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Abstract 
 

This paper presents a new in-situ Structural Health Monitoring (SHM) concept 

able to identify the source of acoustic emission and to determine the group velocity in 

complex composite structures with unknown lay-ups and thicknesses. The proposed 

methodology, based on the differences of stress waves measured by surface attached 

PZT sensors, was divided in two steps. In the first step, the time of arrivals (TOA) of 

the wave packets were determined by a joint time frequency analysis based on the 

magnitude of the Continuous Wavelet Transform (CWT) squared modulus. Then, the 

coordinates of the impact location and the wave speed were obtained by solving a set 

of non-linear equations through a combination of global Line Search and backtracking 

techniques associated to a local Newton’s iterative method. The proposed method 

overcomes the limitations of a triangulation algorithm as it does not require a priori 

knowledge of the wave group speed, even for complex angular group velocity 

patterns, as in anisotropic and inhomogeneous materials. To validate this algorithm, 

experimental tests were conducted on two different composite structures, a quasi-

isotropic CFRP and a sandwich panel. The results showed that the impact source 

location and the group speed were predicted with reasonable accuracy (maximum 

error in estimation of the impact location was approximately 2% for quasi-isotropic 

CFRP panel and nearly 1% mm for sandwich plate), requiring little computational 

time (less than 2 s). 
 
 

1. Introduction 
 

In the last decade, a number of studies present in literature were focused on 

the in-situ low-velocity impact source identification on both aluminum [3, 4, 6] and 

composite plates [9, 10, 13] using a network of piezoelectric (PZT) transducers. For 

isotropic or quasi-isotropic materials, a time of arrival triangulation technique (also 

known as Tobias algorithm) was widely used for determining the source location. In 

this approach, the impact point was identified as the intersection of three circles, 

whose centers were the sensors location [15]. Ciampa and Meo [1] proposed a 

Newton-based optimization technique for the impact point localization and flexural 
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group velocity determination, based on the time differences of stress waves measured 

by four surface-attached PZT transducers. However, in these methods the wave 

velocity is assumed constant in all directions, which is not true in anisotropic and 

inhomogeneous materials. Paget et al. [12] and Kurokawa et al. [7] developed an 

algorithm for impact location based on elliptical group velocity pattern. This method 

requires the knowledge of the group velocities at 0 and 90 degrees with respect to the 

planar reference frame, and it can be used for quasi-isotropic and unidirectional 

composite plates. However, the acoustic emission source location in composite 

structures, with complex angular group-velocity pattern, remains a challenging task 

that still need to be solved. This research work presents a new in-situ Structural Health 

Monitoring (SHM) system able to identify low-velocity impact and acoustic emission 

sources and to determine the flexural Lamb mode (A0) velocity in complex composite 

structures with unknown lay-up and thickness. The proposed algorithm is based on the 

differences of the waves packets measured by six surface attached acoustic emission 

PZT sensors. A joint time-frequency analysis based on the magnitude of the 

Continuous Wavelet Transform (CWT) squared modulus was employed for the time 

of arrivals (TOA) of the stress waves. Then, the coordinates of the impact location and 

the group speed were obtained by solving a set of non-linear equations through a 

combination of local Newton’s iterative method associated to a global unconstrained 

optimization (Line Search and backtracking techniques). Therefore, the proposed 

method overcomes the drawbacks of a triangulation algorithm and it does not require 

an a-priori knowledge of the anisotropy group speed of the AE signals. To validate 

this algorithm, experimental location testing were conducted on two different 

composite structures, a quasi-isotropic CFRP laminate and a sandwich panel.  
 
 

2. Acoustic source localization algorithm 
 

Let us consider as origin of the planar reference frame the left bottom corner 

of the composite structure. The impact source point I is at unknown coordinates 

 II yx ,  in the plane of the plate, the transducers are located at distance il   6,,1i  

from the source, and kjd   5,3,1k   6,,2 j  is the distance between each pair 

of transducers k and j (Fig. 1). Furthermore, the dimensions of the plate are L, length 

and W, width. 

 
Figure 1 Sensors arrangement for the source location  

 



The coordinates of the acoustic emission source can be determined by solving the 

following equation: 

       0
2

,

22
 igiIiIi Vtyyxx  (2.1) 

where igV ,  is the velocity of propagation of the stress wave reaching the i-th 

transducer, it  is the time of detection of the AE signals and  ii yx ,  are the 

coordinates of the i-th sensor. Equation (2.2) represents a system of six equations 

for 14 unknowns ( it , Ix , Iy  and igV , ), however, if 1t  is the travel time required to 

reach the sensor 1 (master sensor) and jt1   6,,2 j  are the time difference 

between sensor j and 1, we can write: 

 jj ttt 11   (2.2) 

Substituting equation (2.2) into (2.1), we obtain: 
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 igjIiIi Vttyyxx  (2.3) 

The above set of nonlinear equations cannot be solved since the number of variables is 

still bigger than the number of equations. Thereby, in order to find a solution of 

system (2.3), additional information is needed, i.e. an optimal sensors configuration. 

In the current approach, the sensors were disposed in way that each pair of transducers 

was relatively close together. In this manner, any pair will experience approximately 

the same group velocity (see Fig. 1). Therefore, we have straightaway that 2,1, gg VV  , 

4,3, gg VV  , 6,5, gg VV   and the system (2.3) can be rewritten as: 

        0
2
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22
 kgjIiIi Vttyyxx  with 5,3,1k  (2.4) 

Source location and group velocity of the flexural Lamb mode can now be 

calculated by solving the above set of six nonlinear equations with the six 

unknowns  
5,3,1,1 ,,,,, gggII VVVtyxx . Therefore, since no wave velocity 

relationship with the heading angle is required, the proposed technique is able to 

obtain the source location in anisotropic or complex structures for arbitrary lay-up 

or thickness of the plate.  
 

 

3. Time of arrival identification using the Continuous Wavelet Transform 
 

The Continuous Wavelet Transform (CWT) is a linear transform that 

correlates the harmonic waveform ),( txu  with basis functions that are simply 

dilatations and translations of a mother wavelet )(t , by the continuous convolution 

of the signal and the scaled or shifted wavelet [8]: 

   dt
a

bt
txu
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baxWT 
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where  t  denotes the complex conjugate of the mother wavelet )(t , a is the 

dilatation or scale parameter defining the support width of the wavelet and b the 

translation parameter localizing the wavelet in the time domain. In this study complex 

Morlet wavelet was used as it is able to separate amplitude and phase, enabling the 



measurement of instantaneous frequencies and their temporal evolution [14]. The 

waveforms recorded are analyzed in terms of group (energy) velocity–frequency 

relationship. Let us assume a time harmonic motion of two waves of unit amplitude 

with different frequencies 1  and 2  propagating in the x-direction of a thin plate as 

follow: 

      txkjtxkj
eetxu 2211,

 
  (3.2) 

where 1k  and 2k  are the wave numbers. Substituting equation (3.2) in (3.1) using 

complex Morlet wavelet and assuming xkb 111   and xkb 222  , we have: 

     21

21
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  jj
eaeaabaxWT    (3.3) 

The squared modulus of the CWT called also scalogram indicates the energy 

density of the signal at each scale at any time [5, 8]. Hence, it is able to reveal the 

highest local energy content of the waveform ),( txu  measured from each 

transducer. The squared modulus can be express as: 

 ),,(),,(),,(
2

baxWTbaxWTbaxWT   (3.4) 

Substituting equations (3.3) and its complex conjugate into (3.4), if   is 

sufficiently small such that      021
ˆˆˆ  aaa  , we obtain: 

      kxbaabaxWT   cos1ˆ2),,(
2
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Equation (3.5) shows that the squared modulus of the CWT using complex Morlet 

wavelet reaches its peak value at 
0

ca   and 
gV

x
x

k
b 







. Hence, the angular 

frequency of interest 0 , corresponding at the maximum value of the Continuous 

Wavelet Transform squared modulus coefficients (ridges), allows identifying the 

arrival time of the group velocity gV  (Fig. 2).  

 

  
(a)                                                                       (b) 

Figure 2 (a) (b) Morlet wavelet scalogram (a) and associated contour plot (b) of the recorded 

flexural wave.  
 

As depicted in figure (2-a), a red patch in the scalogram is representative of the 

ridge, i.e. the local energy content of the waveform recorded. Figure (2-b) shows that 

the projection on the time domain of the ridge corresponds to the time of arrival 

(TOA) of the waves packets.  
 
 



4. Optimization algorithm for solving systems of non-linear equations 
 

The method adopted for solving the set of equations (2.4) was to combine a 

Newton’s method with an unconstrained optimization. Analogously to Ciampa and 

Meo [1], the set of non linear equations (2.4) can be expressed as: 

   0xF   (4.1) 

where F  is the vector of the functions iF  ( 6,,1i ) and x  is the vector of 

unknowns jx  ( 6,,1j ).However, in particular conditions, Newton’s method 

may not converge [11]. The reasons for this failure are that the direction of the 

current iterate n
x  might not be a direction of descent for F , and, even if a search 

direction is a direction of decrease of F , the length of the Newton step x  may be 

too long. Hence, the approach adopted was to combine the Newton’s method 

applied to the system (2.4) with the unconstrained problem of minimizing the 

objective function F [2]:  

 


n

x n
:min F   (4.2) 

Among the class of powerful algorithms for unconstrained optimization, in this 

paper we focused on the Line-Search method and the polynomial backtracking 

technique because of its simplicity, and because they do not depend on how the 

Jacobian is obtained. In particular, the function to be minimized was the squared norm 

of the objective function [1]. The computational time for each source location was less 

than 1 s (using a code written in Matlab), which means that the results can be obtained 

in quasi real-time using a compiled code. 
 

 

5. Experimental set-up and source localization results 
 

To validate this algorithm, experimental location testing were conducted on 

two different composite structures, a carbon fibre reinforced plastic (CFRP) 

composite laminate with dimensions 502 mm x 437 mm x 6.94 mm and lay-up 

sequence of [0/15/30/45/60/75/90]3s, and a sandwich plate with dimensions of 380 

mm long, 254 mm wide and 6.35 mm thick. The A0 Lamb waves were generated 

using a hand–held modal hammer and were measured employing six Acoustic 

Emission sensors surface bonded with a central frequency of 300 kHz, provided by 

the courtesy of Airbus UK. Transducers location and impact source coordinates are 

reported in the following tables (1-3) for test 1 with CFRP (referred as impacts C1 

and C2 in the article) and for test 2 with sandwich plate (referred as impacts S1 and 

S2 in the article). 
 

Table 1 Sensors and impact coordinates in test 1, impacts C1 and C2. 

 
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 

6 

Impact 

C1 

Impact 

C2 

x-coordinate (mm) 120 110 250 280 430 420 280 270 

y-coordinate (mm) 100 120 390 390 250 230 170 240 

 

Table 2 Sensors and impact coordinates in test 2, impact S1 
 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Impact S1 

x-coordinate (mm) 120 110 190 210 320 330 210 

y-coordinate (mm) 50 70 210 190 140 120 90 

 

 



Table 3 Sensors and impact coordinates in test 2, impact S2 
 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Impact S2 

x-coordinate (mm) 100 90 170 190 310 290 190 

y-coordinate (mm) 50 70 220 210 140 120 140 

 

The maxima scalogram coefficients were found at the instantaneous frequency of 

258.77 kHz in the experiments with the quasi-isotropic CFRP plate and 348.27 kHz 

with the sandwich structure. Figure 3 illustrates the line profiles of the scalogram at 

the above frequencies of interest, for the configurations reported in test 1, impact C1 

and test 2, impact S1. 
 

(a) 
(b) 

(c) 
(d) 

(e) (f) 

(g) 
(h) 

Figure 3 Time histories of the recorded waveform for impact C1 (a and c) and S1 (e and g) and 

procedure for the TOA identification for impact C1 (b and d) and S1 (f and h). 
 

Table 4 depicts the true and evaluated impact positions and the error as 

expressed by the error function    22

calculatedrealcalculatedreal yyxx  . Table 5 

provides the values of the fundamental flexural Lamb mode measured from any pair 

of sensors.  
Table 4 Impact positions and errors for test 1 and 2 

 Impact C1 Impact C2 Impact S1 Impact S2 

x-coordinate source location (from algorithm) 277.56 mm 268.32 mm 211.71 mm 188.23 mm 

x-coordinate source location (real value) 280 mm 270 mm 210 mm 190 mm 

y-coordinate source location (from algorithm) 172.43 mm 242.12 mm 89.18 mm 141.07 mm 

y-coordinate source location (real value) 170 mm 240 mm 90 mm 140 mm 

Location error   3.44 mm 2.7 mm 1.89 mm 2.07 mm 



Table 5 Flexural Lamb mode wave velocity results for test 1 and 2 
 Impact C1 Impact C2 Impact S1 Impact S2 

Group velocity (from algorithm) 

Sensors 1-2 (m/s) 1618.32 1617.22 2810.08 2768.15 

Sensors 3-4 (m/s) 1624.56 1622.12 3200.23 3078.86 

Sensors 5-6 (m/s) 1616.44 1619.78 2840.74 2924.43 

 

As it can be seen from the above tables, this algorithm provides results with 

satisfactory accuracy (maximum error in estimation of the coordinates of the 

impact location was nearly 3 mm for CFRP plates and approximately 2 mm in 

complex structures as sandwich panels). In addition, according to the quasi-

isotropic nature of the CFRP composite plate, all the group velocities of the A0 

Lamb mode measured by any pair of transducers were approximately the same 

(close to the limit value of 1620 m/s).  
 

 

Conclusions 
 

This research work has shown a new in-situ Structural Health Monitoring 

(SHM) method for locating acoustic emission source and for determining the velocity 

of flexural waves in complex composite structures. The proposed method is based on 

the differences of the stress waves measured by six surface attached acoustic emission 

PZT sensors. The Continuous Wavelet Transform (CWT) scalogram, which 

guarantees high accuracy in the time-frequency analysis of the acoustic waves, was 

employed to identify the arrival time (TOA) of the flexural A0 Lamb mode. The 

coordinates of the impact location and the group speed were obtained by solving a set 

of non-linear equations through a combination of local Newton’s iterative method 

associated to Line Search and backtracking techniques. This algorithm does not 

require a priori knowledge of the anisotropy group velocity of the AE waveforms as 

well as the lay-up and thickness of the structure. The experimental results conducted 

on a quasi-isotropic CFRP laminate and a sandwich panel showed that source location 

was achieved with satisfactory accuracy (maximum error in estimation of the impact 

location was approximately 3 mm for quasi-isotropic CFRP panel and nearly 2 mm 

for sandwich plate). 
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