time, so that the exposed stage cannot be neglected, but disease models
regard the probability of a mosquito recovering from or dying from dengue before it
dies naturally as insignificant [2].
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Figure 1: Transfer diagram

– Dengue incidence is frequency-dependent for both humans and mosquitoes [2]. This
is appropriate for mosquito-transmitted diseases since female (and only female)
mosquitoes require a fixed number of blood meals in a given time period.

– Wolbachia is maternally transmitted [38], with transmission probability v; we shall
usually take v = 1. Other mechanisms of transmission are so rare that they may be
neglected. When a Wolbachia-infected male mosquito fertilises an uninfected egg,
whether it is uninfected because its mother was uninfected or because its mother
was infected but vertical transmission failed, there is a certain probability u that the
zygote dies through cytoplasmic incompatibility [38]; we shall usually take u = 1.
Wolbachia may alter the fecundity, longevity and dengue transmission potential of
its host [38]. Mosquitoes do not become immune to Wolbachia; no case of mosquito
immunity to Wolbachia has been reported.

– Mosquitoes with and without Wolbachia are equally likely to become infected with
dengue, although they may differ in their ability to transmit it.

A continuous-time model is used as all three populations, the human, mosquito and Wol-

bachia populations, vary continuously with time and do not have well defined discrete
generations. Figure 1 shows a transfer diagram for the model, and Tables 1 & 2 provide
glossaries of all of the variables and parameters used. The model is given by
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Variable Definition
Sm Density of adult female mosquitoes free of Wolbachia and uninfected with dengue
Em Density of adult female mosquitoes free of Wolbachia and exposed to dengue
Im Density of adult female mosquitoes free of Wolbachia and infectious with dengue
Nm Total density of adult female Wolbachia-free mosquitoes, Nm = Sm + Em + Im
bẐm Density-independent recruitment rate of adult female Wolbachia-free mosquitoes
Sw Density of adult female mosquitoes infected with Wolbachia but not with dengue
Ew Density of adult female mosquitoes infected with Wolbachia and exposed to dengue
Iw Density of adult female mosquitoes infected with Wolbachia, infectious with dengue
Nw Total density of adult female Wolbachia-infected mosquitoes, Nw = Sw + Ew + Iw
bẐw Density-independent recruitment rate of adult female Wolbachia-infected mosquitoes
Sh Density of humans that are susceptible to dengue
Ih Density of humans that are infected with dengue
Rh Density of humans that are immune to dengue
Nh Total density of all humans, Nh = Sh + Ih +Rh, constant

Table 1: Variable definitions

dNm

dT
= bẐmF (Ẑm + Ẑw)− dNm,

dEm

dT
= ap(Nm − Em − Im)

Ih
Nh

− eEm − dEm,
dIm
dT

= eEm − dIm,

dNw

dT
= bẐwF (Ẑm + Ẑw)− d′Nw,

dEw

dT
= ap(Nw −Ew − Iw)

Ih
Nh

− eEw − d′Ew,
dIw
dT

= eEw − d′Iw,

dSh

dT
= µNh − a(qIm + q′Iw)

Sh

Nh

− µSh,
dIh
dT

= a(qIm + q′Iw)
Sh

Nh

− cIh − µIh.

(2)

Here bẐm and bẐw are equivalent to the term bN̂ in (1), and represent the basic recruitment
rate of Wolbachia-free and Wolbachia-infected adults, in the absence of density-dependent
effects. The undelayed forms obtained by keeping track of the number of infected and
uninfected offspring are given by

Zm =
Nm + (1− u)Nw

Nm +Nw

(Nm + (1− v)φNw), Zw = vφNw. (3)

The arguments for these are as follows. First, offspring infected by Wolbachia are only
produced by Wolbachia-infected mothers Nw producing offspring that survive to matu-
rity (in the absence of density-dependent effects) at a rate b′, of which a fraction v are
themselves infected: hence bZw = b′vNw, or Zw = vφNw. Second, offspring uninfected by
Wolbachia are produced both by Wolbachia-uninfected mothers Nm producing offspring
at rate b, all of whom are uninfected, and by Wolbachia-infected mothers producing off-
spring at rate b′, a fraction 1 − v of which are uninfected, which gives potential offspring
bZm = bNm+ b′(1− v)Nw. But we then have to take into account that these potential off-
spring may be inviable (with probability u) if their father is infected byWolbachia, because
of CI. Assuming random mating, the probability of inviability is therefore uNw/(Nm+Nw),
which leads to the first equation of (3). The terms in F in the system (2) represent com-
petition between all larvae, whether infected with Wolbachia or not.
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Parameter Definition Expected value

b Per capita birth rate for Wolbachia-free mosquitoes Calculated from
corrected for density-independent survival to adulthood bF (N∗

m) = d
b′ = φb Per capita birth rate for Wolbachia-infected mosquitoes See Table 3 below

corrected for density-independent survival to adulthood
u Probability of a Wolbachia-infected male and uninfected 1 [18, 4, 24]

female producing inviable offspring
v Fraction of the offspring of a Wolbachia-infected female 1 [18, 4, 24]

that are infected
d Per capita death rate of Wolbachia-free mosquitoes 0.12 day−1 [13]

d′ = δd Per capita death rate of Wolbachia-infected mosquitoes See Table 3 below
a Biting rate (bites per mosquito per day) of Aedes aegypti 0.76 day−1 [28]
p Probability of a blood meal leading to a mosquito 0.75 [25]

catching dengue from an infected human
q Probability of a blood meal leading to a human catching 0.75 [25]

dengue from a dengue-infected Wolbachia-free mosquito
q′ = qr Probability of a blood meal leading to a human catching See Table 3 below

dengue from a dengue- and Wolbachia-infected mosquito
c Human recovery rate from dengue 0.2 day−1 [8]
Nh Human urban population density 240 ha−1 [29]
N∗

m Mosquito population density at dengue- and Wolbachia- 1000 ha−1 [29]
free steady state

µ Per capita birth and death rate for humans 4.0× 10−5 day−1

Td Mosquito development time 19 days [30]
e Rate of extrinsic (mosquito) incubation of dengue 0.10 days−1 [36]

h, k Mosquito competition parameters, h corrected for area 0.19 hak, 0.30 [11]
D Mosquito diffusion coefficient 240 m2days−1 [29]

Table 2: Parameter definitions and possible values (to two significant figures)
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3 Analysis

We shall always assume (for a nontrivial problem) that the mosquito population has the
potential to survive in the absence of Wolbachia, so that its maximum per capita birth
rate b exceeds its per capita death rate d, b > d. Then the system (2) has a base-line
(dengue- and Wolbachia-free) steady state given by (Nm, Em, Im, Nw, Ew, Iw, Sh, Ih) =
(N∗

m, 0, 0, 0, 0, 0, Nh , 0), where N∗
m = F−1(d/b) is uniquely defined and positive since F is

a decreasing function with F (0) = 1, F (x) → 0 as x → ∞. Guided by the base-line steady
state, we non-dimensionalise the variables in the model as follows:

nm = Nm/N∗
m, vm = Em/N∗

m, xm = Im/N∗
m,

nw = Nw/N
∗
m, vw = Ew/N

∗
m, xw = Iw/N

∗
m,

zm = Zm/N∗
m, zw = Zw/N

∗
m,

uh = Sh/Nh, xh = Ih/Nh, t = dT.

(4)

The resulting equations are given below and will be used for the remainder of the analysis:

dnm

dt
= αẑmf(ẑm + ẑw)− nm,

dvm
dt

= ρ(nm − vm − xm)xh − ηvm − vm,
dxm
dt

= ηvm − xm,

dnw

dt
= αẑwf(ẑm + ẑw)− δnw,

dvw
dt

= ρ(nw − vw − xw)xh − ηvw − δvw,
dxw
dt

= ηvw − δxw,

duh
dt

= β − σκ(xm + rxw)uh − βuh,
dxh
dt

= σκ(xm + rxw)uh − γxh − βxh,

(5)

where

zm =
(nm + (1− u)nw)(nm + (1− v)φnw)

nm + nw

, zw = vφnw, (6)

the hat denotes evaluation at t − τ , and we have defined the following non-dimensional
parameter combinations:

φ = b′/b, δ = d′/d, ρ = ap/d, σ = aq/d, κ = N∗
m/Nh,

β = µ/d, γ = c/d, α = b/d, η = e/d, τ = dTd.
(7)

The function f defined by f(x) = F (N∗
mx) is monotonic decreasing with f(0) = 1, f(1) =

1/α and f(x) → 0 as x → ∞. For Dye’s function F given by F (x) = exp(−hxk), we obtain
f(x) = exp(−xk log α). The parameters φ and δ represent the birth (fecundity) and death
rates of Wolbachia-infected compared to uninfected mosquitoes, and so we normally expect
φ ≤ 1, δ ≥ 1; ρ and σ are non-dimensional infectious contact parameters (from host to
vector and from vector to host), γ is the non-dimensional recovery rate from dengue for
humans, β is the non-dimensional per capita birth and death rate for humans, α > 1 is
the non-dimensional birth rate for mosquitoes in a Wolbachia-free system, and κ is the
ratio of mosquito to human population density, a crucial parameter of the system.

3.1 Mosquito-only system

Since the total densities of both Wolbachia-uninfected and Wolbachia-infected mosquitoes
are independent of any of the other population densities, the system can be decoupled
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and the equations for the mosquito densities can be studied in isolation. We shall initially
neglect delay effects, and return to discuss these later. With these assumptions, the
equations become

dnm

dt
= αzmf(zm + zw)− nm,

dnw

dt
= αzwf(zm + zw)− δnw, (8)

where zm and zw are given by equation (6). The system is analysed for general parameter
values in the Appendix. Here we consider the special but realistic case (u, v) = (1, 1), α > 1
(since otherwise the Wolbachia-free mosquitoes go to extinction), αφ > δ (since otherwise
the Wolbachia-infected mosquitoes go to extinction), and φ ≤ 1 ≤ δ (so that Wolbachia

has fitness costs in fecundity and survival). The system has steady states E0 = (0, 0) and
E1 = (1, 0), E2 = (0, k), where k = (1/φ)f−1(δ/αφ), and E3 = kδ(φ, δ−φ)/(δ(δ−φ)+φ),
a coexistence state in the positive quadrant. The steady state E0 is unstable, E1 and
E2 are stable, and E3 is a saddle point. The system as a whole will therefore lead to
bistability whenever cytoplasmic incompatibility and maternal transmission are complete,
(u, v) = (1, 1). Which equilibrium is reached depends on the initial populations of both
types of mosquitoes, with two basins of attraction separated by a separatrix. The analysis
in the Appendix shows that the system is still bistable near (u, v) = (1, 1), but E2 is
perturbed away from the nw axis and eventually coincides with E3 and disappears through
a saddle–node bifurcation.

Let us now consider the delay terms in the equations. Looking for solutions as multiples
of est near the semi-trivial equilibria E1 = (1, 0) and E2 = (0, n∗

w), we obtain transcenden-
tal equations satisfied by the eigenvalues s, since the delay terms contribute factors e−sτ

to the equations [23, 5]. The Jacobian matrix J at E1 is triangular and at E2 diagonal,
so that in both cases the equation for s may immediately be factorised. The eigenvalues
at (1, 0) satisfy

s = −1 + (1 + αf ′(1))e−sτ or s = −δ + φe−sτ .

For each of these equations we shall consider how solutions s move in the complex plane
as τ increases from zero, where s = αf ′(1) < 0 for the first and s = −δ + φ < 0 for the
second. Because of the exponential terms, each equation will define multiple branches of s
as τ increases, and we wish to determine whether any branch crosses the imaginary axis.
If so, then instability occurs for some sufficiently large τ , but if not, then instability does
not occur for any τ . For the second equation s = 0 is not a solution for any τ , so a branch
of solutions can only cross the imaginary axis away from the origin. Let s = u+ iv; then

u = −δ + φe−uτ cos vτ, v = φe−uτ sin vτ,

so (u+ δ)2 + v2 = φ2e−2uτ , and there is no solution s = u+ iv with u > 0 if φ2 < δ2 + v2,
which is always true in the biologically realistic case φ < δ. A similar argument for the
first equation shows that instability is only possible if α|f ′(1)| > 2, or bN∗

m|F ′(N∗
m)| > 2d

in dimensional variables. For (0, n∗
w), eigenvalues are given by s = −1 and the roots of

s = −δ + (δ + αφn∗
wf

′(n∗
w))e

−sτ , and instability is only possible if αφn∗
w|f

′(n∗
w)| > 2δ, or

b′N∗
w|F

′(N∗
w)| > 2d′ in dimensional variables. A calculation with Dye’s parameter values

[11], and with his function F (x) = exp(−hxk), shows that neither (N∗
m, 0) nor (0, N∗

w)
is destabilised by the delay terms whatever the value of Td, so that these are the stable
states of the mosquito-only subsystem.

It follows that the only stable (and therefore biologically interesting) spatially uniform
steady states of the system as a whole must involve either Wolbachia-infected or uninfected
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mosquitoes, but not both. In the spatially uniform case it is therefore justifiable to proceed
by studying two four-dimensional subcases of the complete system (5): the system obtained
at the Wolbachia-free equilibrium and the system obtained at the completely Wolbachia-
infected equilibrium. The spatially non-uniform case may be analysed by adding diffusion
terms to the system (8),

∂nm

∂t
= αzmf(zm + zw)− nm +D∇2nm,

∂nw

∂t
= αzwf(zm + zw)− δnw +D∇2nw,

and solving the resulting partial differential equations numerically (using pdepe, MAT-
LAB’s built-in solver for parabolic and elliptic PDEs).

3.2 Wolbachia-free system

The set of equations with the mosquito population at the Wolbachia-free equilibrium is
given by

dvm
dt

= ρ(1− vm − xm)xh − ηvm − vm,
dxm
dt

= ηvm − xm,

duh
dt

= β − σκxmuh − βuh,
dxh
dt

= σκxmuh − γxh − βxh,

(9)

with basic reproduction number given by

R0 =
ρσκη

(γ + β)(η + 1)
=

a2pqeN∗
m

d(c+ µ)(e+ d)Nh

=
a2pqeF−1(d/b)

d(c+ µ)(e+ d)Nh

according to standard epidemiological usage [2], although in modern usage [10, 33] this
parameter combination is referred to as R3

0
(since there are three disease compartments)

rather than R0.
This system has one or two equilibria, the disease-free equilibrium E1 = (0, 0, 1, 0) and

an endemic state E2 = (v∗m, x∗m, u∗h, x
∗
h) when R0 is sufficiently high, where

v∗m =
β(R0 − 1)

ησ + (1 + η)βR0

, x∗m =
ηβ(R0 − 1)

ησ + (1 + η)βR0

,

u∗h =
ησ + (1 + η)βR0

(ησ + (1 + η)β)R0

, x∗h =
ησβ(R0 − 1)

(γ + β)(ση + (1 + η)β)R0

.

The endemic equilibrium E2 is only biologically meaningful for R0 ≥ 1. It coincides with
the disease-free equilibrium E1 at R0 = 1, and this is therefore a bifurcation point. In
dimensional terms, the prevalence of dengue in the human population at E2 is given by

X∗
h = Nhx

∗
h =

µNh(a
2pqeN∗

m − d(c+ µ)(e+ d)Nh)

apN∗
m(c+ µ)(aqe+ µ(e+ d))

. (10)

The disease-free equilibrium E1 = (0, 0, 1, 0) has Jacobian

J1 =









−η − 1 0 0 ρ
η −1 0 0
0 −σκ −β 0
0 σκ 0 −γ − β









.

The characteristic polynomial for this matrix is given by P1(λ) = (λ+β)(λ3+a1λ
2+a2λ+

a3), where a1 = 2+η+γ+β, a2 = (1+η)(γ+β)+1+η+γ+β, a3 = (1+η)(γ+β)−ηρσκ =
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−(1 + η)(γ + β)(R0 − 1). The steady state is asymptotically stable if the cubic equation
λ3 + a1λ

2 + a2λ+ a3 is Hurwitz stable, which is true if it satisfies the appropriate Routh–
Hurwitz criteria. It is clear that a1 > 0, a2 > 0, and easy to check that a1a2 − a3 > 0, so
that E1 is asymptotically stable if a3 > 0, (1+ η)γ + β > ηρσκ or R0 < 1, and unstable if
a3 < 0, (1+ η)(γ+β) < ηρσκ or R0 > 1. At the bifurcation point R0 = 1, a1 > 0, a2 > 0,
and a3 = 0, so that E1 has three stable eigenvalues and one zero eigenvalue.

At this bifurcation point the endemic equilibrium and the disease-free equilibrium
coincide, E2 = E1, and E2 therefore has three stable eigenvalues and one zero eigenvalue
there. Stability of E2 near R0 = 1 is therefore determined by the sign of the eigenvalue
that is zero at R0 = 1, which we find from the Jacobian at E2, given by

J2 =









−ρx∗h − 1− η −ρx∗h 0 ρ(1− v∗m − x∗m)
η −1 0 0
0 −σκu∗h −σκx∗m − β 0
0 σκu∗h σκx∗m −γ − β









.

Expanding by the last column, the determinant of this matrix is

det J2 = (γ + β)(σκx∗m + β)(1 + η)(1 + ρx∗h)− ρ(1− v∗m − x∗m)ηβσκu∗h

= ρηβσκ− β(1 + η)(γ + β) = β(1 + η)(γ + β)(R0 − 1).

This determinant is the constant term in the characteristic polynomial P2(λ) = det(J2 −
λI) for J2. If R0 < 1 this term is negative, the polynomial P2 has an odd number of
positive roots by Descartes’ rule of signs, so sufficiently close to R0 = 1 it has one positive
root since the roots are continuous functions of the coefficients, so E2 is unstable (and
unrealistic). If R0 > 1 the term is positive, P2 has an even number of positive roots,
so sufficiently close to R0 = 1 it has no positive root, so E2 is stable (and realistic). A
transcritical bifurcation occurs at R0 = 1, with E2 entering the positive octant through E1

and assuming its stability as R0 increases past the bifurcation point. Since the endemic
equilibrium is uniquely defined and does not coincide with any of the other equilibria for
R0 > 1, no subsequent changes in its stability can occur. Thus we have a threshold R0 = 1,
above which dengue will become endemic (and the solution will tend towards the endemic
steady state) and below which the system will tend towards the disease-free equilibrium
(DFE).

Although the mathematical system eventually tends to the endemic steady state for
R0 > 1 and to the DFE for R0 < 1, this behaviour takes place over decades and may
be disrupted by seasonal variations, changes in human population densities, changes in
climatic or other living conditions (and hence population densities) for the mosquitoes, or
the evolution of the dengue virus, as well as the effects of interactions between different
dengue serotypes. The disease does however have an epidemic phase that is of short
duration and therefore much more robust to such effects. The final size of an epidemic
in the Wolbachia-free case may be calculated numerically from the equation for yh =
1− uh − xh, those who have recovered from the disease, given by

dyh
dt

= γxm − βyh.

This should be integrated (numerically) up to a time when the first epidemic wave has
passed (on the order of 100 or 200 days) but before birth and death in the human popu-
lation has had a significant effect (on the order of decades).
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3.3 Completely Wolbachia-infected system

A very similar analysis can be performed for the case when all of the mosquitoes are
infected by Wolbachia. In this case the system is given by

dvw
dt

= ρ(n∗
w − vw − xw)xh − ηvw − δvw,

dxw
dt

= ηvw − δxw,

duh
dt

= β − σκrxwuh − βuh,
dxh
dt

= σκrxwuh − γxh − βxh.

(11)

This is just a scaled version of equations (9) (with xm replaced by xw/n
∗
w, vm by vw/n

∗
w, t

by δt, β by β/δ, γ by γ/δ, η by η/δ, ρ by ρ/δ, σ by rn∗
wσ/δ, and κ, uh and xh unchanged).

The basic reproduction number R′
0
is given by

R′
0
=

ρσrηκn∗
w

δ(γ + β)(η + δ)
=

a2pq′eN∗
w

d′(c+ µ)(e+ d′)Nh

=
a2pq′eF−1(d′/b′)

d′(c+ µ)(e+ d′)Nh

.

Again there may be one or two equilibria, the disease-free equilibrium E1 = (0, 0, 1, 0) and
the endemic equilibrium E2 = (v∗w, x

∗
w, u

∗
h, x

∗
h), where

v∗w =
β(R′

0
− 1)n∗

w

ηrn∗
wσ + (1 + η)βR′

0

, x∗w =
ηβ(R′

0
− 1)n∗

w

ηrn∗
wσ + (1 + η)βR′

0

,

u∗h
′ =

ηrn∗
wσ + (1 + η)βR′

0

(ηrn∗
wσ + (1 + η)β)R′

0

, x∗h
′ =

ησrn∗
wβ(R

′
0
− 1)

(γ + β)(ηrn∗
wσ + (1 + η)β)R′

0

,

with the endemic equilibrium only being biologically meaningful for R′
0
> 1. In dimen-

sional terms, the prevalence of dengue in the human population is now given by

X∗
h
′ = Nhx

∗
h =

µNh(a
2pq′eN∗

mn∗
w − d′(c+ µ)(e+ d′)Nh)

apN∗
m(c+ µ)(aq′e+ µ(e+ d′))

. (12)

Since this is just a rescaling of the Wolbachia-free case, a similar argument shows that a
transcritical bifurcation occurs at R′

0
= 1, with E2 entering the positive octant through

E1 and assuming its stability as R′
0
increases past the bifurcation point. Again, R′

0
= 1

is the only potential bifurcation point involving the endemic equilibrium and thus this
equilibrium is stable whenever R′

0
> 1.

The final size of an epidemic in the completely Wolbachia-infected case may be calcu-
lated numerically in a similar way to the Wolbachia-free case, by integrating the equation
for yh,

dyh
dt

= γxm − βyh.

4 Results

4.1 Introduction of Wolbachia

For simplicity, we only consider the introduction of Wolbachia strains with perfect ma-
ternal transmission (v = 1) and complete cytoplasmic incompatibility (u = 1). There
is no indication of significant deviations from these assumptions [18, 4, 24]. If b ≤ d
then Wolbachia-free mosquitoes go to extinction, while if b′ ≤ d′ then Wolbachia-infected
mosquitoes do, so we shall assume b > d, b′ > d′. If φ > δ then Wolbachia-infected
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Wolbachia φ δ r θ θ invasion
strain (theory) (experiment) speed

wAlbB 0.85 [41] 1 [4] 0.63 [4] 0.15 0.15 < θ < 0.20 [41] 2.0m.day−1

wMelPop 1 [24] 1.7 [34] 0 [24] 0.60 θ < 0.65 [34] none
wMel 0.9 [18] 1.1 [18] 0 [18] 0.24 θ < 0.65 [34] 1.7m.day−1

Table 3: Parameters, thresholds and invasion speeds for Wolbachia strains

mosquitoes have a fitness advantage as well as an advantage from Wolbachia’s manipula-
tion of mosquito reproduction, so they will always go to fixation, and we shall henceforth
assume φ ≤ δ. Under these conditions the mosquito-only system (8) is bistable, with
stable Wolbachia-free and completely Wolbachia-infected steady states, and a programme
to introduce Wolbachia into a wild population will only be successful if sufficiently many
Wolbachia-infected mosquitoes are introduced to move the system into the basin of at-
traction of the completely Wolbachia-infected steady state. In the spatially uniform case
considered here, the frequency of introduced Wolbachia-infected mosquitoes must exceed
some threshold θ, Nw/(N

∗
m + Nw) > θ, Nw > θN∗

m/(1 − θ), where Nw is the density
of introduced mosquitoes and N∗

m the equilibrium density of the Wolbachia-free steady
state. The threshold θ may be found numerically by solving equations (8) for various
initial conditions (1, nw), and using an interval bisection method. Thresholds θ are given
for various Wolbachia strains in Table 3. They are generally in line with experiment. Note
that establishment of the wMelPop strain requires an initial release of nearly 1.5 times
the wild mosquito population. The speed of invasion in the spatially non-uniform case is
determined by adding diffusion terms to the equations (8) and solving the resulting partial
differential equations numerically, using initial conditions with local establishment of Wol-

bachia. For the wMel and wAlbB strains Wolbachia then spreads spatially as a travelling
wave, with speeds as shown in Table 3. For the wMelPop strain Wolbachia retreats, and
is eventually forced out of the population.

4.2 Effect of Wolbachia on dengue

Infecting the Aedes aegypti population with Wolbachia reduces the basic reproduction
number R0 through multiplication by a factor of rn∗

w/δ. The wMel and wMelPop strains
could potentially reduce the basic reproduction number to zero if they can eliminate dengue
transmission in wild mosquitoes as successfully as they have under laboratory conditions,
since then r = 0. For the wAlbB strain r/δ = 0.57, and for typical parameter values
n∗
w is about 0.53, so R0 is reduced by about 70%; this reduction depends on N∗

m since
n∗
w does. This strain may therefore be helpful in preventing epidemics when the natural

basic reproduction number is just above unity. Numerical solutions of the systems (9) and
(11) are given in Figure 2 using the estimated parameter values in Table 2 and Wolbachia

parameters appropriate to the wAlbB strain.
The ideal outcome of Wolbachia introduction is a reduction in the local value of R0 for

dengue to below unity, but any reduction has an effect on the endemic dengue steady state,
reducing X∗

h given by (10) to X∗
h
′ given by (12), as shown in Figure 3. However, when

R0 (or κ) is high, the figure shows that the difference is small. This is because disease
prevalence in humans in the large-R0 limit is determined predominantly by the balance
between the birth of new susceptibles and recovery and subsequent immunity. This is clear
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from (10) which gives x∗h ≈ µNh/c, independent of R0, when R0 is large, noting that µ ≪ c
and µ(e+d) ≪ aqe. The final size of the primary epidemic is also smaller when mosquitoes
are infected with the wAlbB strain than it would be with uninfected mosquitoes, but again
it may be seen from Figure 4(b) that the difference is small for large R0, or equivalently
large κ = N∗

m/Nh. Typical values of human urban population density Nh in developing
countries are about 80 per hectare [3], but it is more difficult to find typical values of
mosquito density N∗

m. We used data where both densities were available for the same
location [29], and used this to give a base-line value of κ = N∗

m/Nh = 4.2. From the point
of view of both equilibrium prevalence and epidemic size it is therefore debatable whether
it is worth while attempting to introduce the wAlbB strain into such an area, unless control
measures to reduce N∗

m are also put in place. If it is not possible to reduce N∗
m, every

effort should be made to introduce a Wolbachia strain with r = 0 instead.

5 Conclusions

We have analysed a model for Wolbachia and dengue fever superposed on an underlying
data-based model for Aedes aegypti population dynamics. There are four possible outcomes
for the system as a whole, with or without Wolbachia and with or without dengue. Which
one is reached depends first on whether the chosen Wolbachia strain is able to establish
itself and then on what the corresponding reproduction number of dengue fever is. If both
Wolbachia and dengue persist, then there is a reduction in endemic levels of dengue and
the size of dengue epidemics, depending on the properties of the strain of Wolbachia.

5.1 Modelling

We incorporated a recognised parameterised model to account for competition at the
larval stage for Aedes aegypti. The model is phenomenological, and it may be possible
to set up an alternative taking account of the mechanism of competition. This requires
detailed biological knowledge, but is important in order to derive a reliable expression for
n∗
w = N∗

w/N
∗
m, the relative density of Wolbachia-infected mosquitoes at steady state, and

a crucial determinant of R′
0
. We modelled the time spent by mosquitoes in the exposed

stage as being exponentially distributed. An alternative is to take it as fixed, leading
to a set of delay–differential equations. The essential difference in doing so is that R0

would have been reduced by a factor exp(−d/e) rather than e/(e + d), and hence would
have been rather smaller. We chose our model for its analytical simplicity. Many of the
parameters used in the model vary with mosquito age. It seems that young mosquitoes
undergo a pre-reproductive period before they obtain a blood meal, and inclusion of this
period would reduce R0 further.

We have assumed that there is no seasonal variation in any of the parameter values.
However, multiple changes in the system occur as the result of variations in temperature
and humidity. Both the birth rate and the longevity of the mosquitoes have been observed
to increase in hot, wet climatic conditions [15], and the extrinsic incubation time and
gonotrophic cycle time have been observed to decrease [14]. These effects may be enough
to increase R0, triggering an epidemic. With constant parameters, numerical solutions
for R0 > 1 (Figure 2) show typical behaviour for an immunity-conferring disease, with
a succession of outbreaks decreasing in size and interspersed with virtually disease-free
periods, eventually settling to an endemic steady state. With seasonal variation in the
appropriate parameters these outbreaks would be modified to become periodic, with a
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(a) Wolbachia−free, κ=0.4
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(b) Wolbachia−free, κ=0.2
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(c) Wolbachia−free, κ=0.15
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(d) With Wolbachia, κ=0.4
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Figure 2: The densities (per hectare) of infected mosquitoes (lower curves) and humans (upper
curves) over a 200-day period and over the long term. The initial (non-dimensional) values
used were uh = 0.9, xh = 0.05 and yh = 0.05, with nm = 1 and xm = 0.05 for panels (a)-(c)
and nw = n∗

w and xw = 0.05n∗

w for panel (d), and the parameter values were ρ = 4.8, σ = 4.8,
β = 3.3 × 10−4, γ = 1.7, and, in panel (d), φ = 0.9, δ = 1.1 and r = 0.63, relevant to the
wAlbB strain of Wolbachia. A system with artificially increased human birth and death rates
was simulated to show equilibrium values within a reasonable time frame. Panels (a), (b) and
(c) show the situation when the entire Aedes aegypti population is Wolbachia-free. In (d),
the entire Aedes aegypti population is infected with Wolbachia. In (a) and (b) the long-term
behaviour is shown in the insets. In (c) and (d) the densities tend to zero as t → ∞. The
values of κ are as follows: (a) κ = 0.4, (b) κ = 0.2, (c) κ = 0.15, (d) κ = 0.4.
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(a) Dengue−infected humans per hectare
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(b) Dengue−infected humans per hectare

Figure 3: Bifurcation curves showing the proportion x∗

h
of dengue-infected humans at equilib-

rium, using κ = N∗

m/Nh, the original number of adult female mosquitoes per human (before
the introduction of Wolbachia), as the bifurcation parameter. In each panel the upper curve
represents a Wolbachia-free mosquito population, with a transcritical bifurcation at κ = 0.16,
and the lower curve a completely Wolbachia-infected mosquito population, with a transcritical
bifurcation at κ = 0.53. Panel (a) shows small values of κ, 0 ≤ κ ≤ 1, while in panel (b)
0 ≤ κ ≤ 5; for our parameter values, R0 = 6.2κ.
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(a) Final size of epidemic
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(b) Final size of epidemic

Figure 4: The final size of the epidemic as a function of κ = N∗

m/Nh, the original number of
adult female mosquitoes per human. In each panel the upper curve represents a Wolbachia-
free mosquito population, and the lower curve a completely Wolbachia-infected mosquito
population. Panel (a) shows small and panel (b) larger values of κ, as in Fig. 10, recalling
that R0 = 6.2 when κ = 1.
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period of one or more years. The model does not include stochastic effects, which because
of the virtually disease-free periods are important in triggering real outbreaks. Some noise
could be added to the system.

The model is restricted to a single dengue serotypes, whereas dengue is hyperendemic in
many regions, with cocirculation of several of its four serotypes. The model is still valid for
each serotype separately if there is no interaction between serotypes, but in fact complex
interactions occur. Infection with multiple strains concurrently is of particular interest
since it often triggers the more deadly forms of dengue, DHF and DSS. More complex
models that include classes for infection with all four serotypes may be developed, but
results from the single serotype case are useful in understanding how dengue could be
controlled even when multiple serotypes are present.

Key questions remain as to whether all of the strains would act as predicted in the wild
and whether evolutionary processes may occur that alter the effect that Wolbachia has
on its hosts. Observations from natural Wolbachia hosts suggest that it is possible that
the Wolbachia could rapidly evolve to reduce host fitness and fecundity costs, eventually
enabling faster spatial spread [32, 24]. Of greater concern is whether dengue suppression
will become less effective in time. However this looks unlikely since wMel-infected fruit
flies still demonstrate good disease suppression despite a long-term association [34]. As
for the effect on laboratory versus wild populations, it seems that Wolbachia has less of
an effect on wild populations [32], meaning that it may be able to spread more effectively
than predicted. The model appears to be effective in emulating previous findings on the
spread of Wolbachia, as well as experimental data, and a majority of the assumptions
made in modelling its spread are a fairly realistic simplification of the biological processes.

5.2 Model parameterisation

The parameter values in the model are based on data, although in most cases point
estimates rather than confidence intervals are given in the literature, so it is difficult to give
confidence intervals for the results. In particular, a systematic quantitive study of Aedes
aegypti life history and dengue transmission parameters would be very useful. There is
also some uncertainty over the release frequencies required to establish Wolbachia-infected
populations. Before mass introduction of either of the proposed Wolbachia strains, further
study into their effects on Aedes aegypti would be required, along with wild release trials
to test how the predictions of the model work out in practice.

Thresholds for transmission of dengue are often given in the literature in terms of
the number of mosquito pupae per person [13], since this is a quantity that is relatively
easy to estimate in the field. Doubling these (since pupae live about two days and adults
about eight), thresholds in κ are typically about 0.5 adult female mosquitoes per person
[13] at an ambient temperature of 28◦C. This may be halved at higher and doubled at
lower temperatures, even with changes of less than two degrees Celsius [14], in particular
because of effects on the extrinsic incubation time 1/e and on the biting rate a through
the duration of the gonotrophic cycle. Although both of these are strongly dependent on
temperature it is the shortening of the gonotrophic cycle with increased temperature and
the corresponding increase in a that has most effect, because the elasticity of R0 with
respect to a is 2 while that with respect to e is only about 0.55. The parameter values
that we have taken give a threshold κ value of about 0.16 (although it is higher if we make
the more realistic assumption that mosquitoes spend a fixed rather than an exponentially
distributed time in the exposed phase), appropriate for a rather high ambient temperature
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of about 30◦C. The strong dependence of parameter values on temperature (and to a lesser
extent on humidity) implies that the model should be parameterised anew for each climatic
situation.

5.3 Summary

The model provides a framework for predictions of the effect of various Wolbachia strains
on dengue endemic prevalence and epidemic size, based on an accepted underlying model
for Aedes aegypti population dynamics, the cytoplasmic incompatibility induced by Wol-

bachia in mosquitoes, and a standard model for dengue, with parameter values taken from
data. It is helpful in recommending which Wolbachia strains have the potential to be
implemented as a control method for dengue and how their effects would be realised. The
establishment of a Wolbachia infection relies on low induced fitness costs and a sufficiently
high initial release of infected mosquitoes, as summarised in Table 3. The fitness costs
of the wMelPop strain are too great for it to be a credible possibility for dengue control,
since the introduced population has to be very large and is then vulnerable to invasion by
Wolbachia-free mosquitoes. Introduction of either the wMel or the wAlbB strain should be
feasible, and indeed a stable wMel mosquito population has been successfully established
in Australia [18], and once established these are not vulnerable to invasion. The wAlbB

strain has a slight advantage in its ease of introduction, but this may be outweighed by the
advantage wMel has in suppressing dengue. When R0 is not close to unity, in particular,
reductions in dengue endemic prevalence and epidemic size due to wAlbB may be small,
and the extra effort to introduce wMel, which does not transmit dengue at all, should be
worth while.

In a climate where inadequate control methods are enabling dengue fever to escalate
into a serious global problem, Wolbachia-based control seems to be a feasible option with
the potential for excellent results.

6 Appendix

The mosquito-only system is given by equations (8) and (6), where all parameters are
positive, u ≤ 1, and v ≤ 1. Letting x = nm, y = nw, the system becomes

dx

dt
= αg(x, y)f(g(x, y) + vφy)− x,

dy

dt
= αvφyf(g(x, y) + vφy)− δy, (13)

where

g(x, y) =
(x+ (1− u)y)(x+ (1− v)φy)

x+ y
. (14)

We shall analyse this system under the condition α > 1, which is necessary and sufficient
to ensure that there exists a Wolbachia-free steady state. On the x axis, which is invariant
for the system, y = 0 and g(x, y) = g(x, 0) = x. The equation for x reduces to ẋ =
x(αf(x) − 1), with steady states x = 0 and x = f−1(1/α) = 1, unstable and stable
respectively for the system restricted to the x axis. The full system therefore has steady
states E0 = (0, 0) and E1 = (1, 0), where E0 is unstable and E1 has at least one stable
eigenvalue (with eigenvector along the x axis). At any other steady state we must have
y 6= 0. Such steady states satisfy

0 = αg(x, y)f(g(x, y) + vφy)− x, 0 = αvφyf(g(x, y) + vφy)− δy, (15)
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so, since y 6= 0, αvφf(g(x, y) + vφy) = δ. If αvφ ≤ δ then this equation has no positive
solution for z = g(x, y) + vφy, since f(z) ≤ 1 for z ≥ 0. In fact for this case it follows
directly from the comparison theorem on the second equation of (13) that the Wolbachia-
infected mosquitoes cannot persist, and the solution of the system must tend to the steady
state E1. Let us consider from now on the case αvφ > δ. In this case the properties of f
ensure that the equation αvφf(z) = δ has a unique positive solution for z = g(x, y)+ vφy,
and we obtain

z = g(x, y) + vφy = f−1

(

δ

αvφ

)

= vφk,

say. Now substituting the value of f(z) into the first equation of (15) gives δg(x, y) = vφx,
and with (14) we have

x+ δy = δk,

a straight line crossing the positive quadrant of the (x, y) plane. This must be solved with
equation (14), which with δg(x, y) = vφx may be written

vφx(x+ y) = δ(x+ (1− u)y)(x+ (1− v)φy),

or Ax2 +Bxy + Cy2 = 0, where

A = vφ− δ, B = vφ− δ(1 − u)− δ(1 − v)φ, C = −δ(1− u)(1 − v)φ.

This is a degenerate conic section in the (x, y) plane, whose solution set is the single point
(0, 0) if B2 < 4AC, two straight lines through the origin if B2 > 4AC, or a single straight
line through the origin if B2 = 4AC. In the case B2 > 4AC the two straight lines have
gradients of opposite sign if AC < 0, positive gradients if AC > 0 and B > 0, and negative
gradients if AC > 0 and B < 0. If AC = 0 then at least one of the straight lines is along an
axis. Only straight lines with positive gradients (or along an axis) cut the line x+ δy = k
in the positive (or nonnegative) quadrant and hence lead to a positive (or nonnegative)
steady state solution of the original equations. Note that C ≤ 0 for relevant parameter
values, and C < 0 unless either u = 1 or v = 1 or both. From now on we shall restrict
ourselves to the realistic case that Wolbachia has fitness costs, fixing φ < 1 < δ, so that
A = vφ− δ < 0 for any v ≤ 1.

We wish to determine how the number of realistic steady states and their stability
depends on the parameters u and v, in the relevant region S = [0, 1] × [0, 1] of (u, v)
parameter space. Let us consider the case C = 0 first, so that u = 1 or v = 1 or both. Then
the solution set of the conic section consists of two straight lines, the y axis x = 0 leading
to a completely Wolbachia-infected steady state E2 = (0, k), and the line Ax + By = 0,
leading to a positive steady state E3 with coexistence ofWolbachia-infected andWolbachia-
free mosquitoes if B > 0, but to no realistic steady state if B < 0. The straight line B = 0
in (u, v) parameter space crosses the line v = 1 at (u0, 1), where u0 = 1 − φ/δ, and the
line u = 1 at (1, v0), where v0 = δ/(1 + δ). Since B > 0 at (u, v) = (1, 1), there is a
coexistence steady state as well as a completely Wolbachia-infected steady state at (1, 1),
for v0 < v ≤ 1 but not for 0 ≤ v ≤ v0 if u = 1, and for u0 < u ≤ 1 but not for 0 ≤ u ≤ u0
if v = 1, as shown in Figure 5. At (u, v) = (1, 1) the coexistence state E3 is determined
by the intersection of the line x+ δy = δk and the line Ax+By = (φ− δ)x+ φy = 0, and
is therefore given by (x, y) = (x∗, y∗) = δk(φ, δ − φ)/(δ(δ − φ) + φ). Now let us consider
the interior of the square S, where C < 0. Near (1, 1) then B2 > 4AC and B > 0, so that
the solution set of the conic section consists of two straight lines with positive gradient,
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Figure 5: Steady states in (u, v) parameter space. Outside the closed curve B2 = 4AC, (+,+)
indicates that the solution set of the conic section Ax2 + Bxy + Cy2 = 0 is made up of two
straight lines with positive gradient, (+, 0) (on u = 1 or v = 1) that one of the straight lines
has positive gradient and the other is along the y axis, and similarly for (−,−) and (−, 0).
Straight lines with positive gradient correspond to coexistence steady states, those along the
y axis to completely Wolbachia-infected steady states, while those with negative gradient do
not correspond to steady states. Inside the closed curve B2 = 4AC the solution set of the
conic section is the point (x, y) = (0, 0) only, which does not correspond to a steady state.
Realistic values of (u, v) are close to (1, 1), giving two steady states.

and there are two coexistence steady states E2 and E3. It is easy to show that the curve
B2 = 4AC touches but does not cross the line u = 1 at v = v0, touches but does not
cross the line v = 1 at u = u0, and does not intersect the boundary of S anywhere else.
The curve is sketched in Figure 5. The coexistence steady states disappear through a
saddle-node bifurcation as we move away from (1, 1) and across the curve B2 = 4AC, and
although they reappear later if the curve is crossed again on the other side of the line
B = 0, they are no longer in the positive quadrant and are therefore unrealistic. Values
of u and v given in the literature as u = 1, v = 1 [18, 4, 24], where we have shown that
there is a coexistence steady state as well as a completely Wolbachia-infected steady state,
but a small deviation from these values leads to some Wolbachia-free mosquitoes in the
previously completely Wolbachia-infected steady state.

To determine the stability of the steady states, we calculate the Jacobian matrix J ,
where

J =

(

α(gxf + ggxf
′)− 1 α(gyf + g(gy + vφ)f ′)

αvφygxf
′ αvφ(f + y(gy + vφ)f ′)− δ

)

,

g and its derivatives are evaluated at (x, y), and f and f ′ are evaluated at z = g(x, y)+vφy.
The derivatives of g are given by

gx(x, y) =
x+ (1− v)φy

x+ y
+

x+ (1− u)y

x+ y
−

(x+ (1− u)y)(x + (1− v)φy)

(x+ y)2
,

gy(x, y) =
(1− u)(x+ (1− v)φy)

x+ y
+
(1− v)φ(x + (1− u)y)

x+ y
−
(x+ (1− u)y)(x+ (1− v)φy)

(x+ y)2
.

At the Wolbachia-free steady state E1, at (x, y) = (1, 0), we have g = 1, gx = 1, gy =
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(1− u) + (1− v)φ − 1, z = 1, f = 1/α, and so

J(1, 0) =

(

αf ′(1) 1 + α(1 + vφ)f ′(1)
0 vφ− δ

)

.

The eigenvalues are αf ′(1) < 0 and vφ− δ, so E1 = (1, 0) is stable if vφ < δ and unstable
if vφ > δ, stable for realistic parameter values. We shall initially determine the stability of
the other steady states at parameter values (u, v) = (1, 1). For the completely Wolbachia-
infected steady state E2, at (x, y) = (0, k), g = gx = gy = 0, z = αφk, f = δ/(αφ), and
so

J(0, k) =

(

−1 0
0 αφ2kf ′

)

.

The eigenvalues are −1 < 0 and αφ2kf ′ < 0, so E2 = (0, k) is stable. At (u, v) = (1, 1),
and for realistic parameter values φ > δ, the steady state E3 is in the positive quadrant
and is the only steady state in the positive quadrant. A straightforward but very tedious
calculation then gives detJ < 0 at E3, so that E3 is a saddle point, but a neater proof
is as follows. Define the closed curve Γ to be the boundary of the region defined in polar
coordinates (r, θ) by 0 < θ < π/2, 0 < r < R, for R so large that dx/dt < 0 and dy/dt < 0
on r = R, perturbed into the positive quadrant to pass round the steady states E0, E1

and E2. It is clear that the Poincaré index of Γ is −1, so that E3 is a saddle point.
As we move in parameter space away from (u, v) = (1, 1), then E2 enters the positive

quadrant. As we arrive at and then cross the curve B2 = 4AC it first coincides with E3

and then both disappear through a saddle–node bifurcation, leaving E1 as the globally
stable steady state for non-zero initial conditions in the positive quadrant.
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