

Citation for published version:
Duke, M & Swift, E 2005, Portlet Feasibility Study: A report prepared for the GroupLog Project funded by JISC
under the eTools Programme. UKOLN.

Publication date:
2005

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/portlet-feasibility-study(da2ccfaf-3f77-4061-aaeb-4c4e128a6c18).html

1

Portlet Feasibility Study

A report prepared for the GroupLog
Project funded by JISC under the
eTools Programme

Document details

Authors: Monica Duke (UKOLN) and Elaine Swift (CDNTL)

Date: 29th April 2005

Version: 1.0.

Document Name: groupLog-portlet-feasibility.pdf

Notes: Submitted to JISC and published on the Web at
http://www.bath.ac.uk/e-learning/grouplog/jisc/

Summary

This is a report on a study about the feasibility of developing the GroupLog
application as a WSRP portlet, funded by JISC as part of the eLearning Tools
for Learners and Teachers Programme 3/04.

GroupLog Portlet Feasibility Study 29th April 2005

 2

Acknowledgements

UKOLN is funded by the Museums, Libraries & Archives Council (MLA), the Joint
Information Systems Committee (JISC) of the Higher Education Funding
Councils, as well as by project funding from the JISC and the European Union.
UKOLN also receives support from the University of Bath where it is based.

The GroupLog project was lead by the Centre for the Development of New
Technologies in Learning (CDNTL), based at the University of Bath

GroupLog Portlet Feasibility Study 29th April 2005

 3

Primary Audience This study was prepared between September 2004 and March

2005 for the JISC eTools GroupLog project, to investigate the
feasibility of offering GroupLog as an interface or
organisation of Web Services that could be utilised within a
portal. Specifically, the study reports on the feasibility of
porting GroupLog over to a portlet model according to WSRP
specifications.
The study therefore describes the protocols and systems
required to achieve that aim, in technical terms. A description
is provided of the development work undertaken to illustrate
the issues concerned, with code samples. The report
summarises the maturity of the standards and the availability
of resources, and indicates the technical effort and skills
required and different approaches that could be adopted by
GroupLog. Some general conclusions are drawn, so that
together with the background knowledge provided, the
technical lead and the project manager can make decisions
regarding the options available to GroupLog, and the
feasibility of those options.

General Audience

Decision Makers

Technical developers

We believe that the study will also be of interest more
generally to the JISC community:

Decision makers may find that the technical nature of the text
required in some sections of the report are hard to engage with
directly. To facilitate the reading of the report, the non-
technical audience is advised to consult some other documents
first, depending on their prior knowledge in the area of portals.
The following documents are suggested:
A literature review that aims to provide readers new to institutional portals
with an introduction to the topic and an overview of outputs from a number
of institutional portal activities.�[1]
The JISC Portals FAQ [2]
An Ariadne article that gently introduces JSR168 and WSRP in the context
of CREE, another JISC-funded project. [3]
An introduction to WSRP [4]
An introduction to the Java Portlet Specification (JSR168) [5]

Additionally, a small glossary has been provided in Appendix
A to familiarise the reader with the main terms that will be
encountered. This particular audience may wish to read
selectively, omitting section 6 and parts of section 7.

Technical developers will find a large number of links to
resources that provide entry points for those considering
undertaking work in the area of portals and WSRP. The
analysis summarises the state of the art at the time of writing.
The examples show how WSRP development can work in
practice.

GroupLog Portlet Feasibility Study 29th April 2005

 4

1 Executive Summary
GroupLog is a project funded by the JISC under the 03/04 call for projects to develop
E-Learning Tools for learners and teachers. This is a report on an assessment of the
feasibility of developing GroupLog as a WSRP application, carried out by UKOLN in
conjunction with CDNTL. Web Services for Remote Portlets (WSRP) is first
reviewed as a standard by covering the background information obtained from desk
research. The review contains extensive links to portlet-related resources.
Development options are then considered. A test platform that was installed to
complement the desk-research by providing hands-on experience is then described,
together with a sample application illustrating two different ways in which it could be
delivered by WSRP. This report concludes that a solution that involves the use of
Java-related technology is the most practical option given the current status of the
technology. This approach would require a suitable Java platform to be set up and
configured. Significant technical knowledge and programming effort would be
required. The time and experience required to implement such a solution does not fit
within the immediate plans and timing for GroupLog development. The report ends
by drawing some general conclusions that can be used to inform any future decisions
regarding the delivery of GroupLog using WSRP.

GroupLog Portlet Feasibility Study 29th April 2005

 5

2 Contents
1 Executive Summary ...4
2 Contents..5
3 Introduction ..6
4 Background Information: Service Orientated Architectures..................................6

4.1 JISC E-Learning Framework ...6
4.2 Web Services..7
4.3 Portals and Portlets...8

5 WSRP – Web Services for Remote Portlets...10
5.1 Maturity of the WSRP standard ...11

5.1.1 The industry perspective ..11
5.1.2 Implementation availability and support..11

5.1.2.1 Implementations ...11
5.1.2.2 Support ...11

5.1.3 Portlet availability ..13
5.1.4 Take-up in HE and FE (with emphasis on the UK)13

5.1.4.1 Use of WSRP ...14
5.2 Implementations ...15

6 Developing WSRP applications ...16
6.1 Practical Implementation..16

6.1.1 Development styles for portlets..16
6.1.2 The WSRP producer-consumer model...16
6.1.3 Generating the Mark-up ...17
6.1.4 Local and remote portlets...18
6.1.5 The relationship between WSRP and JSR16820
6.1.6 Does it have to be Java? ...21

6.2 The RDN development Platform..22
6.2.1 RDN Include: an example application for assessing implementation
styles 26

6.2.1.1 About RDN-Include ...26
6.2.1.2 Technology behind RDNI. ...27
6.2.1.3 Accessing the RDN through a web services interface28
6.2.1.4 Development of RDN-Include as a WSRP application29
6.2.1.5 Overview of Portal-Portlet interactions using JSR16829
6.2.1.6 Development of a CGI-based portlet ...31
6.2.1.7 Using Web Services ...34
6.2.1.8 Deployment of a portlet into a portal framework.............................35
6.2.1.9 Caveats ...36

6.2.2 Conclusions from development of RDN-Include.................................36
7 Assessing the feasibility of using WSRP for the GroupLog Project....................36

7.1 Overview of GroupLog ..36
7.2 Implementation options for GroupLog ..37
7.3 A GroupLog example...39
7.4 Testing WSRP applications..40
7.5 Feasibility Conclusions ..40

8 General Conclusions ..41
9 Acknowledgments ..41
10 Appendix A: Glossary..42
11 Appendix B: Portal Products..43
12 References ..48

GroupLog Portlet Feasibility Study 29th April 2005

 6

3 Introduction
This report was written as part of the Joint Information Services Committee (JISC)
eTools programme1 and forms part of the GroupLog project. The GroupLog project2
is currently developing a web-based tool that facilitates collaborative group working
within large student cohorts.

JISC, in conjunction with Industry Canada, the Australian Department of Education,
Science and Training and the US Advanced Distributed Learning Initiatives, are
currently describing common e-learning frameworks which have a coherent, common
vision for how future development of e-learning services and applications should
progress. The framework draws upon experiences of other organisations such as MIT
Open Knowledge Initiative and, as such, proposes that the framework be based
around a service-oriented architecture.

In looking to the future for the GroupLog project and how it may be incorporated
within a framework one must consider possible ways that such a framework could be
implemented and, thus, possible implications for the development of GroupLog.

One possible way that the e-learning framework could be achieved is via portal
technologies through the use of WSRP-enabled portlets i.e. portlets that use the Web
Services for Remote Portlets (WSRP) standard. A service oriented approach is
commonly implemented using SOAP-based Web services. There is thus a natural
synergy between using SOAP to deliver the component services that make up an e-
learning application and using the Web Services for Remote Portlets (WSRP)
standard to embed the user-facing parts of the application into third-party portals.

This report investigates the feasibility of developing GroupLog as a WSRP
application by looking into the technology further, highlighting any potential risks,
issues and advantages that need to be considered in the general development of
WSRP-enabled portlets. It then looks at the prototype development of the Resource
Discovery Network’s ResourceFinder as a possible model for the development of
GroupLog and then finally discusses the feasibility of implementing a portlet version
of GroupLog.

4 Background Information: Service Orientated

Architectures
4.1 JISC E-Learning Framework

The JISC E-Learning Framework (ELF)3 describes several layers of components that
are considered important in the compilation of a system that supports e-learning. The
framework identifies three different layers of functionality; common services,
learning domain services and user-agents. (See the ELF web page for a full diagram).
Into these three layers are placed different components, or services, that have been
identified as required to support the layers above.

1 The JISC eTools Programme http://www.jisc.ac.uk/elearning_tools_home.html
2 The GroupLog Project Home Page http://www.bath.ac.uk/e-learning/grouplog
3 The ELF http://www.elframework.org/

GroupLog Portlet Feasibility Study 29th April 2005

 7

By extracting out components that are common to many e-learning applications it is
envisaged that applications utilised within such a framework could employ those
common services rather than each application employing its own version of the
service thus reducing duplication of effort and increasing the ease with which a large
loosely couple learning environment could be implemented. A framework that utilises
these concepts is said to be employing a Service-Oriented Architecture (SOA).

As Wilson et al [6] explain in their paper, the framework is merely a description of the
possible components within the framework and it neither describes a design nor an
implementation of the framework.

In outlining some examples of framework design and possible implementations,
Wilson et al demonstrate how such an architecture, for educational systems, can be of
benefit. For example, they propose an e-learning framework that shares components
with an e-Science framework and suggests that one possible implementation could
employ the use of portals to utilise some of the identified web services.

It should be noted, however, that the ELF is a proposal for how future e-learning
systems could be developed rather than the present developmental state of e-learning
within the UK or abroad. At present, very few of the services identified by the
framework exist in a robust form though JISC are presently funding programmes and
projects that will develop some of these services. Furthermore, as part of this report
will illustrate, some of the technologies, upon which the framework is basing
development of these services, are still in their infancy and hence a full
implementation of an e-learning system that is based on the JISC e-learning
framework is still some time away.

4.2 Web Services

A SOA differs from a standard application architecture in that it relies upon
functionality for an application being provided by discrete pieces of software which
are not necessarily embedded within the application itself. These pieces of
functionality are collectively called services and may reside in another application or
be entirely standalone. This concept can be extrapolated further to the extent that the
services may be distributed among servers that reside in different organisations and
may be accessed via the Internet. Thus a Web Service can be described as a piece of
functionality, exposed through a network such as the Internet, which uses an agreed
set of standards to exchange data with other Web applications.

The World Wide Web Consortium (W3C) and the Organization for the Advancement
of Structured Information Standards (OASIS) have been fundamental in refining the
agreed standards via which Web Services can communicate with each other and other
applications.

Firstly, a Web Service exchanges data with applications using XML (Extensible
Markup Language). The XML is structured according to a standard protocol called
Simple Object Access Protocol (SOAP). It is this structured XML document that an
application using a Web Service can then process and utilise, displaying the data to
the user as the internal application logic determines.

GroupLog Portlet Feasibility Study 29th April 2005

 8

To use a Web Service an application has to know what functionality is available and
how it may use that service. This information is published using another standard, the
Web Service Description Language (WSDL), which describes, again in XML, how to
communicate with the desired Web Service.

To enable applications to discover Web Services, their information may be published
in a ‘service registry’ using Universal Description, Discovery, and Integration
(UDDI), an XML-based system for registering Web Services, i.e. a yellow pages of
Web Services.

The XML data is typically transported between an application and a Web Service via
the Internet either using standard protocols (HTTP) or encrypted (SSL). While SOAP
is the more versatile protocol to use in consuming Web sSrvices an alternative method
of calling a Web Service is through the use of a REST (Representational State
Transfer) style URL. This URL has calls to functions available embedded in the URL
itself rather than being passed via a SOAP XML file and is limited to using HTTP as a
transport mechanism. Amazon.com have exposed some of the functionality of their
Web sites as Web Services and applications wishing to use them send requests via a
REST-style URL.

A useful example, illustrating the concept of consuming web services, can be found at
http://www.allconsuming.net/ where the author utilises the web services provided by
Amazon to display information regarding books that have been recommended by
authors in their weblogs.

4.3 Portals and Portlets

A portal is a Web-based application that offers a suite of commonly used tools and
serves as a single point of access to these tools. It is sometimes, but not always,
possible to personalise elements of a portal. Within the e-learning community, an e-
learning portal can offer both students and staff access to a variety of required
services such courses, collaborative toosl, library facilities or student administration.
In essence a portal can be considered a one-stop shop to all the services that a
particular community requires. Further background information regarding portals can
be found at [2].

A portal can be either built from scratch based around an institution’s present
information architecture or based upon an existing portal framework either
commercial or open source.

There is a variety of developmental work around portals within UK Higher Education
institutions. The University of Bristol Information Services web site on portals and
portal frameworks presents a table4 of the variety of portals/portal frameworks that are
currently being employed by various institutions. From the table it can be seen that
there is a large spectrum of portal technologies being employed from ASP.NET or
other Microsoft technologies to IBM Websphere (based upon Java) through to open
source solutions such as UPortal or Zope. Some institutions are also using solutions

4 http://www.bristol.ac.uk/is/projects/portal/portalbytes#list

GroupLog Portlet Feasibility Study 29th April 2005

 9

from commercial Virtual Learning Environment providers such as Blackboard
(Blackboard Community Portal System) or WebCT (WebCT Vista).

To gain some level of the use of portals in an international arena, uPortal lists over 70
institutions that are using its portal server ‘in production’ circumstances5 with another
60 institutions presently implementing the server.

As previously stated the JISC ELF is a description of the possible services that could
be incorporated into an e-learning framework rather than an implementation of a
system. Utilising the functionality of a portal framework is one way in which the ELF
could be realised. In particular, portals can employ discrete blocks of functionality
called portlets.

JISC define a portlet as “In the context of personalisation and embedding, portals can
achieve this through creating distinct building blocks of functionality, e.g. cross-
search, alerting, listing, and each one offering a visible component to the user. Each
building block is known as a portlet. These can be joined together to create a portal
environment, within which various degrees of personalisation can be incorporated, or
embedded within a separate environment as required. Portlets feature heavily in
many of the current portal building frameworks such as the Apache Jetspeed project,
IBM's WebSphere Portal Server and Oracle's Application Server Portal.” [2]

Thus a portal can be envisaged as an amalgamation of various portlets.

A portlet provides fragments of HTML code that wrap around the content that has
been requested by the portlet container, usually the portal which is then displayed to
the user in a single web page together with the HTML fragments from other portlets.

To ensure that portlets and portals can communicate with each other successfully, a
Java specification called JSR 168 has been introduced in recent years. Presently not
all portals can understand or communicate using this specification but portal
developers are currently implementing or looking to implement this specification with
their products.

Hence one can see how portlets could be used to deliver some of the individual
components that are outlined within the ELF framework. For example, a portal could
utilise portlets that supply authorisation, authentication, group management and chat
facilities in conjunction with other services such as activity authoring and
management.

However, some portlet-development approaches rely heavily on close integration with
the portal that contains them. To achieve a fully service-oriented approach as outlined
by the JISC ELF, it should be possible to re-use remote portlets, based on independent
external services, within a portal.

The remainder of this report investigates this possibility in further detail using the
RDN as a case study and then, drawing upon the findings of that study, looks into the
feasibility of utilising GroupLog as a WSRP application.

5 http://mis105.mis.udel.edu/ja-sig/uportal/

GroupLog Portlet Feasibility Study 29th April 2005

 10

5 WSRP – Web Services for Remote Portlets
Web Services for Remote Portlets (WSRP) is a specification approved by the
Organization for the Advancement of Structured Information Standards (OASIS). [7]
Version 1.0 of the standard was approved in August 2003 and developed through the
joint efforts of two OASIS technical committees. According to the specification,
WSRP “defines a web service interface for accessing and interacting with interactive
presentation-oriented web services.”

Portals and other Web applications render and aggregate information from different
sources and provide it in a compact and easily consumable form to an end-user. The
WSRP specification provides a common protocol and a set of interfaces for
presentation-oriented web services to allow easy aggregation in the form of a plug and
play solution. The portal acts as an intermediary between end users and WSRP
services and aggregates services from many different content providers. The use of
WSRP is intended to remove the requirement for significant custom programming
effort when integrating remote applications; the writing of special adapters for
applications and content providers to accommodate the variety of interfaces and
protocols used by content providers is no longer required.

In other words, a portal brings together different information sources and manages
their coherent presentation to an end-user. WSRP belongs at the back-end of the
portal, providing a standardised way for the portal to access those content sources that
it wishes to present to the user. WSRP offers a web-services conformant interface for
interaction with content, producing output that is geared towards presentation in
portals, and amenable to content management control that is required within a portal
co-ordinating content from different sources. The WSRP protocol governs the
interaction between the portlet and the consuming portal, and not the implementation
specifics of the portlet, therefore local control within the portlet is preserved.

Figure 1: Portals act as user-facing intermediaries that can re-use remote content

For the content-developer, the attraction of WSRP is to “write-once deploy
anywhere”; once content is available as a WSRP portlet, it is then deployable in all
portals which support the standard. The benefits that are expected to accrue as WSRP
products become deployed and WSRP is used to access remote content are [4]:

• Content sources exposed using WSRP will find larger audiences as they are
available to add to a larger set of portal pages

1.1.1 PORTAL
Aggregates
content and
presents it to the
end user

 Remote content made
available through
WSRP

GroupLog Portlet Feasibility Study 29th April 2005

 11

• Content sources will be able to better manage the deployment and upgrading
of their service by retaining direct control over those processes.

WSRP layers on top of the existing web services stack, including SOAP, XML and
URI/URL. The interfaces are defined using Web Services Description Language
(WSDL). Future versions are intended to use future applicable Web Service standards
such as those that are expected to develop in the areas of Security and Policy.

5.1 Maturity of the WSRP standard

5.1.1 The industry perspective
The Web Services Roadmap website6, which is part of the CBDI Journal (Insight for
Web Services and Software Component Practice), is sponsored by a number of
commercial players (e.g. IBM and Microsoft). It provides a useful overview of Web
Service related protocols (including the bodies involved in their development and
current status): http://roadmap.cbdiforum.com/reports/protocols/summary.php

The site also assesses the status of various Web Service protocols and suggests a
timeline for their adoption and relevant roadmap actions. WSRP is classified as an
early adoption protocol, defined as “ More robust implementations available and
protocol well into standards process, encourages production usage by end user
organizations” . This has been its classification since May 2004. Although WSRP is
not as yet considered to be ‘mainstream’ , its use is encouraged.

5.1.2 Implementation availability and support
A measure of WSRP protocol maturity can be made against the quantity of
implementations on the market (commercial or otherwise) and the quality of support
available to developers wishing to adopt the standard.

5.1.2.1 Implementations

The implementations of toolkits supporting WSRP development are summarised in
the next section, and described in more detail in Appendix B. Although there are a
number of free and commercial applications, there is a heavy emphasis on Java, and
some languages (for example Perl and PHP) appear to be under-represented or not
represented at all, particularly when looking for open source and free access to
software.

5.1.2.2 Support

Support for WSRP developers revolves mainly around mailing lists, Weblogs, and
vendor (or developer) support for a specific product. Weblogs and mailing lists
provide the backbone of community support. Product-specific mailing lists although
geared to answer product-related queries, also often discuss pros and cons of different
approaches and these more general discussions are of wider interest and worth
pursuing. Examples of product-specific community support forums include those
provided by JBoss7, LifeRay8, Exo9, WebSphere10 and Oracle11.

6 http://roadmap.cbdiforum.com/reports/protocols/
7 http://www.jboss.com/index.html?module=bb&op=viewforum&f=205

GroupLog Portlet Feasibility Study 29th April 2005

 12

“ A Day in the Life of a Software Developer” [8] provides extensive portal and portlet
development coverage including polls on the popularity of products (both commercial
and open source), news about product development, pointers to articles and resources,
as well as opinion. The back-chat (or comments posted in response to the main post)
add to the value by balancing the range of views. There is an associated mailing list
[9] with over 2000 subscribers (as of February 2005). The same blog is also available
at two alternative sites, http://jroller.com/page/portlets (with links to other blogs) and
at http://portlets.blogspot.com/. Uncommented bytes [10] contains some portlet-
development entries and news amongst other technology-related posts.

A complementary approach to the blogs is the Java.net portlet community site [11],
which includes a WIKI with links and specifications, announcements and tips, with a
focus on JSR168. It also hosts another portlet blog [12].

A number of vendors (or sometimes independent developers) provide articles
introducing the standard, often backed by introductory development on a specific
platform. Once again, although focussed on only one product and thus requiring
access to that product to follow the examples through to implementation, these articles
often address more general points, such as explanations of the flow of processes or
guidelines regarding coding style and practice. The latter tends of necessity to be tied
to a specific development platform (e.g. Java), and often comes with sample annotated
code. Frequently the source code of the example applications is also available for
download.

An introductory place to start reading (besides the specifications) is an early article by
two of the members of the technical committee that defined WSRP [4] which provides
an overview of the main ideas of WSRP. Introducing the Portlet Specification (Parts
1 and 2) [13,14] are JSR168-specific but also discuss alignment with WSRP. An
example portlet and further explanations on the relationships between portals, portlet
containers and portlets are available in Part 2 of the article12. Similar ground is
covered in [15] using a different example demonstrated for use with the Liferay
product. The code samples (which are in Java/JSP and can be downloaded) are
walked through to illustrate the portlet lifecycle and interaction with the portal.

BEAWeblogic’ s site ‘Building Portal Applications’ [16] section covers the
development of portlets with a focus on using the products’ portlet creation wizard,
but also contains examples of JSR168 compliant code of configuration files when
discussing the production of such code. Sun’ s “ Building JSR 168-Compliant Portlets
with Sun Java Studio Enterprise” [17] discusses WSRP and JSR168 and their
features. The example (which accesses the Google Web Service) closely follows use
of the GUI for portlet creation and deployment, but the code samples are then

8 http://forums.liferay.com/
9 http://www.exoplatform.com/portal/faces/public/exo/home/community/forum
10 http://www-106.ibm.com/developerworks/forums/dw_forum.jsp?forum=168&cat=9
11 http://www.oracle.com/technology/products/ias/portal/discussion_forums.html
12 Note that an updated version of the code found on the on-line site was distributed on the Pluto
mailing list on 13 October 2003 Available at
http://nagoya.apache.org/eyebrowse/ReadMsg?listName=pluto-
user@portals.apache.org&msgId=1720059

GroupLog Portlet Feasibility Study 29th April 2005

 13

discussed. IBM describes the main issues in converting a portlet from the proprietary
IBM Portlet API to the JSR 168 API, highlighting aspects of JSR168 in the process
[18]. A sample portlet is available for download from the article site. A good list of
these and similar articles is provided at [19]

5.1.3 Portlet availability
One other measure of WSRP take-up is the range and availability of WSRP portlets
available for consumption by prospective portals. The Portlet Open Source Trading
site (POST)13 is an open source site for organizations to share portlets developed
according to the new JSR 168 and WSRP standards. This SourceForge site also
includes forums for discussion. Unfortunately this site still remains somewhat
underpopulated, but two popular applications are available for download there14:

The Google portlet is a simple portlet that searches Google using the Google search
API. It comes available as a war15 file for deployment and has been tested against
Pluto. The Google API jar is also needed as well as the license key obtainable from
Google. Note this example is in written in Java.

The RSS portlet is a portlet that views RSS 0.91 and 2.0 newsfeeds. It includes the
edit mode for adding or eliminating additional newsfeeds.

Two alternative initiatives that act as portlet sources are the Java Portlet Community
Site [11] and the file section associated with the Yahoo! mailing list [9] managed by
Punit Pandey (which contained 15 portlets in February 2005).

The other sources of portlets are either portlets that are commercially available with a
product, which may be standards-compliant or built to the product proprietary API,
(see, for example, Knowledgeworks16 which advertises portlets for SCORM-
compliant e-learning applications, or the BEA Weblogic sample library), or
occasionally code available with articles, such as ones mentioned above.

5.1.4 Take-up in HE and FE (with emphasis on the UK)
Within the UK Higher and Further education sectors JISC-funded portal-related
activity has taken place, in addition to institution-led initiatives. Two prominent
examples are the PORTAL [20] project which resulted in the use of the uPortal
product at the University of Hull and the SPP project [21] which carried out
development within the Jetspeed framework, with a subject-specific focus. Both these
projects have produced substantial documentation about their activities ranging from
reports of their development experiences to conference presentations. Additionally,
JISC has released a number of case studies (some contributed by the above projects)
regarding portal activity in UK HE and FE institutions [22]. The UK has hosted
meetings as part of the uPortal JA-SIG17 activities over recent years [23] and a UK

13 http://portlet-opensrc.sourceforge.net/
14 To obtain the code, click the POST link on the main page, then click [View ALL Project File] on the
SourceForge site.
15 A WAR is a Web application archive, a package of files relating to a web application that facilitates
deployment to a server.
16 http://www.techniques.org/products_knowledgeworks_portals.php
17 Java in Administration Special Interest Group

GroupLog Portlet Feasibility Study 29th April 2005

 14

branch of JA-SIG18 has developed. A mailing list exists for discussing portal-related
issues in the UK19, hosted by JISCMail, and the University of Bristol maintains a list
of links of portal resources and implementations, which gives an idea of the
institutions participating n portal development.

5.1.4.1 Use of WSRP

Despite this level of portal activity, the scope and its timing make it difficult to gauge
the indication of interest specifically in WSRP, since the period covered by the
activities mostly predates WSRP. PORTAL and SPP both used Java platforms,
working with versions of the portal products which were based on the JSR168
standard, with a stated timeline for moving towards WSRP development support. It
would be expected that WSRP support will follow as versions of the software (uPortal
and Jetspeed, or other packages), are updated within institutions. On the other hand, a
move to WSRP would also need to be motivated by suitable WSRP applications
becoming available which fulfil HE/FE portal needs.

During the course of this study, a small number of instances were located which
demonstrate emerging awareness and experimentation with the WSRP standard. The
University of Oxford is currently undertaking portal work20 and at least one developer
has been actively involved in testing WSRP support and contributing to the local
(UK) and international discussion of the standard [24].

The Connect WSRP trial, on the other hand, is an initiative by JISC and the Higher
Education Academy to bring together information, resources and community building
opportunities in the form of portal services that can be found in one site, or
individually embedded in the sites end users frequent. The Connect portal has been
specifically designed as a set of discrete services which can be incorporated within an
external portal or web site in order to provide functionality for users. The services are
primarily designed to meet the needs of staff within universities and colleges who
support teachers (including librarians, learning technologists, staff developers and
curriculum developers) and include an indexed set of resources for learning and
teaching and a searchable funding database. The project recently called for
collaborators interested in testing these services as WSRP applications21.

CREE22 is taking a two-pronged approach to investigating portals and portlets. On
one hand it is gathering evidence of user requirements when interacting with a range
of systems and services within an institution, such as VLEs and institutional portals.
The other strand of work is technical and concentrates on making search tools
available through standards such as WSRP, investigating in detail, testing and
documenting the practical integration of these tools with reference portal
implementations.

18 The JA-SIG UK mailing list http://www.jiscmail.ac.uk/lists/jasig-uk.html
19 JISCMail PORTALS list
http://www.jiscmail.ac.uk/cgi-http://www.jiscmail.ac.uk/lists/PORTALS.html
20 http://www.oucs.ox.ac.uk/portal
21 The CONNECT services
http://www.connect.ac.uk/ixbin/hixltp?_IXSESSION_=tJ_1wVjPpOl&_IXACTION_=file&_IXFILE_
=templates/welcome_embed.html
22The CREE project web page http://www.hull.ac.uk/esig/cree/

GroupLog Portlet Feasibility Study 29th April 2005

 15

The GRID community in the UK is showing signs of engagement with WSRP, mainly
through involvement with GridSphere, the portal product which has its roots in the
Grid community. In February/March two events, a workshop and a training session23,
were hosted by the UK National eScience Centre (NeSC)24.

The following extract from an email to the WSRP4J mailing list25 perhaps best
typifies the likely current general position of developers and strategists working
within Universities:

 “ We are a university implementing a student portal via uPortal and are trying to
determine whether WSRP would help us meet the needs of
application developers on campus who don't want to learn java to create a JSR 168
compliant portlet, but would instead like their (e.g. ASP, PHP) applications to
somehow be "plugged in" to the portal. UPortal currently only has support for WSRP
Consumer (they deprecated WSRP Producer), and it says future implementations of
WSRP will follow the WSRP4J standard.”

Whilst the potential role for WSRP to portal-enable university applications is being
assessed and is generating interest, there is still uncertainty when judging how
advanced product support is in practice, and the implications of going down the
WSRP route are not yet fully understood, particularly from an implementation
perspective.

5.2 Implementations

A review of online sources carried out in September 2004 reveals that there are a
number of open source and commercial toolkits for the development of portlets and
portals, supporting JSR168 and/or WSRP. These are offered on a number of language
and development platforms – the products are listed in table 1 below and more
detailed summaries are found in Appendix B. The products range in sophistication
from complete enterprise portal solutions to simpler libraries which provide a portlet
container for developing and running portlets. A full review of all the available
products is beyond the scope of this report – the table in Appendix B shows that there
is a choice of commercial or free solutions. The information in the table was
compiled from the product web pages. Two of the products (Pluto and Jetspeed 2) are
described in detail later in section 6.2, since these products were installed and used
during the practical part of this study.

23 http://www.nesc.ac.uk/esi/events/571/ and http://www.nesc.ac.uk/esi/events/549/
24 National eScience Centre http://www.nesc.ac.uk/
25 WSRP4J is an Apache open source project to facilitate quick adoption of the WSRP standard by
content and application providers and portal vendors. The WSRP4J users mailing list is at
http://nagoya.apache.org/eyebrowse/SummarizeList?listName=wsrp4j-user@ws.apache.org

16

Table 1 Summary Table of Products

Product Name Company/
Organisation responsible

Pluto/WSRP4J Apache
EXo platform EXoPlatform SARL
GridSphere GridLab project (funded by EU

under IST)
UPortal JA-SIG
Jetspeed 2 Apache Jakarta
Liferay Enterprise Portal Liferay
Oracle AS Portal Oracle
Sun Java System portal Server 6 Sun
Vignette V7 Portal Services Vignette
WebSphere Portal and Portal Toolkit IBM
WebLogic Portal 8.1 BEA
Plumtree Plumtree software
BowStreetPortletFactory Bowstreet
Clickmarks PortletFactory Clickmarks
Kapow Kapowtech

6 Developing WSRP applications
6.1 Practical Implementation

The first part of this report was based on desk-research and provided a review of the
maturity of WSRP as judged from the information available on products and support.
The second part of this study takes a more pragmatic approach, by describing the
production of WSRP applications from a developer’ s point of view. In this section
the actual experiences of working with a JSR168/WSRP development platform are
reported, and an example application (RDN-Include) is used to illustrate different
development options.

6.1.1 Development styles for portlets
As mentioned, a portal acts as an interface with the user, aggregating content from
various sources. There are various strategies that may be employed to integrate and
deliver local and remote content. WSRP provides the opportunity for adopting a
standardised way of delivering and re-using content from different sources,
particularly remote ones. In the following sections, different models of acquiring and
generating content are examined, placing WSRP in the context.

All models ultimately result in the generation of HTML content for integration into a
portal, however the processes by which the HTML is generated may vary and may
affect the degree of integration, portability and potential for re-use of a specific
portlet.

6.1.2 The WSRP producer-consumer model
Producers and consumers are roles defined by the WSRP standard. These two roles
take on different responsibilities within the interchange needed to generate, aggregate

GroupLog Portlet Feasibility Study 29th April 2005

 17

and process interactions so that mark-up from content sources can be presented to a
user.

The Producer is defined as the actor that provides a set of Web Service interfaces for
the use of the WSRP Consumer. The services include self-description so that the
Consumers can find out information about the Producer and the services (or portlets)
that it offers and Mark-up to interact with the content fragments. Some of the
interfaces that Producers could support (such as registration, which represents a
relationship between the two actors) are optional.

The Consumer communicates with the Producers. It gathers and aggregates mark-up
from the Producers and presents aggregated pages to its users. A typical example of a
consumer is a portal.

The third role is that of the portlet. Portlets are the actual web applications that the
producers offer to consumers, and they generate the mark-up that is then re-used for
presentation to the end-users.

The place of GroupLog within this model is as a potential producer, i.e. it is a content-
provider, wishing to develop a WSRP application for consumption by Consumers.
More specifically, through the use of one or more portlets, GroupLog wishes to make
a set of Web Services that can be made available remotely to third parties through a
standardised way, producing Mark-up for presentation and interaction with the
GroupLog application services.

6.1.3 Generating the Mark-up
The processes taking place within the portlet can be separated functionally into two
kinds, those dealing with the application logic and those dealing with the presentation
logic. To consider a straightforward example, for a ‘simple calculator’ portlet, the
application logic takes in two numbers, adds them together and returns a result, and
the presentation logic prepares the HTML for the display of the input and output. For
example in the case of the simple calculator, the HTML could be a form where 2
figures are entered to be added, and the output is an HTML table displaying the result
and the inputs, containing suitable wording etc.

Figure 2: Portlet Application and Presentation Logic

Simple
calculator

portlet

{number
processing
code

Produce
HTML
markup}

Application
Logic

Presentation
Logic

GroupLog Portlet Feasibility Study 29th April 2005

 18

One way to deliver a portlet is for the portlet to implement both the application
processing code itself and the presentation code (i.e. produce the markup), as depicted
in the above diagram.

Alternatively, the portlet could take advantage of an external application that takes
care of the application processing. This could be a number of different things e.g. a
CGI application, a SOAP service, an external library.

Figure 3: External services can be re-used through a number of different
interfaces

The portlet then has to take care of the presentation logic, preparing it into a suitable
form for display in the portal. E.g. if the externally-called application returned XML,
it could be transformed into HTML by the presentation code within the portlet. The
portlet needs knowledge of what the external application is returning, and has to
implement the necessary presentation logic depending on its knowledge of the content
that is being returned, and the output that the portlet should generate. The portlet may
also have to take care of ‘URL rewriting’ (discussed later).

6.1.4 Local and remote portlets
A consumer that consumes a remote WSRP application is typically a portal, and will
often present the WSRP-enabled portlet alongside local portlets, hosted within the
local portal server. Local portlets can themselves be designed to implement
application logic in the different ways as described above. The local portlet then
delivers page fragments (e.g. HTML) for display in the Portal. By default, the
locally-hosted portlet is of necessity developed in the same language as that of the
hosting portal and is only available to be called by the local portal. If some one else
wants to re-use the portlet, they have to take the code and re-install that portlet in their
local portal – this might require modification depending on the portal API.

Procedure call/use of library

SOAP

CGI

? New way of
interacting?

Produce
HTML
markup}

{Application
processing:
use external
service

Simple
calculator

portlet

GroupLog Portlet Feasibility Study 29th April 2005

 19

Figure 4: Model describing a portlet that is physically installed and hosted
locally by the portal.

The second model, as illustrated in figure 5, adopts a Web Services model of
developing portlets. The portlet still carries out some application logic and
presentation logic, but the portlet can be developed in any language and used remotely
by other portals. There are standard ways of calling the portlet’ s ‘application logic’
and the portlet always returns the HTML (or other markup) in response to a
‘getMarkUp’ request. The remote portlet is often present to the local portal in the
form of a ‘proxy portlet’ . WSRP fits into this remote model of development.

Figure 5: Model describing a portlet that is remote from the portal, using WSRP.

The way that the remote portlet generates the mark up and carries out the application
logic processing can still vary as described previously. The WSRP portlet can
implement the application processing itself, or it can use one or more external services
to carry out the application processing.

The main difference between the two models is that, with WSRP, the application logic
delivered by the portlet is hidden completely from the consuming portal and the portal
can re-use the remote portlet, knowing that the mark up will be returned in a
standardised way. The advantage of the second model (where the web service is
WSRP) over the first model (where the portlet is local and, say, calls an external web
service) is that in the second case little specific knowledge of the external web service
is required by the consuming portal, and no local HTML processing is needed.
Furthermore, the WSRP portlet becomes available for remote re-use by any number of
portals.

local
portlet

PORTAL

PORTAL

Proxy portlet

WSRP
Portlet
(remote)

GroupLog Portlet Feasibility Study 29th April 2005

 20

When enabling legacy applications, the choice of whether to develop local or remote
portlets, and what style of application logic development to use depends on a number
of factors, e.g.

• If web services that are specialised to deliver the application processing
already exist, it may be sensible to re-use them.

• If it is not feasible to re-develop a legacy application as internal portlet code, a
way for the portlet to interact with it may be found.

6.1.5 The relationship between WSRP and JSR168
In practice, the portlets that are made available as WSRP by producers to consumers
need to run within a portlet container. The Producer in WSRP acts as a ‘container of
Portlets’ . It is useful in this context to discuss JSR168 [25], a complementary standard
to WSRP.

JSR168 defines a standard Java technology-based model for portlets in portal servers
that are built on a Java platform. JSR168 defines a standard Java portlet API, a portlet
container, and the contract between the API and the container [17]. The set of APIs
provide a uniform way for the portal container to deal with new portlets. If a portlet
is written to comply with JSR-168 it should be deployable into any portal container
that has JSR-168 support [26]. This role for JSR168 is distinct from the role of
WSRP, which defines interoperability of remote portlets. Whereas JSR168 enables
portability and vendor independence between Java products that support JSR168,
WSRP further provides independence of programming languages and platforms.

One common method of implementing and consuming a WSRP application is to work
within a JSR168 compliant platform. JSR168 platforms often support interaction
with WSRP by means of a proxy portlet26. A locally-hosted JSR-168 compliant
portlet can be exposed as a remote WSRP application by the portlet container. The
portlet container provides a local adapter which presents the portlet to external entities
as WSRP. Dually, a portal that consumes WSRP from an external source often does
so by presenting it to its local JSR-168 compliant portlet container wrapped up as a
JSR168 portlet.

26 Within a portal, a proxy portlet is one that is used to stand in for a portlet, often working as an
adapter to hide variations in the technology used.

GroupLog Portlet Feasibility Study 29th April 2005

 21

Figure 6: Development path for standards-based portlets
Re-used (with permission) from [3]

6.1.6 Does it have to be Java?
In theory it should be possible to develop WSRP in isolation of JSR168, since WSRP
is specified as a set of Web Services, defined by WSDL. Although care was taken to
align WSRP with JSR168 during its development, WSRP is defined as a stand-alone
standard. WSRP-only development would be possible if either (i) toolkits were
available for programming languages that made WSRP development as
straightforward and widely supported as Web Service development is currently or (ii)
WSRP-compliant interfaces were developed from scratch around an application. In
practice, the first option is not available at present. The second option is not
necessarily more attractive than re-using the facilities available around JSR168. The
desk-research reported in the previous section of this report unearthed no evidence of
toolkits for straightforward WSRP development27; neither could any examples of
direct WSRP-enabling of legacy applications (just by using web services) be
located.28

27 i.e. WSRP development detached from use of JSR168
28 These findings agree with those reported in [http://www.ariadne.ac.uk/issue41/awre-cree/#36] [own
emphasis added]: “ To assess fully the possibilities of using these standards to build the demonstrators it
was thus decided that portlets using both standards would be developed for each tool. Initial
investigations …. examined the requirements for using each standard and how this related to their
existing tool(s): JAFER and HEIRPORT are Java-based already, whilst Xgrain and Balsa are written in
Perl. This initial investigation revealed independently at each partner that from a development
viewpoint JSR 168 has proven easier to work with at this stage. Factors such as the software being
used to build the portlets, the requirements of the standards, and the requirements of the main testbed
portal framework being used within CREE, uPortal, have contributed to this finding. For the Java-

GroupLog Portlet Feasibility Study 29th April 2005

 22

On the contrary, support of WSRP closely tied to support for JSR168 is widely
available. It is clear that the start of JSR-168 as an API for managing portal to portlet
interaction has shaped the market. The trend within products has been to move from
custom-API to JSR-168 API to added-on WSRP support. This trend can be
understood in the light of historical development of interest which was first focused
on delivering portals as individual silos, interacting with portlets adapted specifically
to working within that portal environment, and acting as single point of entry for the
end-user. Later, the motivation to provide stand-alone, remote re-usable portlets
developed.

As evidenced by the product table in Appendix B, products are overwhelmingly Java-
centric. This is also true for other kinds of resources. A number of available sources
that address the development of portlets are directed at Java development e.g. the
book on Building Portals with the Java Portlet API [27].

For those with the budget to go for a commercial product (with its attendant support),
then alternatives to Java are available – for example Oracle claims to easily enable the
interfacing with applications in ASP and PHP. The pre-selection of WSRP as a
standard way of delivering portlets also precludes some alternative approaches that
some products offer for including remote web sites into a portal (for example uPortal
version 2.1 supports a web-proxy type of channel, called a CWebproxy channel29).

The most widely-supported option emerges as a solution built around the JSR168 API
combined with added-on WSRP capabilities. This option offers the most product
choice, and free, open source availability.

6.2 The RDN development Platform

In order to test the feasibility of offering GroupLog as a WSRP application, a portlet
development and testing platform was installed on an RDN machine. Access to a
development platform was required to enable the development team to gain first hand
implementation and development experience of a WSRP software toolkit. This would
enable the team to:

1. Assess the maturity of some of the available toolkits
2. Experiment with different models of WSRP development
3. Illustrate the alternative approaches with real-world examples of WSRP

applications
4. Make informed decisions on the feasibility for GroupLog

based tools, this was a logical choice in any case. Interestingly, it also proved to be a logical choice
for the Perl-based tools as there is no current toolkit to enable Perl tools to be presented as
WSRP portlets.”
29 CWebProxy allows incorporation of web-based services as channels, regardless of what technology
is used to implement them. It provides mechanisms for connecting to and rendering HTML and XML
services. Pages are refreshed and kept in-channel when they change. HTTP standards are followed,
allowing communication between the browser and dynamic back-end applications. Mechanisms are
provided for passing user-specific information to the back-end application, as well as ways to support
local interface technologies on a per-channel basis. (Such as encryption, shared secrets, single-sign-on,
modification of http request headers, etc.)
http://www.uportal.org/developers/channel_docs/reference/webproxy/

GroupLog Portlet Feasibility Study 29th April 2005

 23

Two platforms were evaluated in this study. These are both free, open-source options
which support JSR168 and WSRP.

The first platform chosen for the RDN consists of Pluto [28] and WSRP4J [29].

Since portlets are typically presented and consumed through a portal, some form of
working portal implementation was needed for testing purposes. For the purposes of
this study, some aspects of portal management such as co-ordinating portlets, user
profile management, personalization, single sign-on were not required as the main
focus of interest is the presentation and interaction with a single instance of a portlet.
Therefore some of the other features of portals were clearly out of scope and
presented a potentially undesirable overhead. A fully-featured portal implementation
was not considered necessary to test the portlets; at best a complete portal would be
introducing additional elements which would be completely ignored in the feasibility
study. At worst it would require a maintenance overhead that would not be
contributing to the knowledge of interaction of the portal with the portlet. To avoid
the potential overheads, Pluto was chosen, since it provides those aspects of the
portal, mainly the portlet container, which are required to interact directly with the
portlet, whilst doing away with the other portal-centric features (for example those
that deal with the management of more than one portlet, content and layout
customization, elegant configuration management tools and search capabilities)
considered out of scope for the feasibility study.

From the Pluto homepage [28]�“Pluto normally serves to show how the Portlet API
works and offers developers a working example platform from which they can test
their portlets. However, it's cumbersome to execute and test the portlet container
without a driver, in this case, the portal. Pluto's simple portal component is built only
on the portlet container's and the JSR 168's requirements. (In contrast, the more
sophisticated, open source Apache Jetspeed project concentrates on the portal itself
rather than the portlet container, and considers requirements from other groups.)”�

Pluto is the reference implementation of the Java Portlet Specification [25]. It is a
portlet container which manages the lifecycle and request processing of portlets which
adhere to the specification. As a portlet container it provides a place for portlets to
reside and nothing else. However, Pluto also comes with a minimal portal for testing
portlets. Pluto’ s portlet container can run WSRP portlets as a consumer as well as a
producer.

WSRP4J is a platform for developing and hosting WSRP compliant web services. In
the definition of the WSRP standard and the JSR 168, the OASIS Technical
Committee and the JSR 168 Expert group have closely collaborated to make sure that
that both fit together well in portal architectures. JSR 168 compliant portlets can be
exposed as WSRP compliant web services and conversely, WSRP services can be
integrated through generic portlet proxies written to the Portlet API. WSRP4J
provides both consumer and producer modules, which can be installed separately and
have different requirements. The installation instructions describe how to install the
two components within Tomcat (note Tomcat 4.1.24 or higher, JDK 1.3.x are
prerequisites).

GroupLog Portlet Feasibility Study 29th April 2005

 24

An initial implementation of Pluto was deployed on an RDN machine by
downloading the source and installing it according to the instructions30. The Pluto
installation required Java (standard edition version 1.4.1_02 was already installed),
Maven31 (version 1.0 was installed) and Tomcat (version 4.1.18 was already
installed). The implementation of the Pluto Portal and Portlet container on the RDN
platform is located at http://walrus.rdn.ac.uk:1976/pluto/portal

Despite following the instructions on the Apache website, the first installation of Pluto
was only partially successful. The Pluto Portal Driver (i.e. that component of Pluto
which is the minimal portal available for testing portlets) was displayed (Fig. 7),
however attempts to call the test portlets that are deployed with the installation
resulted in errors being reported (Fig. 8). The reasons for this failure remained
obscure.

Figure 7: The Pluto Portal driver installation showing the test portlets

The installation of Pluto (version 1.0.1-rc1) was subsequently reattempted on an
alternative machine that became available running updated versions of Java (version
1.4.2_04) and Tomcat (version 4.1.30). This time Maven version (1.0.1) was used (a
newer release that had by then become available). This time the test portlets were
deployed and displayed successfully (Fig. 9).

30 http://portals.apache.org/pluto/install.html#Installing_Distributions
31 Maven is a software project management and comprehension tool which can manage a project's
build, reporting and documentation from a central piece of information.
http://maven.apache.org/start/download.html

GroupLog Portlet Feasibility Study 29th April 2005

 25

Figure 8: Unsuccessful installation results in errors on the test portlets page

Figure 9: A successful Pluto installation was achieved

A first version of an RDN portlet which displays a search box for entering user
queries was deployed. However, a problem was encountered when attempting to pass
search results back to the test portal for display. Extensive searching of the Pluto
mailing list unearthed some messages32 which indicated that there was incomplete
feature support in the Pluto demo portal implementation. Note this is not a problem of
the Pluto portlet container, which is the part of the API which communicates with the
portlet code, but of the driver required to view the portlet and test it is functioning
within a web browser. The specific problem encountered is related to the ability to

32 http://nagoya.apache.org/eyebrowse/SearchList?listId=&listName=pluto-
user%40portals.apache.org&searchText=setRenderParameter&defaultField=body&S and
http://nagoya.apache.org/eyebrowse/ReadMsg?listName=pluto-user@portals.a
pache.org&msgId=1720124

GroupLog Portlet Feasibility Study 29th April 2005

 26

control rendering parameters i.e. the passing of information within the portlet that
relates to values intended for rendering as output of the portlet.

At this stage, it was decided that a change of strategy was required. The use of
rendering parameters was considered necessary to the progress of the feasibility study
and an alternative platform for portlet development was chosen.

Jetspeed 2

Jetspeed 2 [30] is an Apache project and is the successor of Jetspeed 1. It is an Open
Source implementation of an Enterprise Information Portal, using Java and XML. The
goal is to make Jetspeed a tool for both portal developers as well as user interface
designers. Currently the focus is on providing developers with a set of tools that
facilitate building the base for the portal. With Jetspeed you can quickly build an
XML portal and also syndicate your own content. Jetspeed has the following
requirements: Ant 1.5 or higher, Maven 1.0 or higher, Java 1.4.2_02 or higher, Servlet
2.3: Tomcat 4.1.x or Tomcat 5.0.28 or higher.

For the RDN installation, Jetspeed 2 (beta version) was deployed into Tomcat
(version 4.1.30).

6.2.1 RDN Include: an example application for assessing implementation styles
Due to the tight timescales for the GroupLog project it was decided to choose an
existing stable application which could be redeveloped as a portlet; the chosen
application had the benefit of familiarity for the developer, and therefore there would
be no learning curve; it also provided an unchanging application whilst the GroupLog
is in re-development. The intention was that the RDN-I application would provide a
good yardstick against which to compare the options for GroupLog, and provide
feedback in the early stages when the GroupLog re-development could be shaped and
influenced. A parallel interest within the RDN in exploring portal solutions also
proved convenient since the development effort could be shared with the RDN. This
contribution turned out to be necessary for the success of the study since the time
required for preparing the set-up and practical development for exploring the
examples far exceeded the time projected for development in the GroupLog project.

6.2.1.1 About RDN-Include
RDN-Include (RDNI)33 is a service offered by the Resource Discovery Network
(RDN) as a means to include the services of the RDN into external web sites. One of
its functions is to allow searches using the RDN ResourceFinder facility. Using
RDNI, the ResourceFinder search engine is made available to users within an
institution’ s website. A search box is displayed in which users enter search terms.
The results of the search term are returned within the institutional web environment,
retaining the web site’ s look and feel. The user does not have to leave the institutional
domain. An example of RDNI can be seen at De Montfort Library website:
http://www.library.dmu.ac.uk/cgi-bin/RDN/include.cgi/

33 http://www.rdn.ac.uk/rdn-i/

GroupLog Portlet Feasibility Study 29th April 2005

 27

Figure 10: The De Montfort University Library installation of RDN Include

6.2.1.2 Technology behind RDNI.
One of the technologies behind RDNI is a CGI script written in Perl34. The script
receives RDN-I requests via HTTP, uses ResourceFinder to generate a set of results,
formats those results in preparation for display at the end-user site, and forwards the
resultant HTML to the original site making the requests. RDNI uses what is called a
‘tag’ facility to allow for the construction of relative links so that the search results
can be browsed within the calling application without leaving that website.

34 Other forms are available, such as a solution using Javascript, which are not referred to further here.

GroupLog Portlet Feasibility Study 29th April 2005

 28

Figure 11: RDN-I uses HTTP requests and a tag facility to deliver content to
clients

An example of the script in action can be seen by using the URL:
http://www.rdn.ac.uk/rdn-i/cgi-bin/rdnisearch.cgi?query=[searchterm]
where [searchterm] is the user query, e.g.
http://www.rdn.ac.uk/rdn-i/cgi-bin/rdnisearch.cgi?query=Aristotle

The script takes some other parameters, such as
• ‘Start’ which indicates the position of the result in the result set
• ‘Set’ which allows limiting the search to certain subject areas

6.2.1.3 Accessing the RDN through a web services interface
An alternative machine to machine (m2m) method to access the RDN ResourceFinder
is available by means of the SRW35 protocol. The RDN provides an experimental
implementation of SRW36 which supports search and retrieve requests conforming to
the protocol. An accessible introduction to SRW is available at [31]. In a nutshell,
SRW defines a Web Services operation searchRetrieve (described by WSDL) in
which the client sends a searchRetrieveRequest. Besides the search query (i.e. the
search term) the request accommodates parameters such as the maximum records to
return in the response, and the XML Schema that the records should be returned in
(the latter obviously depends on the schemas that the service supports – the RDN
supports Dublin Core). The response consists primarily of a list of XML records that
matched the search, along with the full count of how many records were matched.

Previous RDN work with SRW resulted in the generation of Perl and Java clients for
accessing the SRW interface. These clients are SOAP clients that use the available
WSDL to makes calls to ResourceFinder and return RDN search results. The Java
clients were automatically generated from the WSDL for the SRW service, using the
WSDL2Java facility. The Java client is an Axis37 1.1 program. In the process of

35 SRW is the Search and Retrieve web service, a web service for searching databases containing
metadata and objects http://www.loc.gov/z3950/agency/zing/srw/
36 http://www.rdn.ac.uk/publications/workingwithrdn/
37 Axis http://ws.apache.org/axis/

GroupLog Portlet Feasibility Study 29th April 2005

 29

generating the client, a number of Java classes corresponding to the concepts of SRW
are created. These classes are used within the SRW client when interacting with the
SRW service, and support the manipulation of the returned results, which are
presented as records. The iteration through the records and extraction of fields from
the records depends in turn on the use of other standard Java classes for XML-
processing [see package org.w3c.dom
http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-summary.html].

6.2.1.4 Development of RDN-Include as a WSRP application

The two machine interfaces outlined above (CGI and SRW) provided two
development options for exploration of delivery of a WSRP portlet version of
ResourceFinder. In both cases, a JSR168 portlet was developed to handle search
requests entered by users through a portal, translate this into a request to either the
CGI interface or the SRW interface, and pass on the results to the calling portal.
These two options were considered ideal as a case study since they mirrored the
current and future status of GroupLog. Version 1 of GroupLog consists of CGI
scripts which handle interaction with users through a browser. The development
version of GroupLog is improving the functionality of version 1, whilst considering
replacing at least some of the functionality with Web Services. CGI-based RDNI is
presentation oriented since it was intended for producing output for display in Web
browsers and integration into Web pages. On the other hand, the SRW interface
separates application logic from the presentation; it is intended for m2m use, and its
output is a machine-oriented XML-encoded result list. The presentation is left to the
calling application to deal with.

6.2.1.5 Overview of Portal-Portlet interactions using JSR168

To recap, a portal is an application which aggregates portlet applications together in a
presentable format, supporting facilities such as user customisation and single sign-on
mechanisms. A portlet is an individual web component that is made accessible to
users via a portal interface. Users issue requests against portlets from a portal page.
[5]

A portlet container sits between a portal and its portlets. It provides the run-time
environment to portlets, and manages portlets by invoking their life cycle methods.

GroupLog Portlet Feasibility Study 29th April 2005

 30

Figure 12: The architecture of portals and portlets
Re-used from [5]

The portlet is a component written in Java against the portlet specification JSR168.
The specification defines the contract between portlet and portlet container, and a set
of portlet APIs. The portlet takes a request from the container and returns a response;
in other words, it processes requests and generates dynamic content. The portlet
container manages life cycle events during interaction with the portlet. The basic
portlet life cycle of a JSR168 portlet is (1) Init: initialise the portlet and put the portlet
into service (2) handle requests: process different kinds of action- and render- requests
and finally, (3) Destroy: put portlet out of service (collect garbage and free up portlet
resources).

The portlet provides implementations of specific methods required to fulfil the
obligations that must be satisfied for the portlet to interact with the container. It is
beyond the scope of this study to explain in detail the JSR168 specification and the
related portlet APIs and the reader is referred to the references [particularly 5, 13, 14,
15, 25] for further explanations. However, below some salient points are introduced
and some code samples are provided by way of illustration of the programming
involved.

Generally, the portlet implements the Portlet interface. Commonly, this is done
indirectly by extending a generic portlet class that has already implemented the Portlet
interface. The generic portlet class is a convenience class that defines three empty

GroupLog Portlet Feasibility Study 29th April 2005

 31

methods, doView, doEdit and doHelp. The portlet for a specific application extends
the generic portlet class and over-rides these specific methods that the interface
provides.

The render() methods

• are requests that display the application in its current state at any given point
• are invoked when the processAction() method has completed
• can be invoked when a user triggers a render URL in the interface
• produce mark up depending on the state of the portlet

processAction() methods

• are invoked by a user clicking an action URL in the portal interface
• are usually requests that command the portlet to change the state of the

underlying application
• one action per client request is triggered

Note: Some aspects of portlet management (such as Portlet Mode and Window State)
are omitted here since they are not necessary for explaining the illustrating code.

6.2.1.6 Development of a CGI-based portlet
The CGI-based RDN-Include portlet uses a JSP38 to display a search form to the user,
then takes the input (a search term) from the user and connects to the RDN-Include
CGI script by constructing the appropriate URL (containing the user’ s search term)
and making an http request. It then processes the output from the CGI request
(basically results for the search, marked up as HTML) and passes it on to the portal
for display using the JSP. The user can then make another query.

The first time the portlet is called, the doView() method is called. This sets the mime
type and sets up the search form for the user to enter the search term, making use of a
JSP.
public void doView (RenderRequest request, RenderResponse response)
throws PortletException, IOException
 {
 response.setContentType("text/html");
 String jspName = getPortletConfig().getInitParameter(
"jspView");

Portlets can include a JSP page to render the output; the mechanism used in JSR168 is
based on that for servlets and JSP pages in the servlet API.

The JSP contains the HTML for the web form:
<form action="<%=doSearch%>" method="post">
<input type="text" name="query" class="textinput" value="" size="15">
<input type="image" src="http://www.rdn.ac.uk/images/go.gif"
width="34" height="32" name="Submit Search" border="0" alt="Search
over 100,000 descriptions of high-quality Internet resources relevant
to the higher and further education sectors.">
</form>

38 Java Server Page (JSP) a technology based on Java to develop dynamic web pages; JSP files are
HTML files with special Tags containing Java source code that provide the dynamic content� see
http://www.visualbuilder.com/jsp/tutorial/default.asp for a tutorial

GroupLog Portlet Feasibility Study 29th April 2005

 32

doSearch is a variable (or placeholder) within the JSP which will be replaced by a
URL. The interaction of the user with the search form (entering a search term and
clicking the search button) is expected to result in a processAction() method being
triggered. The processAction() method is the destination within the portlet to which
the values from the webform should be passed. In order to specify processAction as
the destination, an actionURL is created in the doView method of the portlet.

 // Create the action URL that triggers RDN search
 PortletURL doSearchURL = response.createActionURL();
 doSearchURL.setParameter("search","search");
 request.setAttribute("doSearch", doSearchURL.toString(
));

The actionURL is created by calling createActionURL(). A parameter is added to the
URL so that when it is triggered and processAction() is called, we can check that a
search request has been made by checking for the presence of the search parameter.

To dispatch the content to the JSP, a request dispatcher is first retrieved. The
include() method is then called on the request-dispatcher object.

PortletRequestDispatcher rd =
getPortletContext().getRequestDispatcher(jspName);
 rd.include(request, response);
 }

Once a user enters a search term and clicks the search button, the processAction
method is invoked. Two objects are passed to processAction() when it is called by the
portlet container: ActionRequest and ActionResponse. The parameters of the request
are accessed through the ActionRequest object. In this case two parameters are
available: the search parameter simply indicates that the request comes from the
search web form. The query parameter contains the user’ s search term.

public void processAction (ActionRequest request,
 ActionResponse actionResponse)
 throws PortletException, java.io.IOException
 {
 // detect that the RDN search URL has been clicked
 String search = request.getParameter("search");
 if (search!=null) // search
 {
 // get the query term
 String queryString = request.getParameter("query");

The next step is to call the RDN CGI script with the query term. This is done by
constructing the appropriate URL, opening a connection, and reading the output.

String queryURL = "http://www.rdn.ac.uk/rdn-i/cgi-
bin/rdnisearch.cgi?query="+queryString;

 URL rdn = new URL (queryURL);
 BufferedReader rdnin = new BufferedReader(
 new InputStreamReader(
 rdn.openStream()));
 String inputLine;
 String myResult = "";

GroupLog Portlet Feasibility Study 29th April 2005

 33

 while ((inputLine = rdnin.readLine()) != null) {
myResult = myResult+inputLine;

 }
 rdnin.close();

The results, stored in myResult, must be made explicitly available to the doView()
method so that they can be displayed in the JSP. This is achieved using
setRenderParameter()

actionResponse.setRenderParameter("result", myResult);

Additionally, to make the user’ s initial input values available in the render method or
the JSP, the actionResponse.setRenderParameter() method is again used. This makes
the search term entered by the user available to the render() method to display it again
to the user “ You searched for <search term>”

// Send query term to render
 actionResponse.setRenderParameter("query", queryString);

Once processAction completes, the doView method is executed again. The search
term and the response can be accessed through the renderRequest object, since the
parameters were set during processAction. They are then made available to the JSP
using the setAttribute method.

request.setAttribute("rdnresponse", request.getParameter("result"));
request.setAttribute("query", request.getParameter("query"));

Within the JSP, the search term and the results can be displayed using:

<%
 String query = (String) request.getAttribute("query");
%>
<%
 String results = (String) request.getAttribute("rdnresponse");
%>
Search term is <%=query%>

Result is: <%=results%>

GroupLog Portlet Feasibility Study 29th April 2005

 34

Figure 13: The RDN results are displayed using a portlet within a Jetspeed
Portal

6.2.1.7 Using Web Services
The RDNSRWportlet.java portlet is similar to the first RDNI portlet. It re-uses the
search form for the input of the user’ s query. However this time a Java (Axis) client
is used to make the web service call to the RDN ResourceFinder SRW interface. The
search results are returned as XML. This provides more flexibility in display options
of the search results, however it carries the overhead of processing the XML and
reformatting it into HTML for presentation to the user in a web browser (i.e. the
portal).

Normally, for non-trivial portlets the HTML would not be included directly within the
portlet Java code. Use would be made of some presentation layer technology, such as
JSP pages. The JSP would shoulder more of the responsibility for rendering the
response, for example by directly processing the results. This would represent a
cleaner separation of concerns. However for simplicity RDNSRWportlet.java
processes the XML and formats it into an HTML table for display. The look is kept
similar to the CGI version of the portlet.

The doView() method and the jsp are identical. ProcessAction() differs in two ways:

• A doQuery method is defined which handles the SRW interaction
• A convertToHtml method deals with the processing of the XML and

transformation to HTML.

// do query and send results to render
 rdnsrw.RecordsType myXMLResult = doQuery(queryString);

GroupLog Portlet Feasibility Study 29th April 2005

 35

 String myResult = convertToHtml(myXMLResult);
 actionResponse.setRenderParameter("result", myResult);

The doQuery method re-uses the Axis web services client class that connects to the
SRW service via the WSDL, and requires the Java classes generated to deal with an
SRW response (as mentioned earlier)39. ConvertToHtml makes use of some standard
Java classes for processing XML.

Figure 14: The SRW portlet uses web services mechanisms at the back-end, then
displays the RDN results in a similar manner to the previous portlet

6.2.1.8 Deployment of a portlet into a portal framework.
The portlet application, when developed to the JSR168 standard, is a standard web
application. This means that it consists not only of the portlet classes (i.e. the Java
code which does the processing), but also of additional files, such as xml files which
define the portlet deployment description. The files are packaged together and make
up a Web application archive (also called a WAR), and are organised in a directory
structure so that they conform to the accepted conventions. Although this report has
concentrated on describing the coding of a portlet, the use and testing of portlets
within a JSR 168 framework requires confidence with packaging and deployment,

39 A technical issue (related to the loading of Java classes) was encountered when combining the use of
Axis classes (required to make the SRW calls) in the Jetspeed framework within the Tomcat
environment. A relevant entry in the Tomcat bugzilla bug reporting system was traced
http://issues.apache.org/bugzilla/show_bug.cgi?id=3888
Unfortunately there seems to be no conclusive agreement as to whether this is an actual bug or if there
is a definite solution that can be applied on the user’ s part to avoid the classloading problems. The
discussion in the bug report reflects the detailed technical issues that need to be understood and
grappled with (even within the development of this simple example).

GroupLog Portlet Feasibility Study 29th April 2005

 36

and understanding of the formats of these additional XML descriptor files such as
portlet.xml and web.xml.

6.2.1.9 Caveats
As mentioned, the above code snippets and the developed code were intended to
explore two different methods of exposing a legacy application as a WSRP portlet.
Several features of portlet development have been omitted, including the use of portlet
state, preferences, portlet mode, portlet security, portlet sessions, validation and
exception handling. Furthermore, the full functionality of RDNI has not been used;
the ability to page through results and request different size or format of result sets has
not been demonstrated.

It should be noted that the GroupLog functionality (addressed below) is more
extensive than RDNI:

• GroupLog has a much larger number of use cases
• GroupLog requires user authentication
• GroupLog handles more complex interactions, such as submission and

retrieval of documents

6.2.2 Conclusions from development of RDN-Include
Although the sample application is not a fully-fledged WSRP-enabled RDNI, it has
shown the potential for two routes of development when enabling a legacy
application, and demonstrated some of the implications.

7 Assessing the feasibility of using WSRP for the

GroupLog Project
7.1 Overview of GroupLog

GroupLog is an interactive web-based teaching and learning tool. It supports
collaborative activity through structured group work. For tutors it provides the
logistical support for preparing and disseminating activities, aggregating responses
and disseminating feedback. Through a series of web-based forms, the tutor sets up a
cohort split into a number of groups, to which the students in the cohort are assigned.
An activity is then defined by the tutor and the activity is allocated to one or more
groups. The tutor is allowed to set parameters for when contributions for an activity
should be submitted and when student’ s responses are published for viewing by a
cohort of students.

GroupLog supports the contributions of many authors, and students can both
contribute to and benefit from a knowledge pool. Groups submit their response for
review by the tutor through the GroupLog website.

The main user roles of GroupLog consist of Group Members, who can create, view
and review responses to activities, and Tutors, who have authorisation to create
Groups and author and assign activities to Groups, and publish responses.

GroupLog was developed and tested as a prototype application by the CDNTL at the
University of Bath. It is in the process of being redeveloped to include enhanced
functionality and improve documentation. The intention is to add improved user

GroupLog Portlet Feasibility Study 29th April 2005

 37

management and editing facilities. The development is being carried out within the
context of the ELF. GroupLog is developed as a series of PHP scripts, using MySQL
at the backend.

7.2 Implementation options for GroupLog

Based on the desk research presented in previous sections and the development
experience gained on the RDN platform, the implementation options for delivering
GroupLog as a WSRP application can be summarised as:

1. Redevelop the GroupLog functions in Java for close integration with the portlet
code.
2. Re-use the GroupLog functionality from within the portlet through interaction with
the existing (or modified) GroupLog CGI scripts.
3. Re-develop the GroupLog functionality as Web Services, and access GroupLog
functionality from the portlet by using the Web Services interface.

These three options are now considered on their individual merits:

Option 1: Redevelop the GroupLog functions in Java for close integration with the
portlet code

This option would imply the redevelopment of functionality within GroupLog as Java
classes and libraries, including the application logic, interface generation and database
connectivity. This represents a complete shift in the development plans for GroupLog
entailing a change of platform, with possibly the use of JSP or a complete Java
environment (e.g. J2EE).

This option can be deemed infeasible in the short-term since:

• It does not fit with current plans for GroupLog (which focuses on
enhancements to the code and documentation rather than re-development; the
current code-base is not Java-based).

• The expense of the ‘start-up’ costs needed to change development
environments does not outweigh the benefits. The allocated time for the
project did not include the effort needed to make this investment (i.e.
acquiring the required expertise in Java), since this requirement was not
known when the project was planned.

This option might have been, or could become, the preferred option for GroupLog if:

• The development team was already using Java
• Better separation between the interface functions and the transactions

develops, for example if GroupLog was already Web-Service based;
• There were other motivating factors for the GroupLog team to move to a

completely Java-based solution e.g. Java was chosen as the preferred Web
Services development platform.

Option 2: Re-use the GroupLog functionality through interaction with the existing (or
modified) CGI scripts

GroupLog Portlet Feasibility Study 29th April 2005

 38

This approach would work along the lines of the first RDN-Include example shown.
However RDN Include had been designed for the purpose of preparing the response
for display in a third-party website, and supports one main type of interaction (search
and view results). GroupLog was intended as a stand-alone application, uses a number
of different user interfaces and supports user transactions such as authentication (i.e.
logging in),
If GroupLog were to take this route for WSRP development, the implications (as
derived from experience of RDN include) are perceived to be:

• A number of JSP pages would have to be developed to support the different
interfaces that GroupLog presents (e.g. creating and modifying activities,
viewing of activities, creating/editing of responses, creating group members
and groups, assigning groups to activities, publishing responses)

• The portlet code would create the appropriate actionURLs. The parameters in
the URLs would be used to select which functions of the CGI script should be
called upon to fulfil the user requests. The portlet code would need to include
mechanisms to detect the appropriate functions needed and construct the CGI
URLs accordingly.

• The CGI scripts would have to be designed such that the different functions
could be easily called; this would require a certain modularity in the scripts.
Ideally, the scripts would reflect the use cases documented by GroupLog.

• The reponse from the CGI would have to be in a format that is developed in
relation to the JSPs. A decision would have to be made on the balance of
preparation of the HTML within the CGI scripts (it is assumed that currently
all the HTML is prepared within the scripts) and the extent to which the JSP
pages were used to contain the HTML.

• The responsibility for user authentication and user profiling could be re-
assigned to the portal, i.e. the CGI would not deal directly with the user
logging functions and the determination of authorisation.

• Issues of threading may need to be considered to deal appropriately with user
sessions.

Option 3: Re-develop the GroupLog functionality as Web Services and access
GroupLog functionality from the portlet by using the Web Services interface

In this approach, it would be assumed that the functionality (or application logic) of
Group Log was available as web service calls. These would separate the actual
transactions (such as storing and retrieving activities and responses) from the user
interfaces required to interact with the user. The portlet would then deal with building
the user interface (for example by using JSPs), whilst calling on the web services to
fulfil the transactions. The advantages of this approach are that it fits in with the Web
Services/Service Oriented Architecture design advocated by the ELF. However it
requires knowledge of which functionality of GroupLog is best developed as Web
Services, and a commitment to that solution. At this stage, it has not proven easy to
determine how to repackage the GroupLog functionality into Web Services, mainly
because the potential for re-usability of the services, and the level of granularity at
which they would be used, is still an unknown factor. Dually, the availability of
external Web Services that could replace some of the GroupLog functionality has
been found to be poor.

GroupLog Portlet Feasibility Study 29th April 2005

 39

7.3 A GroupLog example

One of the GroupLog use cases documented in the GroupLog documentation can be
used as an example. The GroupLog use cases are an initial step towards breaking
down the functionality of GroupLog into a modular design and documenting how
GroupLog works. The use cases provide a user view of the system, outlining the user
interactions with various parts of GroupLog to achieve the user’ s goal. A more
detailed UML system design in terms of interaction and state diagrams is not available
at the current time. The description of backend functionality of GroupLog in the
example use case is based on discussion with the GroupLog developers and
demonstration of the GroupLog prototype system.

The viewActivities use case allows a GroupMember to view a list of Activities, and
select one of the Activities for display. The viewActivites use case is documented as
follows:

1. Within GroupLog main page
2. GroupMember selects Activity from Activity drop-down menu
3. Activity is displayed in Activity area on GroupLog main page

The use case assumes the preconditions that a GroupMember is logged in and can
view only the activities for which the GroupMember is authorised. The user interface
for this use case is simple and consists of (1) a main GroupLog page which displays a
selectable list of activities, and (2) a display of activity details within an activity area
once an activity has been selected. The backend functions can be described as
DisplayActivitiesForGroupMember and DisplayActivity.

DisplayActivitiesForGroupMember would be expected to take as parameter a
groupMember ID and return a list of activities. This process would entail some
checking of group membership and association with activities, with retrieval from a
storage system such as a database or directory, however for the purposes of the
following discussion the process can be treated as a black box that takes inputs and
returns outputs. DisplayActivity takes as input an Activity ID and returns the
details of that activity (once again ignoring the actual processes required to retrieve
the activity details from storage).

In the scenario where GroupLog provides the DisplayActivitiesForGroupMember
through a CGI script, and assuming the output (a list of activities) is returned as an
HTML fragment which would fit into the main page interface as a drop-down list,
portlet functionality would be achieved as follows:

The JSP for the main page would be constructed so as to contain the activity drop-
down list, with provision to include the appropriate actionURLs (created by the
portlet).
The GroupMember ID would be controlled and stored either through the portal
framework support or explicitly through some other mechanism.
The portlet would be responsible for calling the CGI which makes available
DisplayActivitiesForGroupMember and retrieving the list of activities.
The portlet would create action URLs for the drop-down list, with parameters that
allow the portlet to detect that an activity detail request is being made, and containing
the activity ID.

GroupLog Portlet Feasibility Study 29th April 2005

 40

Assuming DisplayActivity can similarly be called within the CGI script, and
returns an activity as a simple text description, or perhaps HTML table fragment, once
a user has selected an activity to view by triggering an action URL:

The portlet would contain controls to detect that a DisplayActivity request was
being made.
The activity ID would be retrieved by the portlet and used to make the appropriate
connection to the CGI.
The results returned by the CGI would be integrated by the portlet into the required
JSP for display in the portal.
The portlet would create appropriate action or render URLs that enable the user to
move on to the next use case, for example createGroupResponse for an activity.

Appropriate tracking of user sessions, preferences and authorisation would have to be
built into the application, for example through threading and use of advanced portal
API features.

7.4 Testing WSRP applications

WSRP (or JSR168) portlets must be tested within a portal framework. This testing is
required during development and therefore the development of portlets would usually
require the support of a suitable framework within which to test. During development
this could be provided locally by installing and running a compliant framework.

A further phase of testing would usually consist of the recruitment of third parties
who are willing to deploy the portlet within their framework, or consume one
available as WSRP. This would provide confirmation of portlet compliance; portlets
built within a framework that supports standards should be portable between any
conformant third party system.

Within UK HE/FE, the JISCmail PORTALS list could be used to recruit suitable
collaborators. Alternatively, the institutions which have figured prominently in JISC
development programmes are usually willing to assist in testing, by mutual
agreement.

7.5 Feasibility Conclusions

Taking into account
- time available for development
- GroupLog application as it currently stands
- plans for the development of GroupLog (as described in the JISC proposal)
- implementation options available and the state of the art of WSRP

development
Three strategies can be identified for GroupLog:
sit and wait: the GroupLog team may decide that the technology is too immature and
the investment too great to make; GroupLog may wish to wait until the demand for
portlets within HE grows before committing to a specific technology.
experimentation coupled with move to Web Services: if GroupLog continues with
the web services development, one or two of the use cases built around the Web
Services could be developed as portlets. This would give GroupLog direct experience

GroupLog Portlet Feasibility Study 29th April 2005

 41

and understanding of the implications of portlet development and give it a head start,
should it wish to undertake further work in this area.
early commitment: a third option for GroupLog would be to become an early
experimenter, and act as a driver for take-up of WSRP by providing a sample
application which has already generated interest in the user community.

8 General Conclusions

• The industry seems confident in WSRP; there are a number of portal vendors
supporting the standard and involved in its development and promotion.

• In UK HE there is significant portal activity, particularly JISC-funded. Use of
WSRP is however in an experimentation stage and happens across
programmes. Current portlet development is focussed on search functions (for
example the Connect and CREE services). Support of groupwork would
provide an interesting alternative test case.

• There is a choice of tool support for development, however solutions are at
this time very Java-centred; resources for developers tend to be product-
focussed. Tools such as wizards are available mainly in commercial products.
Development is not as yet a plug-and-play solution, but requires programming
and technical effort.

• The main viable solution is through JSR168, requiring a Java platform with
attendant support (Apache, Tomcat and development environments e.g. Ant,
Maven, Eclipse). Advanced Java knowledge is required for set-up and
maintenance. This approach is best suited to establishments already
committed to Java or prepared to make that investment.

9 Acknowledgments

The parallel investigation being carried out by the RDN on the use portal frameworks
for web resource discovery has contributed to the development and technical support
of the practical implementation work that underlies the second part of this report.

GroupLog Portlet Feasibility Study 29th April 2005

 42

10 Appendix A: Glossary
Portal A layer which aggregates, integrates, personalises and presents

information, transactions and applications to the user according to their
role and preferences. [18]
Technically, a portal is a network service that brings together content
from diverse distributed resources using technologies such as cross
searching, harvesting, and alerting, and collates this into an
amalgamated form for presentation to the user. This presentation is
usually via a web browser, though other means are also possible. [2]
A portal can also provide a convenient single sign-on mechanism for
users. [5]

Portlet Distinct building blocks of functionality, e.g., cross-search, alerting,
listing, each one offering a visible component to the user. Each building
block is known as a portlet. These can be joined together to create a
portal environment, within which various degrees of personalisation can
be incorporated, or embedded. Portlets feature heavily in many of the
current portal building frameworks such as the Apache Jetspeed project,
IBM's WebSphere Portal Server and Oracle's Application Server Portal.
[2]
Portlets are user-facing, interactive web application components
rendering markup fragments to be aggregated and displayed by the
portal. For example, a weather portlet that could be displayed with a
stock quote portlet on my.yahoo.com. [31]

Portal
Framework

Portal solutions often divide various portal-related components into
layers, for example layers related to presentation, infrastructure, identity
management. Portal products implement these components into an
architecture specific to the product; the framework defines the general
scope and relationships between the various components. There are
often many similarities between the frameworks adopted across
products (e.g. similar layers and components), although the specific
implementations will vary.

WSRP
(Web
Services
for Remote
Portlets)

Web Services for Remote Portlets
A standard that can be used to integrate remote portlets into a portal.
WSRP, following a Web services path, is platform agnostic and can be
used to present services through any WSRP-conformant portal [3]
WSRP defines a Web Services interface for accessing and interacting
with interactive presentation-oriented web services. Mark-up (e.g.
HTML) is passed back to the consumer of the web service embedded in
the response.

JSR168 A Java Community Process standard, Java Specification Request (JSR)
168, which describes a common method of rendering a 'portlet' (a portal
component sometimes also referred to as a 'channel') within a Java-
based portal framework. [3]
Programmatically, the standard defines a contract (a set of APIs)
between the portal and the portlets, JSR168 portlets are Java-only, and
are local to the hosting container.

Portlet
container

A layer within a portal framework that sits between a portal and its
portlets providing a run-time environment for portlets and managing
interaction between the portal and portlets.

GroupLog Portlet Feasibility Study 29th April 2005

 43

11 Appendix B: Portal Products
Product Name Company/

Organisation
responsible

Open source/
Commercial

JSR168
Java

WSRP Short Description and URL

Pluto/WSRP4J Apache OS - free yes yes http://portals.apache.org/pluto/
Pluto is the reference implementation of JSR168, the Java portlet
specification. Pluto serves as a portlet container that implements the
Portlet API and offers developers a working example platform from
which they can test their portlets. The project comes with a minimal
portal for testing. The WSRP4J project provides the WSRP4J Producer,
which allows implementing WSRP compliant services based on a free,
open source software stack consisting of Tomcat, Axis and WSRP4J,
which in turn includes Pluto. In addition, the WSRP4J project provides a
generic proxy portlet written to the Portlet API, the WSRP4J Consumer.
See sections 6.2 for further details.

EXo platform EXoPlatform
SARL

OS -
Free GPL or
commercial
license

JSR168 No http://www.exoplatform.org/portal/faces/public/exo
The eXo platform software is a powerful Open Source corporate portal
and content management system. The components include a portlet
container which is a certified implementation of JSR168. Two versions
are available, express which includes administration portlets, and
technology wrappers for building Velocity, Struts, Cocoon or a Java
Server faces portlets, and an IFrame portlet that allows the introduction of
another web application in the portal, making it possible to use PHP, ASP
or CGI applications in Java portlets. The enterprise version comes with
its own application server and workflow management tools. The product
comes with a content management system and a services container. An
Eclipse plug-in is available for Java application developers, providing
wizards and tools to assist portlet development.

GridSphere GridLab
project

OS and free
(download

JSR168 No http://www.gridsphere.org/gridsphere/gridsphere
The GridSphere portal framework provides an open-source portlet based

GroupLog Portlet Feasibility Study 29th April 2005

 44

(funded by
EU under
IST)

requires
email
registration)

Web portal. GridSphere enables developers to quickly develop and
package third-party portlet web applications that can be run and
administered within the GridSphere portlet container. Here you will find
the GridSphere portal framework available for download and
documentation related to the installation and development of portlets
using GridSphere.

UPortal JA-SIG OS - free Supports
JSR168
portlets
from
version
2.3 (using
Apache’ s
Pluto
container)

From
version
2.2

http://www.uportal.org/
uPortal is a free, sharable portal under development by institutions of
higher-education. It is an open-standard effort using Java, XML, JSP and
J2EE. It is a collaborative development project with the effort shared
among several of the JA-SIG member institutions. It is a framework for
producing a campus portal, not intended to be an out-of-the-box or "turn
key" portal "solution". Presented as a set of Java classes and XML/XSL
documents that you can use to produce a portal for use on your campus.

Jetspeed 2 Apache
Jakarta

OS - free JSR 168 Using
WSRP4J

http://portals.apache.org/jetspeed-2/
Jetspeed is an Open Source implementation of an Enterprise Information
Portal, using Java and XML. Jetspeed-2 is n Beta version and is
conformant to the Java Portlet Standard. Jetspeed provides support for
templating and content publication frameworks such as Cocoon,
WebMacro and Velocity. See section 6.2 for moe details.

Liferay Enterprise
Portal

Liferay OS - Free JSR168 Yes http://www.liferay.com/products/index.jsp
Liferay portal is designed to deploy portlets that adhere to the Portlet API
(JSR 168). A number of portlets are bundled with the portal. The product
is independent of application servers (can use Tomcat or Oracle or others)
Any JSR 168 compliant portlets added should be available to consumers
as WSRP.

Oracle AS Portal Oracle Some portal
components

Java
JSR168

WSRP http://www.oracle.com/technology/products/ias/portal/product_overview.
html

GroupLog Portlet Feasibility Study 29th April 2005

 45

are free e.g.
Portal
Development
Kit but these
work within
the Oracle As
portal

A free Java
portlet
container is
available.

 http://www.oracle.com/technology/products/ias/portal/pdk.htmlOracle
Application Server Portal provides a framework for integrating content
from external sources. The external content is displayed to the user as
windows on a portal page. Many functions within Oracle Application
Server Portal itself are implemented as portlets.

A number of different components are available, and the Portal
Development Kit (PDK) comes with a Portlet Container for building and
running interoperable Java portlets. The container provides a runtime
environment for Java portlets coded to the standard Java Portlet
Specification (JSR 168) APIs that enable the portlets to be utilized by any
portal supporting the OASIS Web Services for Remote Portlets (WSRP)
1.0 standard. Portlets deployed to Oracle's Java Portlet Container are
exposed automatically through WSRP An extension for JDeveloper
provides a wizard for the step-by-step creation of portlets. The PDK
enables developers to build portlets in any web accessible language
including Java/J2EE, Web Services, PERL, ASP, PL/SQL, XML and
much more.

Sun Java System
portal Server 6

Sun commercial yes yes http://www.sun.com/software/products/portal_srvr/home_portal6.xml
A Java portal that works with a number of application servers, provides
additional development tools and utilities, provides single sign-on for
aggregated applications to the portal, supports the creation and
consumption of Web services-based portlets and incorporates the J2EE
platform.

Vignette V7
Portal Services

Vignette commercial JSR 168 Not
explicitly
stated in
the

http://www.vignette.com/contentmanagement/0,2097,1-1-1928-4149-
1966-4151,00.html
Vignette comes as an application portal (portal framework) and a builder
for creation, assembly and customisation of applications. Pre-defined

GroupLog Portlet Feasibility Study 29th April 2005

 46

product
web pages
but
Vignette
supported
the
developm
ent of the
WSRP
standard

portlets are available with the portal, including one for integrating .NET
Web applications as portlets. The builder is intended to support portlet
development in a ‘code-free’ development environment.

WebSphere Portal
and Portal Toolkit

IBM Free trial of
the portal
toolkit
available for
testing with
the
application
server

Java Not
explicitly
stated in
the
product
web pages
but IBM
supported
the
developm
ent of the
WSRP
standard

http://www-
106.ibm.com/developerworks/websphere/zones/portal/bigpicture.html
http://www-
306.ibm.com/software/info1/websphere/index.jsp?tab=products/portaltool
kit
The IBM Portal Toolkit, Version 5.0.2.2/5.0.2.3 provides the capabilities
to customize, create, test, debug, and deploy individual portlets and Web
content. Before the creation of JSR 168, IBM had provided a proprietary
API within WebSphere Portal. However, with the advent of JSR 168, it is
recommended that portlet developers use the new standardized portlet
API. The Portal Toolkit plugs into the IBM WebSphere Studio products.
The foundation of the platform is IBM WebSphere Application Server.
Every Application Server configuration is powered by a single Java™
engine, For development needs, IBM WebSphere Studio brings you a
suite of tools in configurations that span development for the Web, the
enterprise, and wireless devices. The WebSphere Studio development
environment is based on the Eclipse Platform, an open universal platform
for tools integration.

WebLogic Portal BEA Free Java/JSR1 WSRP An enterprise portal platform for production and management of custom-

GroupLog Portlet Feasibility Study 29th April 2005

 47

8.1 Devlopment
license
(requires
registration)

68
Supports
the
creation of
JSR168
portlets
but also
has own
portlets
with
extended
features.

fit portals. Provides portlet wizards for the creation of different portlets
(JSP/HTML, JSR168, Struts, WSRP)
http://dev2dev.bea.com/products/wlportal81/index.jsp
http://dev2dev.bea.com/products/wlportal81/articles/wsrp.jsp

Plumtree Plumtree
software

commercial JSR168 WSRP http://www.plumtree.com/developers/standards/default.asp
The portal products are made available as part of an Enterprise Web Suite
which also includes Content and Search servers. Portlet development is
aided by wizards and graphical interfaces (rather than direct coding).
Integration with J2EE and .NET

BowStreetPortlet
Factory

Bowstreet commercial JSR168 Not stated http://www.bowstreet.com/toolsandtechnology/portletfactory/jsr168.html
Tools for the portlet development process, particularly for creating,
customizing, maintaining, and deploying JSR-168 compliant portlets,
masking the complexities of the underlying standards, including JSR-168
and J2EE.

Clickmarks
PortletFactory

Clickmarks commercial JSR168 WSRP http://www.clickmarks.com/index.html
Provides portlet creation tools for Rapid Application Development,
mainly for commercial portals such as Plumtree and Sun Java system.
Claims support for JSR168 and WSRP.

Kapow Kapowtech commercial Not stated Not stated http://www.kapowtech.com/solutions_portalprojects.htm
Marketed as middleware to portal-enable legacy applications (Java),
mostly for enterprise portal vendors

GroupLog Portlet Feasibility Study 29th April 2005

 48

12 References
[1] Pearce, L. Institutional Portals: A Review of Outputs. Workpackage 3, Deliverable
1 of the PORTAL Project. July 2003.
www.fair-portal.hull.ac.uk/downloads/iportaloutputs.pdf
[2] The JISC Portals FAQ
http://www.jisc.ac.uk/index.cfm?name=ie_portalsfaq
[3] Awre, C., Dovey, M. J., Hunter, J., Kilbride, W. and Dolphin, I. Developing
Portal Services and Evaluating How Users Want to Use Them: The CREE Project.
Ariadne, Issue 41. October 2004.
http://www.ariadne.ac.uk/issue41/awre-cree/#36
[4] Thompson, R. and Schaeck, T. Enabling Interactive, Presentation-Oriented
Content Services Through the WSRP Standard. XML Conference and Exposition
2003. Philadelphia, USA. December 2003.
http://www.idealliance.org/papers/dx_xml03/papers/04-06-05/04-06-05.html
[5] Kleane, M. Understanding the Java Portlet Specification. Developer.com. June
2004
http://www.developer.com/java/web/article.php/3366111
[6] Wilson, S., Blinco, L. and Rehak, D. Service Orientated Frameworks: Modelling
the infrastructure for the next generation of e-Learning Systems. July 2004
http://www.jisc.ac.uk/uploaded_documents/AltilabServiceOrientedFrameworks.pdf
[7] Kropp. A, Leue, C and Thompson, R. Web Services For Remote Portlets
Specification. OASIS. August 2003.
 http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf
[8] A Day in the Life of a Software Developer: Portlet Development & Portals a
weblog by Punit Pandey
http://blogs.ittoolbox.com/km/portals/
Also available at http://jroller.com/page/portlets and http://portlets.blogspot.com/
[9] The Yahoo! mailing list on portlets and related technology
http://groups.yahoo.com/group/portlets/
[10] Uncommented Bytes a weblog by Jeff Sheets
http://uncommentedbytes.blogspot.com/
[11] The Java.net Portlet Community site
http://community.java.net/portlet
[12] Blog by Ken Ramirez
http://weblogs.java.net/blog/ken_ramirez/
[13] Hepper, S. and Hesmer, S. Introducing the Portlet Specification, Part 1.
JavaWorld. August 2003.
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet.html
[14] Hepper, S. and Hesmer, S. Introducing the Portlet Specification, Part 2.
JavaWorld. September 2003.
http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-portlet2.html
[15] Kleane, M. Developing to the Java Portlet Specification. Developer.com. June
2004.
http://www.developer.com/java/web/article.php/10935_3372881_1
[16] BEA WebLogic Workshop Help (Online)
http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html
[17] Shu, C. and Sum, M. Building JSR 168-Compliant Portlets with Sun Java Studio
Enterprise. May 2004.
http://developers.sun.com/prodtech/portalserver/reference/techart/portlets.html

GroupLog Portlet Feasibility Study 29th April 2005

 49

[18] Paeffagen, F. and Rick, B. Converting the WorldClock portlet from the IBM
Portlet API to the JSR 168 portlet API. IBM developerWorks. December 2004.
http://www-
128.ibm.com/developerworks/websphere/library/techarticles/0412_paeffgen/0412_pa
effgen.html
[19] Resources for Java server-side developers
http://www.java201.com/resources/browse/25-all.html
[20] The PORTAL project
http://www.fair-portal.hull.ac.uk/
[21] The SPP Project
http://www.portal.ac.uk/spp/
[22] JISC Portlas Programme Case Studies
http://www.jisc.ac.uk/index.cfm?name=project_portal_casestudies
[23] uPortal UK users’ workshop, 19th November 2002
http://www.fair-portal.hull.ac.uk/19nov02.html
[24] Dovey, M. Rough Notes on implementing WSRP4J in uPortal
http://www.oucs.ox.ac.uk/portal/developers/environment.xml
[25] The JSR168 Specification
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/
[26] Stone, R. JSR-168 and WSRP: Competitors or Partners TheServerSide.com
April 2004
http://www.theserverside.com/reviews/thread.tss?thread_id=25598
[27] Linwood, J. and Minter, D. Building Portals With the Java Portlet API (Expert's
Voice) Apress. August 2004
Sample Chapters available at
http://www.theserverside.com/articles/content/BuildingPortals/Sample+Booklet_Linw
ood-Minter.pdf
[28] The Pluto home page on the Apache web site
http://portals.apache.org/pluto/
[29] WSRP4J hom epage on the Apache web site
http://ws.apache.org/wsrp4j/
[30] Jetspeed 2
http://portals.apache.org/jetspeed-2/
[31] Morgan, E.L. An introduction to the Search/Retrieve URL Service (SRU).
Ariadne. Issue 40. July 2004. http://www.ariadne.ac.uk/issue40/morgan/
[32] Davidson, C. and Coco, C. (Eds). Web Services for Remote Portlets 1.0
Frequently Asked Questions. WSRP-faq-1.0
http://www.oasis-open.org/committees/download.php/10953/

