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 Abstract  

This paper proposes an in-situ Structural Health Monitoring (SHM) method able to 

locate the impact source and to determine the flexural Lamb mode A0 velocity in 

composite structures with unknown lay-up and cross-section. The algorithm is based on 

the differences of the stress waves measured by six surface attached acoustic emission 

piezoelectric (PZT) sensors and is branched off into two steps. In the first step, the 

magnitude of the Continuous Wavelet Transform (CWT) squared modulus, which 

guarantees high accuracy in the time-frequency analysis of the acoustic waves, was used 

to identify the arrival time (TOA) of the flexural Lamb wave. Then, the coordinates of 

the impact location and the group speed values are obtained by solving a set of non-

linear equations through a combination of local Newton’s iterative method associated to 

line search and polynomial backtracking techniques. The proposed method, in contrast 

to the current impact localization algorithms, does not require a priori knowledge of the 

anisotropy angular-group velocity pattern of the measured waveforms as well as the 

mechanical properties of the structure. To validate this method, experimental location 

testing were conducted on two different composite structures, a quasi-isotropic CFRP 
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laminate and a sandwich panel. The results showed that source location was achieved 

with satisfactory accuracy (maximum error in estimation of the impact location was 

approximately 3 mm for quasi-isotropic carbon fibre reinforced plastic (CFRP) panel 

and nearly 2 mm for sandwich plate), requiring little computational time (nearly 1 sec). 

In addition, the values of the fundamental flexural Lamb mode A0 obtained from the 

optimization algorithm were compared with those determined by a numerical spectral 

finite element method. 

 

Keywords: impact location identification, composite structures, Continuous Wavelet 

Transform, Lamb waves. 

 

1 Introduction  

Due to their desirable characteristics as high strength, stiffness and low weight, 

advanced composite structures have been widely used over recent years in aerospace 

and civil applications. However, the mechanical properties of such materials can be 

severely degraded after an external impact, which might occur during service or 

maintenance. Structural health monitoring (SHM) systems based on guided waves with 

integrated components (passive sensors and probes) are addressed to provide a real-time 

warning of the structural health status and to avoid the tested specimen to be 

disassembled during the inspections. In this manner, disruptions and a considerable 

increse in maintenance costs can be eluded. In isotropic or quasi-isotropic materials, the 

impact source location is conventionally performed through a time of arrival (TOA) 

triangulation technique (also known as Tobias algorithm) [1, 2, 3]. However, since the 

group velocity in isotropic media is assumed constant in all direction, these methods are 



not suitable for anisotropic and inhomogeneous structures. In the last decade, a number 

of studies present in literature were focused to the detection and location of the acoustic 

emission (AE) source (impact event) in composite materials. White [4] was one of first 

to look into arrival time measurements in dispersive media, whilst Ziola et al. [5] 

employed wavelets to determine arrival times in dispersive media. Seydel and Chang 

[6] proposed a model-based method for the reconstruction of the force history and the 

identification of the impact location, based on the minimization of the difference 

between the actual and predicted response from PZT. Although this method was applied 

to any kind of anisotropic material, even with complex geometries, it required the 

knowledge of the mechanical properties of the medium and a theoretical model for the 

simulation of dynamic-acoustic behaviour of the structure. Meo et al. [7], Paget et al. [8] 

and Kurokawa et al. [9] developed an algorithm for the impact point identification 

assuming an elliptical angular-group velocity pattern. This method necessitated a priori 

knowledge of the group velocities at 0 and 90 degrees with respect to the planar 

reference frame x-y, and it was applied to only quasi-isotropic and unidirectional 

composite structures. Kundu et al [10] presented an alternative approach that consisted 

of minimizing an error function representing the differences of TOA of the recorded 

signals. Huang et al [11] used nonlinear least squares optimization methods to calculate 

laminated plate stiffnesses from measured group velocities. 

This paper extends a previous work for isotropic materials [12], which demonstrated 

that with four sensors the impact location and the group velocity could be uniquely 

evaluated. It presents an in-situ SHM system able to pinpoint the impact source location 

and to determine the group speed of the flexural Lamb mode A0 in composite plate-like 

structures. This research work is based on the differences of the wave packets measured 



by six surface bonded AE piezoelectric (PZT) sensors, and it can be applied to 

composite laminates with any lay-up, thickness and anisotropic angular-group velocity 

pattern. In a first step, the time of arrivals were obtained through a suitable signal 

processing based on the magnitude of the Continuous Wavelet Transform (CWT) 

squared modulus. Then, the coordinates of the impact location and the group speed were 

determined by solving a set on nonlinear equations through a combination of local 

Newton’s method associated to global unconstrained optimization (line search and 

polynomial backtracking techniques). Therefore, this algorithm overcomes the 

limitations of most impact detection systems, as it does not require a-priori knowledge 

of the anisotropic group velocity as well as the mechanical properties and the 

orientation of each ply in the laminate. Moreover, the CWT guarantees high accuracy in 

the time-frequency analysis of the acoustic waveform, since it is able to characterize 

near Lamb modes. In fact, the group speed is not constant but dependent of the 

excitation frequency and the heading angle in the x-y plane [Vg = Vg (f,)]. To validate 

this method, a number of experiments on a quasi-isotropic CFRP laminate and a 

sandwich panel were carried out. Fig. 1 illustrates the architecture of the impact location 

algorithm. 



 

Figure 1 Architecture of the SHM impact localization system 

 

The layout of the paper is as follow: in Section 2 the algorithm for the impact 

source localization and the fundamental flexural Lamb wave speed determination is 

presented. Section 3 describes the procedure for identifying the time of arrival using the 

Continuous Wavelet Transform. In Section 4, the optimization algorithm for obtaining 

the coordinates of the impact point is discussed. Section 5 reports the experimental set-

up, whilst in Section 6 the impact source location results for both CFRP and sandwich 

composite plate are reported. Then, the conclusions of the method adopted are outlined. 

 

2 Impact localization algorithm  

Mathematically, locating an impact source is an inverse problem. Let us 

consider the impact source point I is at unknown coordinates  II yx ,  in the plane of the 

plate x-y. The transducers are located at distance il   6,,1i  from the source, and 

kmd   5,3,1k   6,4,2m  are the distances between each pair of transducers k and m 

(Fig. 2). Furthermore, the dimensions of the plate are L, length and W, width. 



(a) 

 (b) 

Figure 2 (a) (b) Sensors arrangement for the source location (a) and optimal disposition with short 

distance of each pair of transducers (b) 

The coordinates of the acoustic emission source can be determined by solving the 

following equations: 
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where igV ,  is the velocity of propagation of the stress wave reaching the i-th transducer, 

it  is the time of detection of the AE signals and  ii yx ,  are the coordinates of the i-th 

sensor. Combining both terms of equation (1), the following system of six equations for 

14 unknowns ( it , Ix , Iy  and igV , ) can be obtained: 

       0
2

,

22
 igiIiIi Vtyyxx  (2) 



which represents the equation of circumferences with radius  2,

2

igii Vtr  . However, if 

1t  is the travel time required to reach the sensor 1 (master sensor) and jt1   6,,2j  

are the time difference between sensor j and the master one, we can write: 

 jj ttt 11   (3) 

Substituting equation (3) into (2), it becomes: 

        0
2

,11

22
 igjIiIi Vttyyxx  (4) 

The above set of nonlinear equations cannot be solved yet since the number of variables 

is still bigger than the number of equations. Thereby, in order to find a solution of 

system (4), additional information is needed, i.e. an optimal sensors configuration. In 

the current approach, the sensors were located so that each pair of transducers was 

relatively close together (see Fig. 2-a). In this manner, any pair will experience 

approximately the same group speed. Therefore, based on the sensors configuration as 

depicted in Fig. 2-b, if 1221, dll  , we have: 
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where d12 is the distance between sensors 1-2, l1 and l2 are the distances from the impact 

source and 1 and 2 are the heading angles (propagation angles) of the AE in the 

reference frame. Hence, if 21    is sufficiently small (close transducers) such 

that 21   , the following assumption becomes straightforward: 
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Thereby, system (5) can now be rewritten as: 



        0
2

,11

22
 kgjIiIi Vttyyxx  with 5,3,1k  (7) 

Source location and group velocity of the flexural Lamb mode can now be calculated by 

solving the above set of six nonlinear equations with the six unknowns 

 
5,3,1,1 ,,,,, gggII VVVtyxx . Therefore, since no mechanical properties and simple 

angular-group speed pattern are required, the proposed technique is able to obtain the 

source location in anisotropic structures for arbitrary lay-up or thickness of the plate. 

However, an appropriate time-frequency analysis for the determination of the time 

differences jt1  as well as a well-adapted localization algorithm needs to be chosen.  

 

3 Time of arrival identification using the Continuous Wavelet Transform 

The dispersive nature of the flexural Lamb mode and the uncertainty of the noise 

level can drastically decrease the performance of a source localization system. Hence, a 

good impact detection method necessitates of a suitable choice of the time–frequency 

analysis for the TOA. A wavelet transformation method was chosen as it provides a 

good compromise between time and frequency resolution, and it is able to analyze low 

and high frequencies at the same time, even respecting the uncertainty principle (also 

known as Heisenberg inequality) [13]. The Continuous Wavelet Transform (CWT) is a 

linear transform that correlates the harmonic waveform ),( txu  with basis functions that 

are simply dilatations and translations of a mother wavelet )(t , by the continuous 

convolution of the signal and the scaled or shifted wavelet [14]: 
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where  t  denotes the complex conjugate of the mother wavelet )(t , a is the 

dilatation or scale parameter defining the support width of the wavelet and b the 

translation parameter localising the wavelet in the time domain.  

A number of mother wavelets existing in literature have been widely used for the 

acoustic emission localization in isotropic and anisotropic structures [1,2 and 7]. In this 

study, the complex Morlet wavelet was employed as it is able to separate amplitude and 

phase, enabling the measurement of instantaneous frequencies and their temporal 

evolution. The complex Morlet wavelet is expressed by the following equation [13]: 
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where  2ccf   is the central frequency and bF  the shape control parameter 

(wavelet bandwidth). For practical purposes, because of the fast decay of the Morlet 

wavelet’s envelope towards zero, such function is considered admissible for c=6. In 

addition, Fb was chosen equal to 0.1. 

The waveforms recorded are analyzed in terms of group (energy) velocity–frequency 

relationship. The group velocity is defined as the velocity of a modulated wave that is 

constructed considering a time harmonic motion of two waves of unit amplitude with 

slightly different frequencies 1  and 2  propagating in the x-direction of a thin plate as 

follows [2, 15]: 

      txkjtxkj
eetxu 2211,

 
  (10) 

where 1k  and 2k  are the wave numbers. Introducing   021 2 kkk  ,   kkk  221 , 

  021 2    and     221 , equation (10) becomes: 

      txkj
etkxtxu 00cos2,

 
  (11) 



Equation (11) is a modulated wave formed by a carrier 
 txkj

e 00 
 with frequency 0  

and the modulation  tkx cos  with frequency  . The propagation velocity of 

the carrier is called phase velocity 00 kVph   and the propagation velocity of the 

envelope is called group velocity dkdVg   in the limit of 0k .  

Substituting equation (10) in (8) using complex Morlet wavelet [eq. (8)], and assuming 

xkb 111   and xkb 222  , we have: 

     21

21
ˆˆ),,(

  jj
eaeaabaxWT    (12) 

The squared modulus of the CWT, also called a scalogram, indicates the energy density 

of the signal at each scale at any time [13, 16]. Hence, it is able to reveal the highest 

local energy content of the waveform ),( txu  measured from each transducer. The 

squared modulus can be express as: 

 ),,(),,(),,(
2

baxWTbaxWTbaxWT   (13) 

Substituting equations (12) and its complex conjugate into (13), if   is sufficiently 

small such that      021
ˆˆˆ  aaa  , we obtain: 

      kxbaabaxWT   cos1ˆ2),,(
2

0

2
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Therefore, the above equation shows that the squared modulus of the CWT using 

complex Morlet wavelet reaches its peak value at 
0

ca   and 
gV

x
x

k
b 







. Hence, it 

is demonstrated by equation (14) that the maximum value of the scalogram coefficients 

(ridges), obtained at the angular frequency of interest 0, allows identifying the time of 

arrival (b) of the group velocity Vg (Fig. 3).  



(a) 

(b) 

Figure 3 (a) (b) 3-D plot of the wavelet scalogram coefficients (a) and associated contour plot (b) of the 

recorded flexural wave 

 

As depicted in Fig. 3-a, a red patch in the scalogram is representative of the ridge, i.e. 

the local energy content of the waveform recorded. Fig. 3-b shows that the red patch in 

the contour plot of the scalogram associated to the ridge is achieved at the instantaneous 

frequency 27.3480 f  kHz. The projection on the time domain of the ridge 

corresponds to the time of arrival (TOA) of the waves packets. Thus, the time 

differences jt1  with respect to the master sensor can be calculated and substituted in 

equation (7).  

 



4 Newton’s method and unconstrained optimization for solving systems on 

nonlinear equations 

The method adopted for solving the set of equations (7) was to combine a Newton’s 

method with an unconstrained optimization. Analogously to Ciampa and Meo [12], the 

set of nonlinear equations (7) can be expressed as: 

   0xF   (15) 

where F  is the vector of the functions iF  ( 6,,1i ) and x  is the vector of unknowns 

jx  ( 6,,1j ). Equation (15) has a zero at nx  such that   0xF . The iterate 

1n
x  from a current point 

n
x  is given by [17]: 

    nnnnnn
xFxJxxxx 

 11   (16) 

where     xFxJx 
1

  is the Newton step and  xJ  is the Jacobian matrix, which 

contains first derivatives of the objective function  xF  with respect to the six 

unknowns of the problem. However, in particular conditions, when the starting point 0x  

is not near the root, Newton’s method may not converge [18]. The reasons for this 

failure are that the direction of the current iterate 
n

x  might not be a direction of descent 

for F , and, even if a search direction is a direction of decrease of F , the length of the 

Newton step x  may be too long. Hence, the approach adopted in this paper was to 

combine the local Newton’s method applied to the system (7) with the global 

unconstrained problem of minimizing the objective function F:  

 


n

x n
:min F   (17) 

Among the class of powerful algorithms for unconstrained optimization, we focused on 

the Line-Search method and the polynomial backtracking technique [12] because of its 

simplicity, and because they do not depend on how the Jacobian is obtained. In 



particular, the function to be minimized (also known as merit function) was the scalar-

valued function of F , i.e. the squared norm of F : 

     2

2

1
minmin xFx

nn xx
h


  (18) 

where the factor 
2

1
 is introduced for convenience. Obviously, any root of h fulfils the 

identity   0
xh .With this procedure, the computational time for each source location 

was about 1 sec (using a code written in Matlab on a standard PC), which means that the 

results can be obtained in quasi real-time using a compiled code.  

 

5 Experimental set-up 

To validate this algorithm, experimental location tests were conducted on two different 

composite structures simply supported at the edges:  

 T300/914 carbon fibre reinforced plastic (CFRP) composite laminate with 

dimensions 502 mm x 437 mm x 6.94 mm and lay-up sequence of 

[0/15/30/45/60/75/90]3s (Fig. 4a). The ply properties are reported in Table 1. 

 sandwich composite plate with dimensions of 380 mm long, 254 mm wide (Fig. 4-

b). The core used in the sandwich was a 6.35 mm thick HRH-10-1/8-4.0 Aramid 

fibre/phenolic resin nomex. Facing skins (2mm thick) were made of four plies of 

AS4/8552 unidirectional carbon/epoxy prepreg composite on both sides of the core 

with lay-up sequence of [90/45/45/90]. The ply and sandwich properties are reported 

in Tables 2 and 3. 



(a) (b) 

Figure 4 (a) (b) CFRP composite laminate (a) and sandwich plate (b). 

 

Table 1 T300/914 mechanical properties 
Young 

modulus 

E11  

(GPa) 

Young 

modulus 

E22 

(GPa) 

Young 

modulus 

E33 

(GPa) 

Shear 

modulus 

G12 

(GPa) 

Shear 

modulus 

G23 

(GPa) 

Shear 

modulus 

G31 

(GPa)z 

Poisson’s 

ratio 12 

Poisson’s 

ratio 13 

Poisson’s 

ratio 23 

130 9.5 9.8 4.7 3.2 4.7 0.34 0.66 0.52 

 

Table 2 AS4/8552 mechanical properties 
Young 

modulus 

E11  

(GPa) 

Young 

modulus 

E22 

(GPa) 

Young 

modulus 

E33 

(GPa) 

Shear 

modulus 

G12 

(GPa) 

Shear 

modulus 

G23 

(GPa) 

Shear 

modulus 

G31 

(GPa)z 

Poisson’s 

ratio 12 

Poisson’s 

ratio 13 

Poisson’s 

ratio 23 

122 9.8 9.8 5.12 5.12 3.35 0.26 0.26 0.47 

 

Table 3 Sandwich core mechanical properties 
Young 

modulus, 

compacted 

material  
(GPa) 

Transverse 

modulus 

(GPa) 

Shear 

modulus, 

expansion 

(MPa) 

Shear 

modulus, 

ribbon 

(MPa) 

Poisson’s ratio, 

compacted 

material  

Densification 

strain 

1 0.41 89 44 0.25 0.8 

 

The A0 Lamb waves were generated using a hand–held modal hammer manufactured by 

Meggit-Endevco and were measured employing six acoustic emission sensors surface 

bonded with a central frequency of 300 kHz, provided by the courtesy of Airbus UK. 

Each sensing unit is aimed to provide high SNR ranging between 20 (please see Ch. 6 in 

Fig. 7) and 40 dB, and it is composed by acoustic emission sensors, preamplifiers used 

to convert high impedance AE-sensor signals into low impedance signals (50 Ohm), 

power supplies and pass-band filters, connected by low-noise cables (15 cm length). 



The gain of the preamplifiers is 40 dB and their input impedance is 50 MOhm. Outputs 

of the transducers were connected to pass-band filters with a frequency range between 

200 and 400 kHz and then linked to preamplifiers. According to the g31/g32 

electromechanical coupling mechanism of the acoustic emission sensors, at the 

mentioned finite bandwidth, only the fundamental antisymmetric Lamb wave A0 was 

measured [19]. The signals were acquired using two four channels oscilloscopes with 16 

bits of resolution and a sampling rate of 25 MHz. Both systems were synchronized in 

way that all the transducers were triggered by one of the sensors (master sensor). A 

Matlab software code implemented by the authors was written to analyze the waveforms 

with the wavelet transform and to find the impact location. Sensors location and impact 

source coordinates are reported in Table 4 for test 1 with CFRP (referred as impacts C1 

C2 and C3 in the article) and Tables 5 and 6 for test 2 with sandwich plate (referred as 

impacts S1 S2 and S3 in the article). 

Table 4 Sensors and impact coordinates in test 1, impacts C1 ,C2 and C3 

 
Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

4 

Sensor 

5 

Sensor 

6 

Impact 

C1 

Impact 

C2 

Impact  

C3 

x-coordinate 

(mm) 

120 110 250 280 430 420 280 270 420 

y-coordinate 

(mm) 

100 120 390 390 250 230 170 240 70 

dkm (mm) 22.3 30 22.3  

 
Table 5 Sensors and impact coordinates in test 2, impact S1 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Impact S1 

x-coordinate (mm) 120 110 190 210 320 330 210 

y-coordinate (mm) 50 70 210 190 140 120 90 

dkm (mm) 22.3 28.3 22.3  

 

Table 6 Sensors and impact coordinates in test 2, impact S2 and S3 

 
Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

4 

Sensor 

5 

Sensor 

6 

Impact 

S2 

Impact 

S3 

x-coordinate 

(mm) 
100 90 170 190 310 290 190 50 



y-coordinate 

(mm) 
50 70 220 210 140 120 140 225 

dkm (mm) 22.3 22.3 28.3  

6 Impact localization results 

6.1 Source location results on CFRP laminate 

As shown in Section 3, the signals were analyzed in terms of group velocity–frequency 

relationship and the peak of the scalogram was used to indicate the arrival time of the 

A0 Lamb mode. The maxima coefficients in the experiments with a quasi-isotropic 

CFRP plate were found at the instantaneous frequency of 258.77 kHz. Fig. 5 illustrates 

the procedure for extracting the TOA at the above frequency of interest, for the 

configuration reported in test 1, impact C1. Fig. 6 shows the results of the source 

location for the impacts in test 1. 

 

  

  



  

Figure 5 Time histories of the six recorded waveform (upper side) and the line profile of the scalogram 

(lower side) at the frequency 77.2580 f  kHz for the time of arrival identification in impact C1. 

 

 

Figure 6 Source location results for impact C1, C2 and C3. The real (o) and calculated (*).  

Table 7 depicts the evaluated impact positions and the error as expressed by the 

following formula: 

    22

calculatedrealcalculatedreal yyxx   (18) 

where  realreal yx ,  are the coordinates of the real impact position and  calculatedcalculated yx ,  

the coordinates of the impact location using the algorithm reported in Sections (1-4). 

 
Table 7 Impact positions and errors for test 1 

 Impact C1 Impact C2 Impact C3 

x-coordinate source location (from algorithm) [mm] 277.56  268.32  417.89 

x-coordinate source location (real value) [mm] 280  270  420 

y-coordinate source location (from algorithm) [mm] 172.43  242.12  67.35 

y-coordinate source location (real value) [mm] 170 m 240  70 

Location error   [mm] 3.44  2.7  3.38 

 

As it can be seen from Table 7, this algorithm provides results with satisfactory 

accuracy (maximum error in estimation of the coordinates of the impact location was 



approximately 3 mm) for all the impacts considered, even outside the area defined by 

the sensors. 

 

6.2 Source location results on sandwich panel 

The scalogram maxima coefficients in both experiments with the sandwich plate were 

found at the instantaneous frequency of 348.27 kHz. Fig. 7 illustrates the procedure for 

extracting the TOA at the above frequency of interest, for the configuration reported in 

test 2, impact S1. 

  

  

  

Figure 7 Time histories of the six recorded waveform (upper side) and the line profile of the scalogram 

(lower side) at the frequency 27.3480 f  kHz for the time of arrival identification in impact S1. 

 



Fig. 8 shows the results of the source location for both impacts in test 2. As in Fig. 6, 

the real source location is represented by an open circle (o), whilst the calculated source 

impact position is illustrated by a star symbol (*). Table 8 depicts the evaluated impact 

positions and the errors. 

 

(a) 
 

(b) 
Figure 8 (a) (b) Source location results for impact S1 (a) and S2, S3 (b). The real (o) and calculated (*).  

 
Table 8 Impact positions and errors for test 2 
 Impact S1 Impact S2 Impact S3 

x-coordinate source location (from algorithm) [mm] 211.71  188.23  51.67 

x-coordinate source location (real value) [mm] 210  190  50 

y-coordinate source location (from algorithm) [mm] 89.18  141.07  226.45 

y-coordinate source location (real value) [mm] 90  140  225 

Location error   [mm] 1.89  2.07  2.21 

 

As it can be seen from the above table, this algorithm generates results with reasonable 

accuracy (maximum error in estimation of the coordinates of the impact location was 

approximately 2 mm) even in complex structures as sandwich panels. In the 

experiments on both CFRP and sandwich plate, according to eq. (5), the maximum 

distance between any pair of sensors was assumed equal to approximately one third of 

the distance of the closest transducer from the impact location (e.g. see d34 in Tab. 6 and 

l4 in Tab. 11 for impact S2). The dimensions of the AE sensors (2 cm diameter) and the 

composite plate employed were such that the   was sufficiently small to guarantee 

the same group speeds for each pair of transducers.. In addition, it was observed during 



the test on the sandwich plate that due to the severe attenuation in the resin core, the 

peak magnitude of the scalogram for each pair of transducers occurred at slightly 

different frequencies (within a band 0f of 10 Hz) with respect to the nominal value of 

348.27 kHz. This means that the TOA evaluation error due to this frequency shift was 

negligible. 

 

6.3 Group velocity results on CFRP laminate 

The values of the fundamental flexural Lamb mode A0 obtained from the optimization 

algorithm were compared with those determined by a semi-analytical finite element 

(SAFE) approach also known as spectral finite element (SFEM) method. The SFEM 

algorithm for undamped media presented by Barbieri et al. [20] was extended to obtain 

the dispersion relations of group velocity for the most common composite structures of 

arbitrary thickness. This technique provides a description of the cross-sectional 

deformation of a laminate using a finite element discretization of the cross-sectional 

displacement field. The displacements were approximated as harmonic exponential 

functions with the shape independent of frequency and a one-dimensional FE mesh 

along the thickness was assumed. The characteristic equation (SFEM solution) for free 

wave propagation was obtained in stable manner from a linear eigenvalue problem in 

wavenumber k. With this method, the propagating wave field can be predicted for any 

kind of composite laminate. The approach proposed by Finnveden [21] was used as it 

allowed obtaining the group velocity at each frequency and wavenumber solution, 

without the need to calculate the differentiations of two close frequencies and two 

adjacent wave numbers [see eq. (11)]. Table 9 provides the values of the group 

velocities calculated from the algorithm in the CFRP laminate, whilst Fig. 9 illustrates 



the dispersion curves for the Lamb wave A0 and the angular-dispersion pattern at the 

instantaneous frequency of 258.77 kHz. 

Table 9 Flexural Lamb mode group velocity results for test 1 
 Impact C1 Impact C2 Impact C3 

 

Group velocity (from algorithm) 

Sensors 1-2 (m/s) 1618.32  1617.22  1621.46 

Sensors 3-4 (m/s) 1624.56  1622.12  1617.87 

Sensors 5-6 (m/s) 1616.44  1619.78  1619.07 

 

(a

) 

(b

) 

Figure 9 (a) (b) Dispersion curves for the A0 flexural Lamb mode at  = 0 (a) and angular-group velocity 

pattern at 258.77 kHz (b) 

 

According to the quasi-isotropic nature of the CFRP composite plate, the angular-group 

velocity pattern was nearly circular (Fig. 9-b) and the A0 Lamb mode calculated by the 

algorithm for any pair of transducers was approximately the same (close to the value of 

1620 m/s, i.e. the maximum value for A0 reported in Fig. 9-a).  

 

6.4 Group velocity results on sandwich plate 

In relation to the previous section, the group speeds values obtained from the 

optimization algorithm were compared with those determined by the SFEM method for 

the sandwich plate. Table 10 reports the group velocities calculated from the algorithm, 

whilst in Fig. 10 the dispersion curves for the Lamb wave A0 and the angular-dispersion 

pattern at the instantaneous frequency of 348.27 kHz are displayed. 



Table 10 Flexural Lamb mode group velocity results for test 2 
 Impact S1 Impact S2 Impact S3 

 

Group velocity (from algorithm) 

Sensors 1-2 (m/s) 2810.08  2768.15  3117.45 

Sensors 3-4 (m/s) 3200.23  3078.86  2987.23 

Sensors 5-6 (m/s) 2840.74 2924.43  3002.29 

 

(a) (b) 

Figure 10 (a) (b) Dispersion curves for the A0 flexural Lamb mode at  = 0 (a) and angular-group 

velocity pattern at 348.27 kHz (b) 

 

Although the calculated group velocity matched very well with those obtained from the 

dispersion curves in the CFRP case (Table 9 and Fig. 9), for the sandwich plate the 

predicted values from the algorithm were slightly different from the reconstructed 

response provided by the SFEM model (Table 10 and Fig. 10). Indeed, as it can be seen 

from Fig. 10-a, the value of the flexural group velocity at 348.27 kHz is approximately 

2800 m/s. This is mainly due to the high attenuations in the sandwich core that are not 

included in the SFEM model.  

However, this qualitative comparison of the fundamental flexural velocity was useful to 

highlight the drawbacks related to the A0 Lamb wave speed evaluation through 

numerical methods, especially in complex structures (sandwich panel). Therefore, this 

algorithm proved to be an efficient way to overcome the drawbacks related to the 

uncertainty of the group estimation provided by the dispersion curves, and the limits of 



a-priori prediction with an accurate model of the structural response of complex 

structures. 

 

Conclusions 

This research work shows an in-situ Structural Health Monitoring (SHM) 

method for locating the acoustic emission source (impact event) and for determining the 

velocity of elastic waves in plate-like composite structures. The proposed method is 

based on the differences of the stress waves measured with high SNR by six surface 

attached acoustic emission PZT sensors. The peak magnitude of the scalogram was 

employed to identify the arrival time (TOA) of the flexural A0 Lamb mode. The 

coordinates of the impact location and the group speed were obtained by solving a set of 

non-linear equations through a combination of local Newton’s iterative method 

associated to a global unconstrained optimization (line search and polynomial 

backtracking technique). This algorithm does not require a priori knowledge of the 

anisotropy angular-group velocity pattern of the AE waveforms as well as the 

mechanical properties, lay-up and thickness of the structure. The experimental results 

conducted on a quasi-isotropic CFRP laminate and a sandwich panel showed that the 

identification of the source location was achieved with satisfactory accuracy (maximum 

error in estimation of the impact location was approximately 3 mm for quasi-isotropic 

CFRP panel and nearly 2 mm for sandwich plate). Moreover, a comparison between the 

group velocities calculated by the algorithm and the values obtained from the dispersion 

curves through a SFEM method was accomplished.  
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Appendix 1 

Table 11 reports the distances between the sensors and the impact location for all the 

experiments carried out (test 1 and 2). 

 

Table 11 Sensors and impact distances for test 1 and 2 
 l1 (mm) l2 (mm) l3 (mm) l4 (mm) l5 (mm) l6 (mm) 

Impact C1 

 

174.6 177.2 222 220 170 152.3 

Impact C2 

 

205.2 200 151.3 150.3 160.3 150.3 

Impact C3 301.5 314 362.3 349.3 180.3 160 

Impact S1 98.5 102 121.6 100 120.8 123.7 

Impact S2 127.3 122.1 82.5 70 120 102 

Impact S3 182 160 120.1 140.8 273.5 262 

 

Table 12 illustrates the time of arrivals of the waveforms reaching the i-th sensor 

calculated by the algorithm for test 1 and 2. 

 

Table 12 Time of arrivals calculated from the algorithm for test 1 and 2 
 t1 (msec) t2 (msec) t3 (msec) t4 (msec) t5 (msec) t6 (msec) 

Impact C1 

 

0.107 0.108 0.134 0.133 0.105 0.095 

Impact C2 

 

0.127 0.123 0.0919 0.0914 0.099 0.093 

Impact C3 0.184 0.192 0.224 0.217 0.113 0.1 

Impact S1 0.035 0.036 0.038 0.031 0.042 0.043 

Impact S2 0.045 0.043 0.026 0.022 0.041 0.035 

Impact S3 0.058 0.051 0.04 0.046 0.09 0.086 
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