

Citation for published version: Mcclymont, D, Kolaczkowski, S, Molloy, KC & Awdry, S 2013, 'Silver catalysts for NOx storage and reduction using hydrogen' ChemEngDayUK 2013, London, UK United Kingdom, 25/03/13 - 26/03/13, .

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Silver catalysts for NO_x storage and reduction using hydrogen

David W. J. McClymont,^{a,b} Stan T. Kolaczkowski,^b Kieran C. Molloy,^c Serpil Awdry^b ^aDoctoral Training Centre, Centre for Sustainable Chemical Technologies, ^bDepartment of Chemical Engineering, ^cDepartment of Chemistry, University of Bath, BA2 7AY, UK.

e-mail: D.W.J.McClymont@bath.ac.uk: URL:http://www.bath.ac.uk/csct

Introduction

Legislation is in place to control emissions from various pollutant processes *i.e.* the Waste Incineration Directive (WID) regulates activities that involve burning or gasification of waste (Figure 1)

Technologies have been developed which react a reductant with NO_x emissions, forming harmless N₂ and H_2O . Development of a material and process to treat NO_x emissions using H_2 is the aim of this project

Utilising H₂ already present in the system (Figure 1) could provide a reductant which does not have to be specially manufactured (in contrast to e.g. NH₃, urea), and hence would be a cleaner approach

H₂ can also be used in NO_x storage and reduction (NSR) processes where NO_x species are first 'trapped' and subsequently reduced through alternate lean and rich-burn cycles (Figure 2)

Close proximity of Pt/Ba sites result in the o_2 NO (1)rapid uptake of NO_x at these locations

- Ba sorbate sites further away from Pt sites 2 have a slower uptake
- 3 Ba sites not in contact with Pt sites trap NO₂ exclusively from the gas phase using the NO₂ disproportionation mechanism

Figure 2: NO adsorption pathways on Pt/Ba/Al₂O₃ NSR catalysts

Catalysts

Solenoid Valve

Channel Size = 1 mm x 1 mm

engine exhaust treatment system

Pt/Ba/Al₂O₃ is considered the 'standard' NSR catalyst and has been extensively studied for this process since original publication by Takahashi et al. (1996). As such, the chemical processes involved during NSR cycles are well understood NSR catalysts generally consist of a noble metal and 'storage component' (alkaline earth metal) supported on alumina. Operating through alternate lean and rich conditions, the NO_x is initially 'stored' on the catalyst surface during lean conditions (Figure 2), in the form of nitrates and nitrites. Subsequent introduction of a reductant, in this case H_2 , reduces the stored species to form N_2 Although silver catalysts have previously been explored for related deNO_x applications, primarily in Selective Catalytic Reduction (SCR) approaches (e.g. Burch et al. (2004), their performance in NSR reactions has not been reported

Table	2: NSR Experimental Conditions	
Phase	Lean	Rich
Composition	1000 ppm NO, 3.3 % O ₂ , N ₂	2500 ppm H_2 , N_2
otal Flow Rate (ml/min)	480	550

Step 1	Heat to 500 °C under N ₂	
Step 2 Reduce in 8000 ppm H_2/N_2 for 30		
Stop 2	Pro ovidiza in 10% 0 /NL for 15 mins	

Figure 9: SEM images of Al₂O₃ 'KK Leaves'

Centre for Sustainable Chemical Technologies

Engineering and Physical Sciences Research Council

Burch, R. et al. (2004). Exceptional Activity for NO_x Reduction at Low Temperatures Using Combinations of Hydrogen and Higher Hydrocarbons on Ag/Al₂O₃ Catalysts. Topics in Catalysis, Vol. 30/31, No. 1-4, pp. 19-25.

Kolaczkowski, S. T. et al. (2006). Novel Alumina `KK Leaf Structures' as Catalyst Supports. Catalysis Today, Vol. 117, No. 4, pp. 554-558.