

Citation for published version:
Kinoshita, Y & Power, J 2014, 'Category theoretic structure of setoids', Theoretical Computer Science, vol. 546,
pp. 145-163. https://doi.org/10.1016/j.tcs.2014.03.006

DOI:
10.1016/j.tcs.2014.03.006

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

NOTICE: this is the author’s version of a work that was accepted for publication in Theoretical Computer
Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version will be published in Theoretical
Computer Science

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.tcs.2014.03.006
https://researchportal.bath.ac.uk/en/publications/category-theoretic-structure-of-setoids(6b628f3e-193b-42bf-acc8-3a24cd3a72e4).html

Category Theoretic Structure of Setoids

Yoshiki Kinoshitaa,b,1,∗, John Powerc,1

aNational Institute of Advanced Industrial Science and Technology, 3-11-46, Nakoji,
Amagasaki, Hyogo 661-0974, Japan

bCurrent address: Department of Information Sciences, Kanagawa University, Tsuchiya
2946, Hiratsuka-shi, Kanagawa, 259-1293, JAPAN

cDepartment of Computer Science, University of Bath, Bath BA2 7AY, United Kingdom

Abstract

A setoid is a set together with a constructive representation of an equivalence
relation on it. Here, we give category theoretic support to the notion. We
first define a category Setoid and prove it is cartesian closed with coproducts.
We then enrich it in the cartesian closed category Equiv of sets and classical
equivalence relations, extend the above results, and prove that Setoid as an
Equiv-enriched category has a relaxed form of equalisers. We then recall the
definition of E-category, generalising that of Equiv-enriched category, and
show that Setoid as an E-category has a relaxed form of coequalisers. In
doing all this, we carefully compare our category theoretic constructs with
Agda code for type-theoretic constructs on setoids.

Keywords: setoid, proof assistant, proof irrelevance, Cartesian closed
category, coproduct, Equiv-category, Equiv-inserter, E-category, E-coinserter

1. Introduction

The notion of setoid, albeit with different nomenclature, was introduced
by Bishop in his development of constructive mathematics [1]. The key
difference between it and sets is that one does not have equality of elements
of a setoid, the closest approximant to equality being given by a constructive

∗Corresponding author
Email addresses: yoshiki-ml@aist.go.jp (Yoshiki Kinoshita),

a.j.power@bath.ac.uk (John Power)
1This work was done as a part of Dependable Engineering for Open Systems (DEOS)

project funded by CREST, Japan Science and Technology Agency (JST).

Preprint submitted to Theoretical Computer Science March 13, 2013

representation of an equivalence relation, that is, a family of sets indexed
by elements of the setoid. The elements of the family can be regarded as
proof objects of the relation: the relation is considered to hold if and only if
the corresponding set in the family is inhabited. Over recent years, Bishop’s
idea has been taken up in the field of theorem proving using proof assistants
including Agda, Coq and Isabelle[2, 3, 4]. Here, we give analysis of the
structure of setoids in terms of category theory based on näıve set theory.

The ordinary category of setoids and their morphisms is Cartesian closed,
but it seems there is no equalisers and coequalisers; even if they do exist, it
would be something strange that cannot be used in a straightforward way.
So, we consider enrichment over Equiv. The Equiv-category of setoids does
have Equiv-inserters, which are weaker notion of equalisers, and cotensors,
but it still seems to lack coequalisers and any of its weaker form. We then
study the E-category of setoids. The E-category Setoid does not only have
Cartesian closed structure, E-inserters and cotensors, but also E-coinserters
and tensors. These are enough to say that there always exist a weak notion
of limit and colimit of arbitrary (small) diagram in the E-category of setoids.
In fact, we give an Agda code which claims the existence in the Appendix.

We adopt the usual semantic practice of modelling a type by a set and
modelling a term in context by a function. The definition of setoid inherently
involves a type Set, so we shall assume we have a model of set theory and,
with mild overloading of notation, use Set to denote the set of small sets,
equivalently a model of sets.

Having adopted those conventions, a setoid A, in classical set-theoretic
terms, consists of:

• a set |A|

• a family ≈A of sets indexed by |A|× |A| (We write a0 ≈A a1 for the set
indexed by (a0, a1).)

• for each a ∈ |A|, an element reflA(a) of a ≈A a

• for each pair (a0, a1) of elements of |A|, a function symA(a0, a1): (a0 ≈
a1) −→ (a1 ≈ a0)

• for each triple (a0, a1, a2) of elements of |A|, a function transA(a0, a1, a2): (a1 ≈
a2)× (a0 ≈ a1) −→ (a0 ≈ a2)

2

There is some choice about a natural notion of map between setoids, but one
natural option, which we shall make, is that a morphism f : A −→ B consists
of:

• a function funf : |A| −→ |B| together with

• for each pair (a0, a1) of elements of |A|, a function respf : (a0 ≈ a1) −→
(funf (a0) ≈ funf (a1)).

These definitions can be described by the following Agda code.

record Setoid : Set1 where

field

carrier : Set

≈ : carrier → carrier → Set

refl : {x : carrier} → x ≈ x

sym : {x y : carrier} → x ≈ y → y ≈ x

trans : {x y z : carrier} → y ≈ z → x ≈ y → x ≈ z

record _ _ (A B : Setoid) : Set where

open Setoid ; _∼=_ = _≈_ A ; _'_ = _≈_ B

field

fun : carrier A → carrier B

resp : {a0 a1 : carrier A} → a0 ∼= a1 → fun a0 ' fun a1

The most striking fact about the definition of setoids is the absence of coher-
ence axioms. In particular, the data for reflexivity, symmetry and transitivity
are exactly data appropriate for the definition of a groupoid: if one added
natural coherence axioms to the definition of setoid, one would in fact have
the definition of a groupoid. A central idea in the definition of setoid is not to
insist upon equality between proof objects. The result is that setoids behave
quite differently to groupoids or categories.

The behaviour of setoids would be simpler if the sets a0 ≈ a1 were degen-
erated into singletons or instances of the empty set. That would correspond
to the study of the category Equiv of equivalence relations.

The implications of the lack of coherence axioms are profound. For in-
stance, a morphism of setoids, in contrast to a functor, need not preserve the
data for reflexivity or transitivity: it follows from the definition of functor
that functors preserve n-fold composition for any natural number n, whereas,

3

in the absence of a coherence axiom for transitivity, that would not hold if
one imposed the usual functoriality condition on a morphism of setoids. And
although we will consider equivalences between morphisms of setoids, (cf.
natural isomorphisms between functors), it does not make sense to impose a
naturality condition on them as, again in the absence of a coherence axiom
for transitivity, a composite of such natural transformations would not be
natural.

Setoids and morphisms between them generate a category Setoid. The
lack of a requirement that the reflexivity, symmetry and transitivity data is
preserved by a morphism of setoids impacts on the structure of the category
Setoid. If such axioms were imposed on morphisms, the category Setoid would
be locally finitely presentable, hence complete and cocomplete. But in fact
Setoid seems not to have equalisers, although it does have products and is
Cartesian closed.

We will duly study the structure of the category Setoid in this paper,
in particular proving that it has products and coproducts and is Cartesian
closed: the latter is quite complex. But in theorem proving practice, this
category is not of interest per se: constructively, one cannot assert that
parallel morphisms f, g: A −→ B are equal; one can only assert that for each
a in |A|, the set f(a) ≈B g(a) is inhabited, i.e., is non-empty. We extend
Setoid to provide semantics to express the fact of two morphisms of setoids
being equivalent, but not necessarily equal.

In order to provide such structure, we extend Setoid with the canonical
structure of an Equiv-enriched category, Equiv being Cartesian closed. We
induce an Equiv-enrichment of Setoid from the canonical Equiv-enrichment
of Equiv. Cartesian closedness and coproducts extend from Setoid as an
ordinary category to Setoid as an Equiv-enriched category. We further prove
that Setoid as an Equiv-enriched category has a relaxed form of equaliser
that we call an Equiv-inserter, cf. [5].

We make one further step. Equiv-categories have underlying ordinary cat-
egories, thus have strict associativity of morphisms. And the structures one
considers on Equiv-categories, such as Equiv-products and Equiv-closedness re-
flect that strictness. But constructively, setoids do not have such strictness.
We take advantage of that to prove the existence of further constructions on
setoids, such as a relaxed notion of coequaliser that we call an E-coinserter.
Equiv-products are a fortiori E-products, etc.

The central idea here is that every Equiv-category is an E-category, as
we shall discuss. In fact, we show that an Equiv-category is precisely a

4

strict E-category, Equiv-categories being to E-categories as 2-categories are
to bicategories. It is Setoid as an E-category about which the type-theoretic
theorems and proofs about setoids hold.

This paper is organised as follows. In Section 2, the construction of the
ordinary category Equiv of equivalence relations is introduced and its com-
pleteness, cocompleteness and Cartesian closedness are proved. This Carte-
sian closed category is important as a category over which Setoid will be
enriched. In Section 3, we introduce another ordinary category Setoid of se-
toids and show that it is Cartesian closed and has coproducts. In Section 4,
we introduce the notion of Equiv-enriched categories with an elementary de-
scription; Equiv is enriched to Equiv-enriched category Equiv. We extend the
ordinary category Setoid to the Equiv-enriched category Setoid and study its
structure in Section 5. The notion of E-category is introduced in Section 6
and the structure of the specific E-category Setoid is studied in Section 7.
We conclude in Section 8. In Appendix A, we attach Agda code for setoids
and the constructions in the E-category Setoid studied in this paper.

Related work

The notion of setoids as presented above is folklore in theorem proving
and its use can be traced back at least to Peter Aczel’s unpublished re-
port [6]. Čubrić, Dybjer and Scott [7] introduced P-categories, which can be
obtained by replacing equivalence relations in E-categories by partial equiv-
alence relations. The first author studied E-categories in connection with
bicategories in [8], where the E-equivalence of E-categories and strict E-
categories is essentially but only implicitly described. Wilander defined a
notion of E-bicategory and studied an E-bicategory of E-categories, in par-
ticular Setoids [9, 10, 11, 12]. However, his definitions are given in terms
of constructive type theory, whereas ours are given in terms of näıve set
theory. We then use the set theoretic notions to study setoids described in
constructive type theory.

There has been considerable work on constructive mathematics from a
category theoretic perspective, in particular using techniques derived from
topos theory and related to taking the exact completion of Set [13, 14, 15,
16, 17, 18].

5

2. The category Equiv of equivalence relations

A set with an equivalence relation is directly and naturally modelled by
the following category Equiv.

Construction 1. The category Equiv consists of the following data.

• Objects are pairs A = (|A|,≡A) of a small set |A| and an equivalence
relation ≡A on it.

• Morphisms from A to B are functions from |A| to |B| that respect the
equivalence relation, i.e., functions f : |A| −→ |B| such that f(a0) ≡B
f(a1) whenever a0 ≡A a1.

• Composition is given by composition of functions.

• Identities are identity functions.

These data satisfy the conditions for a category.

We shall call an object of Equiv an equivalence relation.

Theorem 2. Equiv is complete and cocomplete.

Proof. A product diagram in Equiv for a family A = (Ai | i ∈ I) is given
pointwise by

(P
πi−→ Ai | i ∈ I),

where |P | πi−→ |Ai| is the product diagram in Set and ≡P is given by p ≡P p′
if and only if πi(p) ≡Ai

πi(p
′) for all i ∈ I. Each πi evidently respects the

equivalence relations, so is a morphism in Equiv. The universal property
holds because it is a product cone in Set.

An equaliser for a parallel pair of morphisms f, g: A −→ B in Equiv is
given by

E
e

> A
f

>

g
> B

where |E| e→ |A|
f

⇒
g
|B| is the equaliser diagram in Set and ≡E is defined

by x ≡E y if and only if e(x) ≡A e(y). This clearly makes e a morphism
in Equiv, and the universal property holds because the above is an equaliser
diagram in Set.

6

A coproduct of (Ai | i ∈ I) is also given pointwise. Let |C| be the disjoint
union of sets:

|C| def=
∐
{ |Ai| | i ∈ I }

and define ≡C by

≡C
def
=
∐
{≡Ai

| i ∈ I }

Clearly ≡C is an equivalence relation on C and each injection ιi: |Ai| 7−→ |C|
respects the equivalence relation, so is a morphism in Equiv. It is routine to
verify that (ιi: Ai −→ C | i ∈ I) is a coproduct diagram in Equiv.

Finally, a coequaliser of a pair of parallel morphisms f, g: A −→ B is

given as follows. Define the set |Coeq| so that |A|
f

⇒
g
|B| coeq→ |Coeq| is the

coequaliser in Set.
A binary relation ≡Coeq is defined by the transitive closure of the image of

≡B under coeq. It is an equivalence relation: reflexivity and symmetry follow
from surjectivity of coeq. Therefore Coeq = (|Coeq|,≡Coeq is an object and
coeq is a morphism of Equiv. It is routine to verify the universal property.

Theorem 3. Equiv is Cartesian closed.

Proof. Given two objects B and C of Equiv, the exponential [B,C] is given by
the set of functions f : |B| −→ |C| such that b0 ≡B b1 implies f(b0) ≡C f(b1),
and with equivalence relation given by f ≡[B,C] g if for all b ∈ B, one has
f(b) ≡C g(b). The counit ε ∈ Equiv([B,C] × B,C) sends (f, b) to f(b);
to see it is a morphism of Equiv, assume f ≡[B,C] f

′ and b ≡B b′. Then
ε(f, b) = f(b) ≡ f ′(b) ≡ f ′(b′) = ε(f ′, b′), as required.

To show the universal property, letA,B,C ∈ ob(Equiv) and f ∈ Equiv(A×
B,C). The currying operator in Set maps f to f̄ : |A| 3 a 7−→ (λb. f(a, b)) ∈
(|B| → |C|), where (|B| → |C|) is the set of functions from |B| to |C|.
We first wish to show f̄(a) ∈ |[B,C]|, for all a ∈ |A|. But if b ≡ b′, then
f̄(a)(b) = f(a, b) ≡C f(a, b′) = f̄(a)(b′) because f respects the equivalence
relation. It is obvious that f̄ is the unique function that makes the following
triangle commute.

A×B

[B,C]×B
ε

>
<
f̄ ×

idB

C

f
∨

7

It remains to show f̄ ∈ Equiv(A, [B,C]), that is, it is a morphism in Equiv.
But if a ≡A a′, f̄(a) = λb. f(a, b) ≡[B,C] λb. f(a′, b) = f̄(a′) as f(a, b) ≡[B,C]

f(a′, b) for all b ∈ |B|.

3. The category Setoid of setoids

A setoid is a constructive representation of an equivalence relation. We
can study them in classical terms as follows.

Construction 4. The following data form a category, which we call Setoid.

• Objects are setoids as defined in the Introduction.

• For setoids A, B, Setoid(A,B) is the set of all morphisms from A to B,
also as defined in the Introduction.

• For setoids A, B and C and morphisms f : A −→ B and g: B −→ C,
the morphism g ◦ f : A −→ C is defined to be the pair of the composite
fung ◦ funf : |A| −→ |C| and, for each a0, a1 ∈ |A|, the composite respg ◦
respf .

• For a setoid A, idA is the pair of the identity function on |A| and, for
each a0, a1 ∈ |A|, the identity function on a0 ≈A a1.

Setoid is equivalent to a full subcategory of the functor category from
the pair of parallel arrows to Set. It is not reflective as equalisers in Setoid
are not given pointwise. We will not develop that approach to Setoid in this
paper.

The equality between elements of homsets is referred to in these con-
ditions, but such equalities are not available in proof assistants based on
constructive type theory, such as Agda. Despite that, the structure of the
category Setoid is studied in the rest of this section.

Theorem 5. Setoid has all products and coproducts.

Proof. We first construct binary products in Setoid, but the product of an
arbitrary number of object is constructed similarly. Let A, B be setoids. We
define the setoid A×B by

• |A×B| = |A| × |B|

• (a, b) ≈A×B (a′, b′) = (a ≈A a′)× (b ≈B b′)

8

• reflA×B((a, b)) = (reflA(a), reflB(b))

• symA×B

(
(a, b), (a′, b′)

)
= symA(a, a′)× symB(b, b′)

which is a function from (a ≈A a′)× (b ≈B b′) to (a′ ≈A a)× (b′ ≈B b).

• transA×B
(

(a, b), (a′, b′), (a′′, b′′)
)

= transA(a, a′, a′′)× transB(b, b′, b′′),

a function from
(

(a′ ≈A a′′)× (a ≈A a′)
)
×
(

(b′ ≈B b′′)× (b ≈B b′)
)

to

(a ≈A a′′)× (b ≈B b′′).

The projection proj0 ∈ Setoid(A×B,A) is defined as follows.

• funproj0

def
= π0, where π0 is the projection function from |A| × |B| to |A|.

• respproj0

def
= π0, where π0 is the projection function from (a ≈A a′) ×

(b ≈B b′) to (a ≈A a′).

The other projection proj1: A×B −→ B is defined symmetrically.

To show the universal property, let A
f0←− C

f1−→ B be a cone on A and
B. Then we can define 〈f0, f1〉: C −→ A× B by fun〈f0,f1〉(c) = (f0(c), f1(c))
and resp〈f0,f1〉 = (respf0 , respf1).

C

A <
proj0

<

f0

A×B

〈f0, f1〉..∨

...

proj1
> B

f
1

>

The above diagram commutes because (funproji◦fun〈f0,f1〉)(c) = funproji(f0(c), f1(c)) =
fi(c) for i = 0, 1, and respproji

◦ resp〈f0,f1〉 = respproji
similarly. It is obvious

that 〈f0, f1〉 is the only such.
A coproduct of A0 and A1 is also given pointwise. We define the setoid

A0 + A1 as follows.

• |A0 + A1|
def
= |A0|+ |A1|.

Let ιi: |Ai| −→ |A0 + A1| be the injection morphism.

• ≈A0+A1=≈A0 + ≈A1

• reflA0+A1(i, a))
def
= (i, reflAi

(a)).

9

• symA0+A1
((i, a), (j, a′))((m, p))

def
= (i, symAi

(a, a′, p)).
(m, p) is an element of (i, a) ≈Am (j, a′), so i, j and m must all be equal.
Then symA0+A1

((i, a), (i, a′))((i, p)) is the pair of i and symAi
(a, a′)(p).

• transA0+A1((i, a), (j, a′), (k, a′′))((m, p), (n, q)) = (i, transAi
(a, a′, a′′)(p, q).

(m, p) is an element of (j, a′) ≈Am (k, a′′), so j, k and m must be equal;
similarly, (n, q) ∈ ((i, a) ≈an (j, a′)), so i = j = n. Therefore i = j =
k = m = n. The element transA0+A1((i, a), (i, a′), (i, a′′))((i, p), (i, q)) is
the pair of i and transAi

(a, a, a′′)(p, q).

The injection ιi ∈ Setoid(Ai, A0 + A1), (i = 0, 1) is defined as follows.

• funιi : |Ai| −→ |A0 + A1| is defined by funιi(a)
def
= (i, a).

• For a, a′ ∈ Ai, respιi : a ≈Ai
a′ −→ funAi

(a) ≈A0+A1 funAi
(a′) is defined

by respιi(p) = (i, p)

Then the bottom line in the diagram below is a coproduct diagram in Setoid.

C

A0
ι0
>

f0
>

A0 + A1

[f0, f1]..

∧...

<
ι1

A1

<
f
1

To show it, let C be an arbitrary object and f0 ∈ Setoid(A0, C), f1 ∈
Setoid(A1, C) be arbitrary morphisms in Setoid. Define [f0, f1] ∈ Setoid(A0 +
A1, C) as follows.

• fun[f0,f1]((i, a))
def
= funfi(a)

• For elements ai and a′i of |Ai| and p of ai ≈Ai
a′i, resp[f0,f1]((i, p))

def
=

respfi(p).

Both triangles commute: the left triangle commutes because (fun[f0,f1] ◦
funι0)(a) = fun[f0,f1])((0, a)) = funf0(a) for all a in |A0|, and (resp[f0,f1] ◦
respι0)(p) = respf0(p) and the right triangle commutes similarly.

To see the uniqueness, let h ∈ Setoid(A0+A1, C) be a morphism such that
h ◦ ιi = fi for i = 0 and 1, and we shall show h = [f0, f1]. The uniqueness of
the fun part is obvious because it is a coproduct diagram in Set. To show the
uniqueness of the resp part, let x and x′ be elements of |A0 + A1| and p be an

10

element of x ≈A0+A1 x
′. Because x ≈A0+A1 x

′ is inhabitant, x, x′ and p are
of the form (i, a), (i, a′) and (i, q) for the same i, a, a′ ∈ |Ai| and q ∈ a ≈Ai

.
So, resph(p) = resph((i, q)) = resph(ιi(q)) = respfi(q) = resp[f0,f1](ιi(q)) =
resp[f0,f1](p), but p is arbitrary, so resph = resp[f0,f1], as required.

Given setoids A and B, an element of the exponential [A,B] is not given
by a morphism of setoids from A to B. Rather, it is given by a function
f : |A| −→ |B| for which, for all a0 and a1 in |A|, there exists a function
ϕ from a0 ≈A a1 to f(a0) ≈B f(a1). So, rather than being a morphism of
setoids, an element of the exponential is a morphism of the induced objects
of Equiv that is introduced in Section 2.

Theorem 6. Setoid is Cartesian closed.

Proof. Leaving the reflexivity, symmetry and transitivity data implicit, given
setoids A, B and C, a morphism f of setoids from A × B to C consists of
a function funf : |A| × |B| −→ |C| together with, for all a, a′ ∈ |A| and all
b, b′ ∈ |B|, a function

respf : (a ≈A a′)× (b ≈B b′) −→ f(a, b) ≈C f(a′, b′)

These data can be re-expressed as functions funh: |A| −→ (|B| → |C|) and

resph: (a ≈A a′) −→ ((b ≈B b′)→ (h(a)(b) ≈C h(a′)(b′)))

So data for a potential exponential [B,C] is given by the set (|B| → |C|)
of all functions k: |B| −→ |C|, with k ≈[B,C] k

′ given by the product over all
b, b′ ∈ |B| of ((b ≈B b′)→ (k(b) ≈C k′(b′))).

However, this data does not satisfy the reflexivity axiom in the definition
of setoid: for a setoid, for each k ∈ [B,C], the set k ≈[B,C] k must be non-
empty. That need not be true for an arbitrary function k: |B| −→ |C|, but
it is true for any function k that underlies a morphism of setoids from B to
C.

In fact, given a morphism of setoids f from A×B to C, for any a ∈ |A|,
the function funf (a,−): |B| −→ |C| does underlie a morphism of setoids.

So an exponential [B,C] does exist: an element is a function k: |B| −→
|C| for which, for every b, b′ ∈ |B|, there exists a function from b ≈B b′ to
k(b) ≈C k(b′), with ≈[B,C] defined as above.

It is routine to verify that this gives data for a setoid; and its universal
property holds by construction.

11

From the perspective of setoids as a type-theoretic construct, the closed
structure of the category Setoid is remarkable: the elements of the exponen-
tial necessarily involve an existence condition because of the requirement of
existence of reflexivity, but the family is inherently constructive.

Moreover, k ≈[B,C] k
′ is given in a specific way: it assigns to each pair

b, b′ of elements of |B|, a function from b ≈B b′ to k(b) ≈C k′(b′), rather
than assigning, to each single element b ∈ |B|, a function from b ≈B b to
k(b) ≈C k′(b). These are not interchangeable: the replacement of the first by
the second does not describe the closed structure of the category Setoid.

However, up to equivalence, they do agree. So, when we consider Setoid as
an E-category in Section 6, its closed structure as an ordinary category is also
E-closed structure, but E-closed structure is unique only up to equivalence,
whereas ordinary closed structure is unique up to isomorphism. So in Setoid
as an E-category, the closed structure as we have defined it and the alternative
above both act as E-closed structures.

A morphism in Setoid from 1 to an exponential [A,B] consists of a
function from the set 1 to the carrier of the exponential, i.e., a function
funf : |A| −→ |B| for which there exist functions from a ≈A a′ to funf (a) ≈B
funf (a

′), together with a function from 1 to the set of families of functions,
of the form respf : a ≈A a′ −→ funf (a) ≈B funf (a

′). The existence clause is
therefore redundant.

4. Equiv-enriched categories

Categories can be enriched over Equiv, as the latter is Cartesian closed.
The definition of Equiv-enriched category, or simply Equiv-category, is only an
instance of V-enriched category for symmetric monoidal V , but we explicitly
state it for the purpose of self-containedness.

Definition 7. An Equiv-enriched category C consists of the following data:

• a set ob(C), elements of which are called objects of C.

• for each C,C ′ ∈ ob(C), an object C(C,C ′) of Equiv.

• for each C,C ′, C ′′ ∈ ob(C), a function �: |C(C ′, C ′′)× C(C,C ′)| −→
|C(C,C ′′)| such that (g�f) ≡C(C,C′′′) (g′�f ′) whenever g ≡C(C′,C′′) g

′

and f ≡C(C,C′) f
′.

• for each C ∈ ob(C), an object idC ∈ |C(C,C)|

12

These data are subject to the following three conditions.

• For C,C ′, C ′′, C ′′′ ∈ ob(C) and f ∈ |C(C,C ′)|, g ∈ |C(C ′, C ′′)|, h ∈
|C(C ′′, C ′′′)|,

h�(g�f) = (h�g)�f.

• For C,C ′ ∈ ob(C) and f ∈ |C(C,C ′)|,

f�idC = f.

• For C,C ′ ∈ ob(C) and f ∈ |C(C,C ′)|,

idC′�f = f.

So, Equiv-categories have hom-equivalence-classes rather than homsets.
Another way of looking at it is that an equivalence relation is defined for
parallel pairs of morphisms (elements of the carrier of homobjects).

Given an Equiv-category C, its underlying category C◦ is defined as fol-
lows. Its objects are the same as the objects of C. The homset C◦(x, y) is
the carrier set |C(x, y)| of the homobject for these objects. The composition
and identity of the underlying category are the same as those of C.

Let C be a category. If an Equiv-category is defined so that its underlying
category coincides with C, we say C is enriched to it. In order to enrich a
category we have only to give an equivalence relation on each homset such
that the composition respects those equivalence relations.

Construction 8. The category Equiv is enriched to the Equiv-enriched cat-
egory Equiv. The equivalence relation on each homset is defined so that
f ≡ g if and only f(a) ≡ g(a) for all a.

To see the composition preserves these equivalence relations, let f ≡ g
and f ′ ≡ g′, with domains and codomains agreeing. Then for all a, f ′f(a) ≡
f ′g(a) ≡ g′g(a), the first of these holding because f ≡ g and because f ′ is a
morphism of equivalence relations, with the latter holding because f ′ ≡ g′.

The general theory of enriched categories, or more specifically that of
2-categories, determines definitions of Equiv-functor, Equiv-natural trans-
formation, Equiv-enriched adjoint, Equiv-products, Equiv-coproducts, Equiv-
cotensors, and Equiv-closedness [5, 19]. We also adopt the notion of inserter
from the theory of 2-categories [5]. We can express these definitions in ele-
mentary terms of Equiv-categories.

13

For example, given Equiv-enriched categories C and D, an Equiv-functor
from C to D is an ordinary functor H: C◦ −→ D◦ such that if f ≡C(c,c′)

f ′, then H(f) ≡D(H(c),H(c′)) H(f ′). Just as C has an ordinary underlying
category C◦, an Equiv-functor H has an underlying ordinary functor H◦: it
has exactly the same data as H.

An Equiv-enriched natural transformation from H to K is exactly an
ordinary natural transformation from H◦ to K◦.

Equiv-categories, Equiv-functors and Equiv-natural transformations form
a 2-category, as is the case for enriched categories in general, and that de-
termines a definition of Equiv-enriched adjoint. In elementary terms, an
Equiv-functor H: C −→ D has an Equiv-enriched left adjoint if the ordi-
nary functor H◦: C◦ −→ D◦ has an ordinary left adjoint L subject to the
additional condition that the bijections

C◦(L(d), c) ∼= D◦(d,H(c))

respect the equivalence relations on C(L(d), c) and D(d,H(c)).
Given objects a and b of an Equiv-enriched category C, an Equiv-product

of a and b is a product a × b in C◦ subject to one additional property: if
f ≡C(c,a) f

′ and g ≡C(c,b) g
′, then (f, g) ≡C(c,a×b) (f ′, g′).

Equiv-coproduct is the dual notion to Equiv-product.
The notion of cotensor appears generally in enriched category theory, but

not often in ordinary category theory, so we spell out its definition in detail
here.

Definition 9. Given an equivalence relation X and an object a of an Equiv-
category C, an Equiv-cotensor aX of a by X is an object with the universal
property that, for any object b of C, there is a natural bijection between the
set of morphisms of equivalence relations

X −→ C(b, a)

and the set of morphisms in C

b −→ aX

with the bijection respecting equivalent morphisms.

Definition 10. An Equiv-inserter of morphisms f, g: a −→ b in an Equiv-
category C is an object e together with a morphism ι: E −→ A such that

14

f ◦ ι is equivalent to g ◦ ι, universally so, i.e., for any object c and morphism
γ: c −→ a such that f ◦γ ≡C(c,b) g ◦γ, there is a unique morphism γ̄: c −→ e
such that ι ◦ γ̄ = γ. Moreover, γ ≡C(c,a) γ

′ implies γ̄ ≡C(c,e) γ̄′.

An Equiv-category C with finite products is called Equiv-closed if for every
object a of C, the Equiv-functor (−×a): C −→ C has an Equiv-enriched right
adjoint.

5. The Equiv-category Setoid of setoids

Although setoids and equivalence relations are different, the former are
often considered to be a representation of the latter in type theoretic practice.
The construction of the following reflection explains it.

Proposition 11. There is an evident inclusion J : Equiv −→ Setoid, and it
has a left adjoint F that sends a setoid A to an equivalence relation (|A|,≡A)
where a ≡A a′ if and only if (∃p) p ∈ (a ≈A a′).

F a J : Equiv ⊂ > Setoid

The left adjoint F corresponds to “degenerating” the proofs of equiva-
lence. We use F to give the category Setoid a canonical Equiv-enrichment as
follows.

Definition 12. The following data defines an Equiv-category Setoid.

• The set of objects is the set of setoids.

• For setoids A, B, Setoid(A,B) is the equivalence relation on the set of
setoid morphisms from A to B, where two morphisms f and g are equiv-
alent if and only if F (f) and F (g) are equivalent in Equiv(F (f), F (g)).

• For all setoids A, B and C, the setoid morphism �ABC : Setoid(B,C)×
Setoid(A,B) −→ Setoid(A,C) is defined by f�g = f ◦ g, where ◦
is the composition in the category Setoid. Observe that if f ≡ f ′ and
g ≡ g′, then f�g ≡ f ′�g′.

The ordinary category Setoid has products and coproducts; they enrich
to Equiv, i.e., the same constructions satisfy the properties required to be
Equiv-products and Equiv-coproducts.

15

The closed structure of Setoid as an ordinary category extends to closed
structure of Setoid as an Equiv-category: for any setoid A, the ordinary
functor (−×A): Setoid −→ Setoid extends to an Equiv-functor, i.e., it respects
equivalences between morphisms in Setoid, and its ordinary right adjoint
satisfies the property required to be an Equiv-enriched right adjoint.

5.1. Inserters in the Equiv-category Setoid

Equalisers seem not to exist in Setoid as an ordinary category: if they
do, they certainly are not given pointwise. So that a fortiori is also true of
Setoid as an Equiv-enriched category. Similarly, coequalisers do not seem to
exist in Setoid as an ordinary category, so, a fortiori, seem not to exist in
Setoid as an Equiv-category. Nevertheless, Setoid does have Equiv-inserters
(Definition 10).

Theorem 13. All parallel pairs of morphisms in the Equiv-category Setoid
have Equiv-inserters.

Proof. Given f, g: A −→ B in Setoid, let E be the set of elements a of |A| for
which f(a) ≈B g(a) is inhabited, and define ≈E by restriction of ≈A. Define
e: E −→ A by inclusion.

It is routine to verify that this satisfies the axsa for an Equiv-inserter.

Equiv-inserters are remarkably non-constructive, and in that specific sense,
they differ from iso-inserters in the theory of 2-categories. Their non-constructiveness
means that the construction of E in Theorem 13 does not directly correspond
to Agda code. For the latter, one wants not just an element a of |A| for which
f(a) ≈B g(a) is inhabited, but rather an element a together with an element
of f(a) ≈B g(a), but such an object is not the Equiv-inserter, and it seems
not to be a limit in the Equiv-category Setoid.

However, as we shall see, the definition of Equiv-inserter extends natu-
rally to a definition of E-inserter, for which one weakens the commutativity
condition e ◦ x̄ = x to the condition that e ◦ x̄ is equivalent to x. Doing so
means that E-inserters are only defined by to equivalence, rather than up to
isomorphism, upon which the natural Agda code does yield an E-inserter, one
that is equivalent to the canonical choice determined by the Equiv-inserter,
which is, a fortiori, an E-inserter.

The situation for coinserters is quite different. The Equiv-category Setoid
seems not to have Equiv-coinserters, where the notion of coinserter is dual to
that of inserter. But it does have E-coinserters and these agree with Agda
code.

16

5.2. Cotensors in the Equiv-category Setoid

Theorem 14. The Equiv-category Setoid has cotensors, given as follows.
An element of |BX | is a function h: |X| −→ |B| such that if x ≡ x′, then
h(x) ≈B h(x′) is nonempty (inhabited). An element of h ≈BX h′ is given by
an assignment, to each element x of |X|, of an element of h(x) ≈B h(x′).

Proof. A morphism of equivalence relations from X to Setoid(A,B) consists
of a function f : |X| −→ |Setoid(A,B)| such that if x ≡X x′, f(x) ≡Setoid(A,B)

f(x′), that is, such that for all a ∈ |A|, f(x)(a) ≈B f(x′)(a) is inhabitant.
To give such data is equivalent to giving a function f : X −→ [A,B]

together with, for all x ∈ |X|, and for all a, a′ ∈ |A|, a function f≈ : (a ≈A
a′) −→ (f(x)(a) ≈B f(x)(a′)).

Reorganising this data, and adding the condition on f as a morphism
of equivalence relations, this is equivalent to giving a function g: A −→
[X,B] together with, for each a, a′ ∈ |A|, and for each x ∈ |X|, a function
g≈: (a ≈A a′) −→ g(a)(x) ≈B g(a′)(x) such that, for all a ∈ |A|, if x ≡ x′,
then g(a)(x) ≈B g(a)(x′).

Putting g(a) = h, this agrees with the construction in the statement of
the proposition. The construction in the statement can routinely be checked
to possess the requisite reflexivity, symmetry and transitivity data.

Cotensors bear close resemblance to the closed structure of Setoid. If one
considers the equivalence relation X as a setoid, one in which each set in the
family has either one element or none, the set BX is exactly the set given by
the closed structure of Setoid.

However, the associated families of sets h ≈[X,B] h
′ are subtly different.

For cotensors, we can express an element of h ≈[X,B] h
′ as the assignment, to

each element x of |X|, of a function from x ≈ x to h(x) ≈B h′(x). In contrast,
for the closed structure, we required, for each pair (x, x′) of elements of X,
a function from x ≈X x′ to h(x) ≈B h′(x′).

Thus the closed structure and the cotensors, although closely related to
each other, are not isomorphic. However, they are equivalent, i.e., there are
morphisms in Setoid r: BX −→ [X,B] and s: [X,B] −→ BX for which the
composite r◦s is equivalent to the identity morphism on [X,B] and similarly
for s ◦ r: there are evident choices of such morphisms, the behaviour on
carriers being the identity functions.

This means that, although the closed structure and cotensors of Setoid
do not agree as Equiv- structures, they do agree as E-structures, i.e., Setoid

17

is E-closed and has E-cotensors, and for any equivalence relation X seen as
a setoid, the two E-structures agree.

In stark contrast to this, it seems unlikely that Setoid as an Equiv-
category has tensors, although it does have E-tensors.

6. E-categories

E-categories naturally arise when categories are treated in constructive
settings [20]. E-categories are closely related to P-categories, which also arise
when categories are treated constructively. The definition of P-category is
obtained by replacing equivalence relations by partial equivalence relations in
the definition of E-category. P-categories are studied in [7], but the authors
did not always distinguish P-categories from categories enriched over the
Cartesian closed category of partial equivalence relations.

6.1. Basic definitions

Definition 15. An E-category C consists of the following data.

• a set ob(C)

• for each x, y ∈ ob(C) an object C(x, y) of Equiv.

• for each x, y, z ∈ ob(C), a morphism ◦: C(y, z) ×C(x, y) −→ C(x, z)
in Equiv

• for each x ∈ ob(C), an element idx of |C(x, x)|

These data are subject to the following conditions.

• for each w, x, y, z ∈ ob(C), f ∈ C(y, z), g ∈ C(x, y) and h ∈ C(w, x),
(f ◦ g) ◦ h ≡C(w,z) f ◦ (g ◦ h)

• for each x, y ∈ ob(C) and f ∈ C(x, y), idy ◦ f ≡C(x,y) f and f ◦
idx ≡C(x,y) f .

Example 16. Every Equiv-category is an E-category. Such an E-category is
called strict in [7]. Setoid is a strict E-category, for instance.

18

The reason for considering E-categories in addition to Equiv-categories is
that the axioms for them are written only in terms of equivalence relations
with equality of morphisms not appearing at all. Avoiding equality has a
practical advantage in proof assistants based on constructive type theory.
We emphasise that equality of morphisms is used in the axioms of categories
and Equiv-categories and that is an obstacle to deal with them in those proof
assistants.
E-categories are special kinds of bicategories [21] where the homcategories

are equivalence relations, because an equivalence relation is a groupoid each
of whose homsets has at most one element. Because of this degeneracy, we
do not need some coherence axioms for E-categories that are necessary for bi-
categories. There is an analysis of E-categories based on this observation [8].
E-functors are a special case of pseudo-functors between bicategories.

Definition 17. Let A and B be E-categories. An E-functor F from A to B
consists of the following data.

• A function F0: ob(A) −→ ob(B).

• For each x, y ∈ ob(A), a function F1(x, y): A(x, y) −→ B(F0(x), F0(y)).

We often overload F0 and F1 and write F for them. These data are subject
to the following conditions.

• For each x, y, z ∈ ob(A), f0 ∈ |A(y, z)| and f1 ∈ |A(x, y)|, F (f0 ◦f1) ≡
F (f0) ◦ F (f1).

• For each x ∈ ob(A), F (idx) ≡ idF (x).

Likewise, E-natural transformations are defined as follows.

Definition 18. Let A and B be E-categories and F,G: A −→ B be E-
functors from A to B. An E-natural transformation is a function which maps
x ∈ ob(A) to an element of B(F (x), G(x)) subject to G(f) ◦αx ≡ αy ◦F (f),
for each f ∈ A(x, y).

The vertical and horizontal compositions of E-natural transformations, as
well as identity E-natural transformations are defined as expected. Modifica-
tion in E-context becomes an equivalence between natural transformations.

Definition 19. Let A and B be E-categories, F,G: A −→ B be E-functors.
E-natural transformations α, β: F −→ G: A −→ B are isomorphic if and
only if αx ≡ βx for all x ∈ ob(A).

19

Definition 20. Let A and B be E-categories. The E-functor E-category2,
written [A,B], consists of the following data.

• The set ob([A,B]) of objects is the set of E-functors from A to B.

• For F,G ∈ ob([A,B]), [A,B](F,G) consists of the set of E-natural
transformations from F to G and the equivalence of E-natural trans-
formations, as defined in Definition 19.

• The composition of morphisms is the vertical composition of E-natural
transformations.

• id is the identity E-natural transformation.

If B is strict, then [A,B] is strict.
Following the practice for bicategories, we say two E-categories A and

B are E-equivalent if there are E-functors H: A −→ B and K: B −→ A
such that K ◦H is equivalent to the identity E-functor on A and H ◦K is
equivalent to the identity E-functor on B.

The following result is implicit in [8].

Theorem 21. Every E-category is E-equivalent to an Equiv-category.

Proof. There is a Yoneda embedding of any small E-category A into the E-
functor E-category [A,Equiv]. The latter is a strict E-category as Equiv
is a strict E-category. The Yoneda embedding is an equivalence on homs,
so A is E-equivalent to a full sub-E-category of [A,Equiv], thus to a strict
E-category.

6.2. Structures on E-categories

An object of Equiv, i.e., a set X together with an equivalence relation
≡X on it, may be seen as a category: X is the set of objects and X(x0, x1)
is 1 if x0 ≡X x1 and is otherwise 0. This construction extends to a functor
J : Equiv −→ Cat, which is fully faithful and has a left adjoint, thus exhibiting
Equiv as a full reflective subcategory of Cat, as discussed in Proposition 11.

The functor J induces an inclusion of Equiv-Cat into the category of Cat-
categories, i.e., into the category of 2-categories. So every Equiv-category can
be seen as a 2-category.

2This term is introduced as the “E-version” of the notion of functor category. It does
not mean any particular E-functor that is called “E-category”.

20

Every E-category can likewise be seen as a bicategory, as was central to [8]:
the key idea of a bicategory as opposed to a 2-category is that composition of
morphisms is transitive and has a unit only up to coherent isomorphism [7, 8].
The relationship between Equiv-categories and E-categories is given by the
relationship between 2-categories and bicategories.

There is an extensive literature about bicategorical limits, colimits and
Cartesian closedness, including [22, 5]. So restriction from bicategories to
E-categories immediately yields a theory of limits, colimits and closedness
for E-categories.

We shall not spell out the bicategorical definitions as they involve co-
herence axioms, i.e., axioms that say which composites of two-dimensional
isomorphisms are equal to each other, as those issues do not arise here.
We simply remark that the limits, colimits, and closedness constructions
we consider are all given by restriction of the well-established bicategori-
cal constructs. The key constructs there are those of biproduct, biequaliser
(equivalently bi-iso-inserter), and bicotensor and biclosedness. We refer to
the restricted notions as E-products, E-inserters, E-cotensors, their E-duals,
and E-closedness.

We give the definition of a binary E-product explicitly; an E-product of
any number n ≥ 0 of objects is similar.

Definition 22. An E-product of objects X and Y in an E-category consists
of an object X×Y and morphisms πX : X×Y −→ X and πY : X×Y −→ Y
such that for any object A and morphisms f : A −→ X and g: A −→ Y , there
is a morphism h: A −→ X × Y such that πXh ≡ f and πY h ≡ g. Moreover,
if f ≡ f ′ and g ≡ g′, then h ≡ h′ for any such h and h′.

Definition 23. An E-inserter of morphisms f, g: X −→ Y in an E-category
consists of an object Iso(f, g) and a morphism i: Iso(f, g) −→ X such that
f ◦ i ≡ g ◦ i, and such that for any object Z and morphism z: Z −→ X for
which f ◦ z ≡ g ◦ z, there is a morphism z̄: Z −→ Iso(f, g) for which iz̄ ≡ z;
and if z ≡ z′, then z̄ ≡ z̄′ for any such z̄ and z̄′.

The notion of E-cotensor is quite subtle. For an E-cotensor, one relaxes
the isomorphism in the definition of Equiv-cotensor to being an equivalence in
Equiv. This is precisely analogous to the difference between Equiv-products
and E-products or between Equiv-inserters and E-inserters.

Definition 24. An E-cotensor of an equivalence relation X with an object
A of an E-category C consists of an object AX such that for every object

21

B, there is an equivalence Equiv(X,C(B,A)) ' C(B,AX), natural in B,
between the objects Equiv(X,C(B,A)) and C(B,AX) of Equiv.

These definitions are weaker than those of Equiv-products, Equiv-inserters
and Equiv-cotensors. The Equiv-category Setoid has Equiv-products, Equiv-
inserters, and Equiv-cotensors; so, a fortiori, it has E-products, E-inserters
and E-cotensors. However, the defining property of the latter only determines
them up to equivalence within an E-category. So any setoid that is equivalent
to an Equiv-product in Setoid is itself an E-product, although not necessarily
an Equiv-product; similarly for inserters and cotensors.

The dual notions of E-product, E-inserter and E-cotensor are called E-
coproduct, E-coinserter and E-tensor, following the bicategorical tradition.
Setoid has Equiv-coproducts, hence E-coproducts, but it seems not to have
Equiv-coinserters or Equiv-tensors in general, but it does have E-coinserters
and E-tensors.

Definition 25. An E-category C with finite E-products is E-closed if for
every object X of C, the E-functor (−×X): C −→ C has a right E-adjoint.

Again, this is a weakening of the notion of Equiv-closedness. So, as Setoid
is Equiv-closed, it is necessarily E-closed. Just as for limits, E-closed structure
is only determined up to equivalence, so any setoid that is equivalent to an
exponential [A,B] is itself an E-exponential, but might not be an Equiv-
exponential.

7. The E-category Setoid

Setoids and their morphisms form an E-category Setoid, as already dis-
cussed in Example 16. In fact, Setoid is E-equivalent to Equiv: the in-
clusion J : Equiv −→ Setoid is an equivalence on homs, and every setoid
A is equivalent in the E-category Setoid to J(F (A)), i.e., there are mor-
phisms r: A −→ J(F (A)) and s: J(F (A)) −→ A such that s ◦ r ≡ idA and
r ◦ s ≡ idJ(F (A)).

We have already seen that Setoid has Equiv-products, Equiv-inserters,
Equiv-cotensors, and Equiv-coproducts and is closed as an Equiv-category.
So, a fortiori, it has all that structure as an E-category too.

The only structure that we have not been able to address in the simpler
context of Setoid as an Equiv-category, probably because it does not exist, is
that of Equiv-coinserters and Equiv-tensors. Setoid does have E-coinserters
and E-tensors, as we shall now describe.

22

Theorem 26. The E-category Setoid has E-coinserters.

Proof. Given morphisms of setoids f, g: A −→ B, let Coins(f, g) have carrier
|B|, with b0 ≈Coins(f,g) b1 determined by the transitive closure of the union
of the sets given by ≈B with, for each a ∈ |A|, a singleton set for each of
f(a) ≈ g(a) and g(a) ≈ f(a).

This induces a setoid structure, with reflexivity axiom given by that for
B, transitivity by construction, and symmetry by a combination of construc-
tion and that for B. Moreover, the inclusion inc generated by the identity
morphism idB has inc ◦ f ≡ inc ◦ g. The universal property holds by con-
struction.

Theorem 27. The E-category Setoid has E-tensors.

Proof. Recall we defined J to be the inclusion of Equiv in Setoid (Proposi-
tion 11). Given an object X of Equiv and a setoid A, the product J(X)×A
acts as an E-tensor as

• for any setoid B, the object Setoid(J(X)×A,B) of Equiv is isomorphic
to Setoid(J(X), [A,B])

• the setoid [A,B] is equivalent (but not isomorphic) to J(Setoid(A,B)),
and

• for any object Y of Equiv, Setoid(J(X), J(Y)) is equivalent to Equiv(X, Y).

8. Conclusion

The idea of setoid came from the need for explicit provision of an equiva-
lence relation on each set in constructive mathematics. But then we have the
set of proofs of equivalence, and the next question is how to treat equivalence
between proofs of equivalence. There are two extreme ways to do this: one
is to take the degenerate equivalence relation and the other is to take the
discrete one. The former leads to the category Equiv, and the latter leads to
our category Setoid.

There is a further issue regarding equivalence: how to treat proofs of
equivalence between functions. Enrichment of categories Equiv and Setoid
over the Cartesian closed category Equiv, as we discuss in Sections 4 and

23

5, leads to degeneration of proofs. One could consider enrichment over the
Cartesian closed category Setoid as well, but its correspondence with practice
in theorem proving is not yet clear.

Enrichment over Equiv apparently is related to the notion of “proof irrel-
evance” discussed in connection with proof assistants, but the exact corre-
spondence is left for further study.

References

[1] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.

[2] Agda, 2012. URL: http://wiki.portal.chalmers.se/agda/pmwiki.php.

[3] Coq, 2012. URL: http://coq.inria.fr.

[4] Isabelle, 2012. URL: http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[5] G. Kelly, Elementary observations on 2-categorical limits, Bulletin of
the Australian Mathematical Society 39 (1989) 301–317.

[6] P. Aczel, Galois: A theory development project, 1993. URL:
http://www.cs.man.ac.uk/ petera/papers.html, report for the 1993
Turin meeting on the Representation of Mathematics in Logical Frame-
works.

[7] D. Čubrić, P. Dybjer, P. J. Scott, Normalization and the Yoneda Embed-
ding, Mathematical Structures in Computer Science 8 (1998) 153–192.

[8] Y. Kinoshita, A bicategorical analysis of E-categories, Mathematica
Japonica 47 (1998) 157–169.

[9] K. O. Wilander, An E-bicategory of E-categories: exemplifying a type-
theoretic approach to bicategories, Technical Report 2005:48, Uppsala
University, Department of Mathematics, 2005.

[10] K. O. Wilander, Setoids and universes, Mathematical Structures in
Computer Science 20 (2010) 563–576.

[11] K. O. Wilander, On Constructive Sets and Partial Structures, Ph.D.
thesis, Uppsala University, Department of Mathematics, 2011.

24

[12] K. O. Wilander, Constructing a small category of setoids, Mathematical
Structures in Computer Science 22 (2012) 103–121.

[13] A. Carboni, R. C. Magno, The free exact category on a left exact one,
Jounal of Australian Mathematical Society 33(A) (1982) 295–301.

[14] A. Carboni, Some free constructions in realizability and proof theory,
Journal of Pure and Applied Algebra 103 (1995) 117–148.

[15] A. Carboni, G. Rosolini, Locally cartesian closed exact completions,
Journal of Pure and Applied Algebra 154 (2000) 103–116.

[16] M. E. Maietti, G. Rosolini, Quotient completion for
the foundation of constructive mathematics, 2012. URL:
http://arxiv.org/abs/1212.1012, cornell University arXiv.org.

[17] M. E. Maietti, G. Rosolini, Elementary quotient completion, 2012. URL:
http://arxiv.org/abs/1212.0162, cornell University arXiv.org.

[18] M. E. Maietti, G. Rosolini, Unifying exact completions, 2012. URL:
http://arxiv.org/abs/1212.0966, cornell University arXiv.org.

[19] G. M. Kelly, Basic concepts of enriched category theory, volume 10 of
Reprints in Theory and Aplications of Categories, The Editors of Theory
and Applications of Categories, 2005. Originally published as [23].

[20] P. Aczel, Galois: A theory development project, 1995. Report for the
1993 Turin meeting on the Representation of Mathematics in Logical
Frameworks.

[21] J. Bénabou, Introduction to bicategories, in: Reports of
the Midwest Category Seminar, volume 47 of Lecture Notes in
Mathematics, Springer Berlin Heidelberg, 1967, pp. 1–77. URL:
http://dx.doi.org/10.1007/BFb0074299. doi:10.1007/BFb0074299.

[22] R. Street, Fibrations in bicategories, Cahiers de topologie et géometrie
différentielle catégoriques 21 (1980) 111–160.

[23] G. M. Kelly, Basic concepts of enriched category theory, volume 64 of
London Mathematical Society Lecture Note Series, Cambridge Univer-
sity Press, 1982.

25

Appendix A. Agda code for setoids and constructions on them

The following Agda code describes setoids and related constructions in
the E-category Setoid. Most of the code should be self-explanatory except
for the names of the constructions. Those operators suggesting products, co-
products and closures are really for E-products, E-coproducts and E-closures.
Moreover, Eq is for E-inserters and Coeq is for E-coinserters.

module ConstructionsInSetoid where

infixr 1 _]_
infixr 2 _∧_
infix 4 _!_≈_
infixr 9 _◦_
infixl 20 _′_ _′′_

data ∅ : Set where

data _≡_ {A : Set} (a : A) : A → Set where

refl≡ : a ≡ a

data _]_ (A B : Set) : Set where

ι =0 : A → A] B

ι =1 : B → A] B

record _∧_ (A : Set) (B : Set) : Set where

constructor ∧-intro
field

∧-elim1 : A ; ∧-elim2 : B

open _∧_ public

record Σ (A : Set) (B : A → Set) : Set where

constructor _,_

field

π0 : A ; π1 : B π0

open Σ public

syntax Σ A (λ x → B) = Σ[x ∈ A] B

× : ∀ (A : Set) (B : Set) → Set

A × B = Σ[x ∈ A] B

record Setoid : Set1 where

infix 4 _≈_
field

carrier : Set

≈ : carrier → carrier → Set

refl : {x : carrier} → x ≈ x

sym : {x y : carrier} → y ≈ x → x ≈ y

trans : {x y z : carrier} → y ≈ z → x ≈ y → x ≈ z

|_| : Setoid → Set

| A | = Setoid.carrier A

!≈_ : (A : Setoid) → (a0 a1 : | A |) → Set

A ! a0 ≈ a1 = Setoid._≈_ A a0 a1

26

record _ _ (A B : Setoid) : Set where

field

fun : | A | → | B |
resp : {a0 a1 : | A |} →
A ! a0 ≈ a1 → B ! fun a0 ≈ fun a1

′ : {A B : Setoid} →
A B → | A | → | B |

f ′ a = _ _.fun f a

′′ : ∀ {A B : Setoid} {a0 a1 : | A |}
(f : A B) (a0≈a1 : A ! a0 ≈ a1) → B ! f ′ a0 ≈ f ′ a1

f ′′ a0≈a1 = _ _.resp f a0≈a1
[_ _] : Setoid → Setoid → Setoid

[A B] = let open Setoid B in

record

{ carrier = A B

; _≈_ = λ f g → (a : | A |) → f ′ a ≈ g ′ a

; refl = λ a → refl

; sym = λ g≈f a → sym (g≈f a)

; trans = λ g≈h f≈g a → trans (g≈h a) (f≈g a)

}
′-Lemma : ∀ {A B : Setoid} {f0 f1 : A B} {a0 a1 : | A |} →

[A B] ! f0 ≈ f1 → A ! a0 ≈ a1 → B ! f0
′ a0 ≈ f1

′ a1
′-Lemma {A} {B} {f0} {f1} {a0} {a1} f0≈f1 a0≈a1
= Setoid.trans B (f0≈f1 a1) (f0

′′ a0≈a1)
id : (A : Setoid) → A A

id A = record { fun = λ a → a ; resp = λ a0≈a1 → a0≈a1 }

◦ : {A B C : Setoid} → B C → A B → A C

g ◦ f = record

{ fun = λ a → g ′ (f ′ a)

; resp = λ a0≈a1 → g ′′ (f ′′ a0≈a1)
}

left-id : ∀ {A B : Setoid} (f : A B) →
[A B] ! id B ◦ f ≈ f

left-id {B = B} f a = Setoid.refl B

right-id : ∀ {A B : Setoid} (f : A B) →
[A B] ! f ◦ id A ≈ f

right-id {B = B} f a = Setoid.refl B

assoc-◦ : ∀ {A B C D : Setoid}

(f : C D) (g : B C) (h : A B) →
[A D] ! (f ◦ g) ◦ h ≈ (f ◦ (g ◦ h))

assoc-◦ {D = D} f g h = λ a → Setoid.refl D

module EQ (A : Setoid) where

infixl 3 _≈_by_
infixl 3 _≈_yb_
infix 4 ∵_

27

open Setoid A

∵_ : (x : carrier) → x ≈ x

∵_ x = refl

_≈_by_ : ∀ {x y : carrier} →
x ≈ y → (z : carrier) → y ≈ z → x ≈ z

_≈_by_ x≈y _ y≈z = trans y≈z x≈y
_≈_yb_ : ∀ {x y : carrier} →

x ≈ y → (z : carrier) → z ≈ y → x ≈ z

_≈_yb_ x≈y _ z≈y = trans (sym z≈y) x≈y
[_×_] : Setoid → Setoid → Setoid

[A × B] = record

{ carrier = | A | × | B |
; _≈_ = λ P Q →

A ! π0 P ≈ π0 Q ∧ B ! π1 P ≈ π1 Q

; refl = ∧-intro (Setoid.refl A) (Setoid.refl B)

; sym = λ p →
∧-intro (Setoid.sym A (∧-elim1 p))

(Setoid.sym B (∧-elim2 p))

; trans = λ p q →
∧-intro (Setoid.trans A (∧-elim1 p) (∧-elim1 q))

(Setoid.trans B (∧-elim2 p) (∧-elim2 q))

}

proj0 : ∀ {A B : Setoid} → [A × B] A

proj0 = record { fun = π0 ; resp = ∧-elim1 }

proj1 : ∀ {A B : Setoid} → [A × B] B

proj1 = record { fun = π1 ; resp = ∧-elim2 }

〈_,_〉 : ∀ {A B C : Setoid} (f : C A) (g : C B) →
C [A × B]

〈_,_〉 f g = record

{ fun = λ c → (f ′ c , g ′ c)

; resp = λ a0≈a1 →
∧-intro (f ′′ a0≈a1) (g ′′ a0≈a1)

}

UnivProd∃ : ∀ {A B C : Setoid}

(f : C A) (g : C B) →
[C A] ! f ≈ proj0 {A} {B} ◦ 〈 f , g 〉 ∧
[C B] ! g ≈ proj1 {A} {B} ◦ 〈 f , g 〉

UnivProd∃ {A} {B} {C} f g =

∧-intro (λ c → Setoid.refl A) (λ c → Setoid.refl B)

UnivProd! : ∀ {A B C : Setoid}

(f : C A) (g : C B) (h : C [A × B]) →
[C A] ! f ≈ proj0 {A} {B} ◦ h →
[C B] ! g ≈ proj1 {A} {B} ◦ h →
[C [A × B]] ! 〈 f , g 〉 ≈ h

UnivProd! f g h f≈proj0◦h g≈proj1◦h c =

28

∧-intro (f≈proj0◦h c) (g≈proj1◦h c)

× : {I : Set} → (I → Setoid) → Setoid

× {I} B = record

{ carrier = (i : I) → | B i |
; _≈_ = λ (b0 b1 : (i : I) → | B i |) →

(i : I) → B i ! b0 i ≈ b1 i

; refl = λ i → Setoid.refl (B i)

; sym = λ b1≈b0 i → Setoid.sym (B i) (b1≈b0 i)

; trans = λ b1≈b2 b0≈b1 i →
Setoid.trans (B i) (b1≈b2 i) (b0≈b1 i)

}

proj : ∀ {I : Set} {B : I → Setoid} (i : I) → × B B i

proj i = record

{ fun = λ b → b i ; resp = λ b0≈b1 → b0≈b1 i }

tuple : ∀ {I : Set} {B : I → Setoid} {C : Setoid}

(f : (i : I) → C B i) → C × B

tuple f = record

{ fun = λ c i → (f i) ′ c

; resp = λ a0≈a1 i → f i ′′ a0≈a1
}

Univ×∃ : ∀ {I : Set} {B : I → Setoid} {C : Setoid}

(i : I) → (f : (j : I) → C B j) →
[C B i] ! f i ≈ proj {_} {B} i ◦ tuple f

Univ×∃ {I} {B} {C} i _ _ = Setoid.refl (B i)

Univ×! : ∀ {I : Set} {B : I → Setoid} {C : Setoid}

(f : (i : I) → C B i) (h : C × B) →
((i : I) → [C B i] ! f i ≈ proj {_} {B} i ◦ h) →
[C × B] ! tuple f ≈ h

Univ×! f h fic≈hci c i = fic≈hci i c

Eq : {A B : Setoid} → (f g : A B) → Setoid

Eq {A} {B} f g =

record

{ carrier = Σ[a ∈ | A |] B ! f ′ a ≈ g ′ a

; _≈_ = λ a0 a1 → A ! π0 a0 ≈ π0 a1
; refl = Setoid.refl A

; sym = Setoid.sym A

; trans = Setoid.trans A

}

eq : {A B : Setoid} → (f g : A B) → Eq f g A

eq f g =

record{ fun = π0 ; resp = λ a0≈a1 → a0≈a1 }

EqCone : {A B : Setoid} → (f g : A B) →
[Eq f g B] ! f ◦ eq f g ≈ g ◦ eq f g

EqCone {A} {B} f g = π1

29

eqMediate : {A B C : Setoid} (f g : A B) (h : C A)

(hCone : [C B] ! f ◦ h ≈ g ◦ h) →
C Eq f g

eqMediate = λ _ _ h hCone → record

{ fun = λ c → (h ′ c , hCone c)

; resp = λ a0≈a1 → h ′′ a0≈a1
}

EqUniv∃ : ∀ {A B C : Setoid} (f g : A B) (h : C A)

(hCone : [C B] ! f ◦ h ≈ g ◦ h) →
[C A] ! eq f g ◦ eqMediate f g h hCone ≈ h

EqUniv∃ {A = A} _ _ _ _ _ = Setoid.refl A

EqUniv! : ∀ {A B C : Setoid} (f g : A B) (h : C A)

(hCone : [C B] ! f ◦ h ≈ g ◦ h)

(k : C Eq f g)

(eq[f][g]◦k≈h : [C A] ! eq f g ◦ k ≈ h) →
[C Eq f g] ! k ≈ eqMediate f g h hCone

EqUniv! _ _ _ _ _ eq[f][g]◦k≈h c = eq[f][g]◦k≈h c

[_]_] : Setoid → Setoid → Setoid

[A] B] = record

{ carrier = | A |] | B |
; _≈_ = Equ

; refl = λ {x} → Refl x

; sym = λ {x} {y} y≈x → Sym x y y≈x
; trans = λ {x} {y} {z} y≈z x≈y → Trans x y z y≈z x≈y
}

where

Equ : {A B : Setoid} → | A |] | B | → | A |] | B | → Set

Equ {A} {_} (ι =0 a0) (ι =0 a1) = A ! a0 ≈ a1
Equ {_} {B} (ι =1 b0) (ι =1 b1) = B ! b0 ≈ b1
Equ _ _ = ∅
Refl : (x : | A |] | B |) → Equ {A} {B} x x

Refl (ι =0 _) = Setoid.refl A

Refl (ι =1 _) = Setoid.refl B

Sym : (x y : | A |] | B |) → Equ y x → Equ x y

Sym (ι =0 _) (ι =0 _) a1≈a0 = Setoid.sym A a1≈a0
Sym (ι =1 _) (ι =1 _) b1≈b0 = Setoid.sym B b1≈b0
Sym (ι =0 _) (ι =1 _) ()

Sym (ι =1 _) (ι =0 _) ()

Trans : (x y z : | A |] | B |) →
Equ y z → Equ x y → Equ x z

Trans (ι =0 a0) (ι =0 a1) (ι =0 a2) a1≈a2 a0≈a1 =

Setoid.trans A a1≈a2 a0≈a1
Trans (ι =1 b0) (ι =1 b1) (ι =1 b2) b1≈b2 b0≈b1 =

Setoid.trans B b1≈b2 b0≈b1
Trans (ι =0 _) (ι =0 _) (ι =1 _) () _

30

Trans (ι =0 _) (ι =1 _) (ι =0 _) () _

Trans (ι =0 _) (ι =1 _) (ι =1 _) _ ()

Trans (ι =1 _) (ι =0 _) (ι =0 _) _ ()

Trans (ι =1 _) (ι =0 _) (ι =1 _) _ ()

Trans (ι =1 _) (ι =1 _) (ι =0 _) () _

in1 : ∀ {A B : Setoid} → A [A] B]

in1 = record

{ fun = ι =0 ; resp = λ a0≈a1 → a0≈a1 }

in2 : ∀ {A B : Setoid} → B [A] B]

in2 = record

{ fun = ι =1 ; resp = λ a0≈a1 → a0≈a1 }

[_,_] : ∀ {A B C : Setoid} (f : A C) (g : B C) →
[A] B] C

[_,_] {A} {B} {C} f g = record

{ fun = Fun

; resp = λ {x0} {x1} x0≈x1 → Resp {x0} {x1} x0≈x1
}

where

Fun : | A |] | B | → | C |
Fun (ι =0 a) = f ′ a

Fun (ι =1 b) = g ′ b

Resp : ∀ {x0 x1 : | A |] | B |} →
[A] B] ! x0 ≈ x1 → C ! Fun x0 ≈ Fun x1

Resp {ι =0 a0} {ι =0 a1} x0≈x1 = f ′′ x0≈x1
Resp {ι =0 a0} {ι =1 b1} ()

Resp {ι =1 b0} {ι =0 a1} ()

Resp {ι =1 b0} {ι =1 b1} x0≈x1 = g ′′ x0≈x1
UnivSum∃ :

∀ {A B C : Setoid} (f : A C) (g : B C) →
[A C] ! f ≈ [f , g] ◦ in1 ∧
[B C] ! g ≈ [f , g] ◦ in2

UnivSum∃ {A} {B} {C} f g =

∧-intro (λ a → Setoid.refl C {f ′ a})

(λ b → Setoid.refl C {g ′ b})

UnivSum! : ∀ {A B C : Setoid}

{f : A C} {g : B C} {h : [A] B] C} →
[A C] ! f ≈ h ◦ in1 →
[B C] ! g ≈ h ◦ in2 →
[[A] B] C] ! [f , g] ≈ h

UnivSum! f≈h◦in1 _ (ι =0 a) = f≈h◦in1 a

UnivSum! _ g≈h◦in2 (ι =1 b) = g≈h◦in2 b

subst : ∀ {I : Set} {F : I → Set} {i j : I} →
i ≡ j → F i → F j

subst {I} {F} {i} .{i} refl≡ x = x

data ST* {X : Set} (R : X → X → Set) (x : X) :

31

X → Set where

ι = : {y : X} → R x y → ST* R x y

symP : {y : X} → ST* R y x → ST* R x y

transP : {y z : X} →
ST* R y z → ST* R x y → ST* R x z⊎

: {I : Set} → (I → Setoid) → Setoid⊎
{I} A = record

{ carrier = Σ[i ∈ I] | A i |
; _≈_ = Equ I A

; refl = λ {a} → Refl I A a

; sym = λ {a0} {a1} c → Sym I A a0 a1 c

; trans = λ {a0} {a1} {a2} c0 c1 →
Trans I A a0 a1 a2 c0 c1

} where

Equ : ∀ (I : Set) (A : I → Setoid)

(a0 a1 : Σ[i ∈ I] | A i |) → Set

Equ I A = ST* (equ I A) where

equ : ∀ (I : Set) (A : I → Setoid)

(a0 a1 : Σ[i ∈ I] | A i |) → Set

equ I A a0 a1 =

Σ[c ∈ π0 a0 ≡ π0 a1]

A (π0 a1) ! subst {F = λ i → | A i |} c (π1 a0) ≈ π1 a1
Refl : ∀ (I : Set) (A : I → Setoid)

(a : Σ[i ∈ I] | A i |) → Equ I A a a

Refl I A a = ι = (refl≡ , Setoid.refl (A (π0 a)))

Sym : ∀ (I : Set) (A : I → Setoid)

(a0 a1 : Σ[i ∈ I] | A i |) →
(Equ I A a1 a0) → (Equ I A a0 a1)

Sym I A a0 a1 c = symP c

Trans : ∀ (I : Set) (A : I → Setoid)

(a0 a1 a2 : Σ[i ∈ I] | A i |) →
(Equ I A a1 a2) → (Equ I A a0 a1) → (Equ I A a0 a2)

Trans I A a0 a1 a2 c0 c1 = transP c0 c1
inj : ∀ {I : Set} {A : I → Setoid} (i : I) → A i

⊎
A

inj i = record

{ fun = λ a → (i , a)

; resp = λ a0≈a1 → ι = (refl≡ , a0≈a1)
}

sum : ∀ {I : Set} {A : I → Setoid} {C : Setoid}

(F : (i : I) → A i C) →
⊎

A C

sum {I} {A} {C} F =

record { fun = λ a → F (π0 a) ′ π1 a ; resp = Resp }

where

Resp :

∀ {a0 a1 : Σ[i ∈ I] | A i |} →

32

⊎
A ! a0 ≈ a1 →

C ! F (π0 a0)
′ (π1 a0) ≈ F (π0 a1)

′ (π1 a1)

Resp {_} {a1} (ι = c) =

Setoid.trans C

(F (π0 a1)
′′ π1 c) (Lem1 (Lem0 (π0 c)))

where

Lem0 : ∀ {i j : I} {a : | A i |}
(c : i ≡ j) →
F i ′ a ≡ F j ′ (subst {F = λ i → | A i |} c a)

Lem0 {i} .{i} {_} refl≡ = refl≡
Lem1 : ∀ {c0 c1 : | C |} →
c0 ≡ c1 → C ! c0 ≈ c1

Lem1 {c} .{c} refl≡ = Setoid.refl C

Resp (symP c) = Setoid.sym C (Resp c)

Resp (transP c0 c1) =

Setoid.trans C (Resp c0) (Resp c1)

Univ
⊎
∃ : ∀ {I : Set} {A : I → Setoid} {C : Setoid}

(F : (i : I) → A i C) (i : I) →
[A i C] ! F i ≈ sum F ◦ inj {A = A} i

Univ
⊎
∃ {C = C} F i ai = Setoid.refl C

Univ
⊎
! : ∀ {I : Set} {A : I → Setoid} {C : Setoid}

{F : (i : I) → A i C} {h : (
⊎

A) C} →
((i : I) → [A i C] ! F i ≈ h ◦ inj {A = A} i) →
[
⊎

A C] ! sum F ≈ h

Univ
⊎
! h-prop a = h-prop (π0 a) (π1 a)

data [_!_]* (X : Setoid) (R : | X | → | X | → Set) :

| X | → | X | → Set where

oid* : {x0 x1 : | X |} → X ! x0 ≈ x1 → [X ! R]* x0 x1
i* : {x0 x1 : | X |} → R x0 x1 → [X ! R]* x0 x1
refl* : {x : | X |} → [X ! R]* x x

sym* : {x0 x1 : | X |} → [X ! R]* x0 x1 → [X ! R]* x1 x0
trans* : {x0 x1 x2 : | X |} →

[X ! R]* x1 x2 → [X ! R]* x0 x1 → [X ! R]* x0 x2
Coeq : {A B : Setoid} → (f g : A B) → Setoid

Coeq {A} {B} f g =

let

∼ =

[B !

(λ b b’ → Σ[a ∈ | A |] B ! b ≈ f ′ a ∧ B ! b’ ≈ g ′ a)]*

in

record { carrier = | B | ; _≈_ = _∼_
; refl = refl* ; sym = sym* ; trans = trans*}

coeq : {A B : Setoid} → (f g : A B) → B Coeq f g

coeq {A} {B} f g = record { fun = λ b → b ; resp = oid* }

coeqCone : {A B : Setoid} → (f g : A B) →

33

[A Coeq f g] ! coeq f g ◦ f ≈ coeq f g ◦ g

coeqCone {B = B} f g a =

i* (a , ∧-intro (Setoid.refl B {f ′ a}) (Setoid.refl B {g ′ a}))

coeqMediate : {A B C : Setoid} (f g : A B) (h : B C)

(hCone : [A C] ! h ◦ f ≈ h ◦ g) → Coeq f g C

coeqMediate {A} {B} {C} f g h hCone =

record { fun = λ x → h ′ x ; resp = Resp } where

∼ =

[B !

(λ b b’ →
Σ[a ∈ | A |] B ! b ≈ f ′ a ∧ B ! b’ ≈ g ′ a)]*

Resp : ∀ {b0 b1 : | B |} → b0 ∼ b1 → C ! h ′ b0 ≈ h ′ b1
Resp (oid* b0≈b1) = h ′′ b0≈b1
Resp {b0} {b1} (i* Rb0b1) =

let open Setoid in let open EQ C in

∵ h ′ b0
≈ h ′ (f ′ π0 Rb0b1) by h ′′ ∧-elim1 (π1 Rb0b1)

≈ h ′ (g ′ π0 Rb0b1) by hCone (π0 Rb0b1)

≈ h ′ b1 yb h ′′ ∧-elim2 (π1 Rb0b1)

Resp refl* = Setoid.refl C

Resp (sym* b1∼b0) = Setoid.sym C (Resp b1∼b0)
Resp (trans* b1∼b2 b0∼b1) =

Setoid.trans C (Resp b1∼b2) (Resp b0∼b1)
CoeqUniv∃ : ∀ {A B C : Setoid} (f g : A B) (h : B C)

(hCone : [A C] ! h ◦ f ≈ h ◦ g) →
[B C] ! coeqMediate f g h hCone ◦ coeq f g ≈ h

CoeqUniv∃ {C = C} f g h hCone b = Setoid.refl C

CoeqUniv! : ∀ {A B C : Setoid}

(f g : A B) (h : B C)

(hCone : [A C] ! h ◦ f ≈ h ◦ g) (k : Coeq f g C)

(eq[f][g]◦k≈h : [B C] ! k ◦ coeq f g ≈ h) →
[Coeq f g C] ! k ≈ coeqMediate f g h hCone

CoeqUniv! f g h hCone k k◦coeq[f][g]≈h b = k◦coeq[f][g]≈h b

Curry : ∀ {B A C : Setoid} →
[A × B] C → A ([B C])

Curry {B} {A} {C} F = record

{ fun = λ a → record

{ fun = λ b → F ′ (a , b)

; resp = λ b0≈b1 →
F ′′ ∧-intro (Setoid.refl A) b0≈b1

}

; resp = λ a0≈a1 b →
F ′′ ∧-intro a0≈a1 (Setoid.refl B)

}

Uncurry : ∀ {B A C : Setoid} →

34

A ([B C]) → [A × B] C

Uncurry {B} {A} {C} F = record

{ fun = λ p → F ′ π0 p ′ π1 p

; resp = λ {p0} {p1} a0≈a1∧b0≈b1 →
′-Lemma {B} {C} {_ _.fun F (π0 p0)}

{_ _.fun F (π0 p1)} {π1 p0} {π1 p1}

(F ′′ ∧-elim1 a0≈a1∧b0≈b1) (∧-elim2 a0≈a1∧b0≈b1)
}

CCC∃ : ∀ {B A C : Setoid} (f : [A × B] C) →
let open Setoid ([[A × B] C]) in

f ≈ Uncurry (Curry {B = B} {A = A} f)

CCC∃ {B} {A} {C} f p =

f ′′ ∧-intro (Setoid.refl A) (Setoid.refl B)

CCC! : ∀ {B A C : Setoid} (g : A [B C]) →
[A [B C]] ! g ≈ Curry (Uncurry g)

CCC! {B} {A} {C} g a b = Setoid.refl C

eval : ∀ {B} {C} → [[B C] × B] C

eval {B} {C} = record

{ fun = λ p → π0 p ′ π1 p

; resp = λ {p0} {p1} f0≈f1∧b0≈b1 →
let open EQ C in

∵ π0 p0
′ π1 p0

≈ π0 p1
′ π1 p1

by ′-Lemma {f0 = π0 p0} {f1 = π0 p1}

(∧-elim1 f0≈f1∧b0≈b1) (∧-elim2 f0≈f1∧b0≈b1)
}

arr×id : ∀ {A} {D} →
(A D) → (B : Setoid) → [A × B] [D × B]

f arr×id B = record

{ fun = λ x → f ′ π0 x , π1 x

; resp = λ {x0} {x1} x0≈x1 →
∧-intro (f ′′ ∧-elim1 x0≈x1) (∧-elim2 x0≈x1)

}

funct-id : ∀ {B A : Setoid} →
[[A × B] [A × B]] ! id A arr×id B ≈ id [A × B]

funct-id {B = B} {A = A} a =

∧-intro (Setoid.refl A) (Setoid.refl B)

funct-◦ : ∀ {A B C D : Setoid} (f : B C) (g : A B) →
[[A × D] [C × D]] !

(f ◦ g) arr×id D ≈ (f arr×id D) ◦ (g arr×id D)

funct-◦ {C = C} {D = D} f g = λ a →
∧-intro (Setoid.refl C) (Setoid.refl D)

Exponent∃ : ∀ {A B C : Setoid} (f : [A × B] C) →
[[A × B] C] ! f ≈ eval ◦ Curry {B} {A} f arr×id B

Exponent∃ {C = C} f a = Setoid.refl C

35

Exponent! : ∀ {A B C : Setoid}

(f : [A × B] C) (h : A [B C]) →
[[A × B] C] ! eval ◦ (h arr×id B) ≈ f →
[A [B C]] ! h ≈ Curry f

Exponent! _ _ hCond a b = hCond (a , b)

36

