

Citation for published version:
Tonkin, E 2005, UDDI and IESR: A report for the Joint Information Systems Committee-funded IESR project.
UKOLN.

Publication date:
2005

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161911162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/uddi-and-iesr(7a681c50-5257-4676-bb62-d7ce1a12fb53).html

UDDI and IESR

A report for the Joint Information Systems
Committee-funded

IESR project

Document details

Authors: Emma Tonkin

Date: August, 2005

Version: 1

File Name:

Level of QA Required (1-3):

Level of QA Achieved (Y/N):

Notes:

1

2

UDDI and IESR
Emma Tonkin, UKOLN

1. Introduction

UDDI stands for Universal Description, Discovery and Integration, a SOAP-based application
initially developed by UDDI.org for publishing Web Services listings in a UDDI Business
Registry (UBR), and for seeking out service listings by name, description, and functionality. Over
time, the standard has developed into a new role as manager for services internal to a given
business. Version 3 was ratified as an OASIS1 standard in early 2005, but it is no longer clear
how widespread the use of the standard is; industry figures (SAP, IBM...) support the standard,
but its complexity has led to a low uptake elsewhere.

Fig.1: Planned UDDI usage

This complexity has also led to the curious fact that only a few percent of those intending to make
use of it at all were intending to use its full functionality [see Fig. 1]. UDDI usage has diversified
considerably from that originally envisaged by its creators – it was originally described as to be
used in a manner fully analogous to the “Yellow Pages” telephone directory, as a vendor or
service discovery index. This gulf between expected and actual usage is partly due to the
inevitable confusion between two separate entities – the UDDI standard, and the implemented
version, the centralised UDDI Web service-centric business registry.

As a standard, UDDI covers the implementation of business services registries in a business-
centric manner. Its heritage as the Web Services registry standard still remains, which is perhaps
the origin of the most frequent criticisms against the standard, eg:

 Inflexible and purpose-specific
 Overcomplicated (often directed against the ensemble of Web Service standards; as

simpler standards such as REST2 [Fielding, 2000] become increasingly common, the
complexity inherent to the Web Service standards suite attracts this criticism)

 Its data model and discovery methods are optimised for web services
 Difficult metadata model to understand (eg. tModels)

1The Organization for the Advancement of Structured Information Standards (OASIS) is a global consortium that
drives the development of e-business and web service standards.
2 REST, Representational State Transfer, is an architectural style for developing networked computer software and
accompanying high-level protocols.

3

However, proponents of the UDDI model point to the following advantages:

 Successfully optimised for web services
 Built specifically to serve the needs of businesses with a service-oriented architecture and

artefacts to expose
 A data model sufficiently well constrained to promote standard/compliant usage, and to

leave a minimum of developers scratching their heads over the details
 A rich and extensible metadata framework, via tModel and categorisation schemes
 Permits subscription and notification
 Constantly evolving to fit the evolving needs of the various users

It is reasonable to assume that the originally intended usage, the monolithic Web Services Yellow
Pages, is essentially dead. The concept of a small number of centrally-controlled root servers
does not appear to have caught on, principally for business reasons, with businesses preferring to
control their own repositories. In acknowledging this, it is tempting to speculate that UDDI would
be well-served to take on either the characteristics of a peer-to-peer system, or of a
propagated/caching system such as DNS, a centralised system that nonetheless permits businesses
control over their own server/subdomains. As the specification evolves, greater flexibility in the
choice of network model becomes available.

The UDDI Business Registry, the Yellow Pages model discussed earlier, worked substantially as
follows:

Fig.2: UDDI Business Registry

The UDDI Business Registry, also referred to as ‘the public cloud’ represents a set of UDDI
repositories set up as peers (‘nodes’ in UDDI parlance) that replicate stored data within that
‘cloud’ so that each contains the same data. According to the documentation (UDDI Consortium,
2002),

“A goal of UDDI replication is to ensure that all nodes see all the changes that have
originated at individual Operator nodes. An additional goal is that registry inquiries made
at any Operator node within the UDDI Service yield results consistent to those made at
any other Operator node within the UDDI Service. The response should be complete and
sent to the caller as quickly as possible. This consistency is defined as a response
comprised of the same businessEntities, businessServices, tModels, bindingTemplates,
and publisherAssertions, sorted the same way. The consistency of the results is subject to
any replication latencies.”

The UDDI standard allows for relatively complex arrangements, such as private nodes run by
organisations who do not wish to expose their services publicly, and ‘private clouds’ replicating
within a single business, with no interaction with the public cloud. UDDI has also been used,
adapted or proposed for a number of relatively exotic architectures, such as directly peer-to-peer

4

service discovery for P2P networks (Govoni, D., 2002), or as a basis for grid computing
architectures (Zhang et al, 2002).

The UDDI replication feature is designed to ensure the requirements of registries as an entry
point – high throughput, low response times, high availability and access to accurate data. It
makes use of secure connections, and can be scheduled according to the system administrators’
needs.

A public cloud avoids the necessity for a single central registry, meaning that no one network
interface causes a bottleneck or point of failure. Nonetheless, the scalability and reliability of
replication strategies in various network setup scenarios is, of course, one question that springs to
mind, which can only be answered by examining the replication models available in detail. One
such study was carried out by Sun, Lin and Kemma (2004). However, less frequently discussed is
the possibility of low-availability peers, that is to say, nodes that may be reachable only
intermittently, nodes suffering from bottleneck, and the associated cases, such as several new
nodes attempting to replicate fully from a small number of parent nodes.

In a fashion analogous to the first incarnation of the Gnutella p2p network, a perfectly flat system
built up of many similar nodes typically has low scalability. Therefore, one might choose to look
at the solution arrived at by that network; a decentralised system that promotes certain nodes
within that system to 'supernodes', fast control nodes with a pivotal role in sustaining the structure
of the network. This analogy, the similarity of distributed web service discovery architecture to
that of peer-to-peer systems as a field, is not new. Indeed, it is almost inevitable; as UDDI loses
its hierarchical structure, it automatically approaches peer-to-peer architecture.

The success of UDDI as a technology was originally adversely affected by the fact that the
technology was intended to be used in a very hierarchical, client-server model. There were
expected to be relatively few UDDI servers, and a large number of clients; for example, the IBM
UDDI directory, the Microsoft directory and perhaps a couple of others. In practice, this niche
proved to be illusory, and the return of UDDI has been mostly due to its adoption in other
environments. A typical example might involve testing within a single business, with only a
limited number of services available for external users; as such, UDDI has begun to rise in
popularity as the technology has adapted to a distributed environment.

The same is true of web services in general; within a given e-learning environment, certain
services will be available externally, designed for the outside world, whilst others will be
designed for internal use only. Several e-learning environments can be connected together by
means of federation of web services, which is to say that the environments choose to attribute to
each other a certain level of trust allowing them by means of agreements, shared services and
technologies, to share information and use of services.

When considering the UK academic community, it is worth noting that the scope of the services
in question extends beyond simple web services to include z39.50, OAI, CGI scripts, etc, rather
than SOAP in isolation..

5

2. Setting up a UDDI server.

In order to evaluate the features of UDDI an experimental server was installed and configured for
testing purposes.

The first and most immediately obvious point to make here is that, despite the widespread hype
surrounding UDDI, there really is not a great deal of software available - open source or
otherwise. The second observation to make is the existence of a clear UDDI standard - two of
them, in fact: versions 2 and 3 are both current. Version 2 clients ought to be able to interoperate
seamlessly with a version 3 server, as the v3 server will operate as a v2 server from the
perspective of the client. Version 2 features are therefore guaranteed, whilst v3 are not.

The only available free (open source) option was jUDDI (pronounced ‘judy’), which describes
itself as follows: 3

 Open Source

 Platform Independent

 Supports JDK 1.3.1 and later

 UDDI version 2.0 compliant implementation

 Use with any relational database that supports ANSI standard SQL (MySQL, DB2,
Sybase, JDataStore, HSQLDB, etc.)

 Deployable on any Java application server that supports the Servlet 2.3 specification
(Jakarta Tomcat, JOnAS, WebSphere, WebLogic, Borland Enterprise Server, JRun, etc.)

 jUDDI registry supports a clustered deployment configuration.

 Easy integration with existing authentication systems

jUDDI is now (as of June 2005) in version 0.9rc4, after a long period of relative inactivity.
Version 0.9rc3 was used throughout this work.

2.1 Installing jUDDI

Requirements:
jUDDI, being a Java-based web application, requires Tomcat (4.1.27 or above). Tomcat requires
Java 1.4 or above.

jUDDI is configured to use JDBC, and as such can use any of several databases:

 MySQL

 DB2

 HSQLdb (HypersonicSQL)

 Sybase

 PostgreSQL

3 http://ws.apache.org/juddi/
6

 Oracle

 TotalXML

 JDataStore (Borland)

We chose to use MySQL. In order to set up the database appropriately, an SQL script was run
(see Appendix 3).

Following this, the jUDDI web application was installed, according to the following instructions:

Unzip the ${HOME}/juddi_0.8.0_bin/build/juddi.war file at the directory ${CATALINA_HOME}/webapps/juddi/
Set the following properties at the file ${CATALINA_HOME}/webapps/juddi/WEB-INF/classes/juddi.properties

(jar: file:/juddi.war!/WEB-INF/classes/juddi.properties)

The UDDI Operator Name
juddi.operatorName = eurodyn.com
the DataSource JNDI name
juddi.dataSource=java:comp/env/jdbc/juddi

Set the following properties at ${CATALINA_HOME}/webapps/juddi/WEB-INF/classes/log4j.properties

#
set the log file to ${HOME}/juddi.log and not the ${PWD}/juddi.log
#
log4j.appender.LOGFILE.File=${user.home}/juddi.log

The following lines were then added to ${CATALINA_HOME}/conf/server.xml file4:

<Context path="/juddi" docBase="juddi" debug="5" reloadable="true"
 crossContext="true">
 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="localhost_juddiDB_log" suffix=".txt"
 timestamp="true"/>
 <Resource name="jdbc/juddiDB"
 auth="Container"
 type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/juddiDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <!-- Maximum number of dB connections in pool. Make sure you
 configure your mysqld max_connections large enough to handle
 all of your db connections. Set to 0 for no limit. -->
 <parameter><name>maxActive</name><value>100</value></parameter>
 <!-- Maximum number of idle dB connections to retain in pool.
 Set to 0 for no limit. -->
 <parameter><name>maxIdle</name><value>30</value></parameter>
 <parameter><name>maxWait</name><value>10000</value></parameter>
 <!-- MySQL dB username and password for dB connections -->
 <parameter><name>username</name><value>juddi</value></parameter>
 <parameter><name>password</name><value>123456</value></parameter>

4 http://wiki.apache.org/ws/Deploy_jUDDI_on_Tomcat_and_MySQL
7

 <!-- Class name for mm.mysql JDBC driver -->
 <parameter>
 <name>driverClassName</name>
 <value>org.gjt.mm.mysql.Driver</value>
 </parameter>
 <!-- The JDBC connection url for connecting to your MySQL dB.
 The autoReconnect=true argument to the url makes sure that the
 mm.mysql JDBC Driver will automatically reconnect if mysqld closed
the
 connection. mysqld by default closes idle connections after 8 hours.
 -->
 <parameter>
 <name>url</name>
 <value>jdbc:mysql://host.domain.com:3306/juddi?
autoReconnect=true</value>
 </parameter>
 <parameter>
 <name>validationQuery</name>
 <value>select count(*) from PUBLISHER</value>
 </parameter>
 </ResourceParams>
</Context>

jUDDI indicates installation state by self-testing (see; Testing the Installation against Client
Applications).

Following installation, a test record was manually inserted into the database, giving a business
name, contact details and a service (without T-Model). This was used for testing of client-side
applications.

The finished jUDDI installation is available at:

http://reg.ukoln.ac.uk/juddi/inquiry/ for the inquiry interface (port 80)
http://reg.ukoln.ac.uk/juddi/publish/ for the publish interface (port 80)

2.2 Testing the installation against client applications

The first stage in choosing a method of populating the UDDI service was to ensure that the
system was operating correctly. It was therefore tested against a certain number of software
packages.

• Initially, the service was tested using the check script provided: happyjuddi.jsp .
• The first external test was by means of http://soapclient.com/uddi/ which seemed capable
of browsing the system. One can see the results of such a test from the following URI:
http://soapclient.com/uddi/uddi.sri?operator=http://reg.ukoln.ac.uk/juddi/inquiry&key=%25a
%25&requestname=find_business&maxRows=50
• We then made use of a small script written with the phpuddi library in order to test the
browsing capabilities of the system.

8

2.3 Populating the UDDI server

Firstly, the problem of authentication needs to be addressed. juddi has a simple authentication
system based around the juddi_users.xml file. Adding a user is done by editing the file as follows:

<?xml version="1.0" encoding="UTF8"?>
<juddiusers>
 <user userid="juddi" password="password" />
</juddiusers>

There are three fairly intuitive methods of adding records to the UDDI server:
1) find a piece of software capable of inserting records using the UDDI interface
2) write something making use of a UDDI client-side library, for example the Java library
3) insert records directly into the MySQL database underlying jUDDI

Approach 1) proved to be impractical, since no appropriate tools appeared to exist that could be
appropriately used, eg for the batch conversion of XML documents into UDDI records. Approach
2) was both possible and practically achievable, with the additional advantage that it could
theoretically be used with all UDDI standard compatible server software, but naturally required a
development effort. The third approach was perhaps the simplest for our purposes, since we only
required a demonstration system, but was not extensible to any other scenario and was strictly
limited in compatibility to the current installation of jUDDI, since there are no guarantees or
standards governing underlying database structure.

9

2.4 Making use of available client software

The available software clients tested included:

UDDIbrowser: http://sourceforge.net/projects/uddibrowser/
http://www.uddibrowser.org/

UDDI Browser is an open-source project that provides a friendly user interface allowing users to
browse and manipulate content in UDDI registries. It is written in Java using the Swing
libraries. Currently the browser supports version 2.0 UDDI registries.
The UDDI Browser supports the entire UDDI API for managing registries, including the whole
query API set, and create/update/delete support for all entities in UDDI. It also has a host of
features to make the UDDI users and administrators life easier, including query persistence, My
UDDI support, and administrator utilities to aid in registry maintenance.
Using uddibrowser, it was possible to add services, businesses and tmodels. In order to do this,
one needs to set up a username and password in the browser configuration. However, this is very
clearly a manual process and as such is not a solution for our purposes.

10

2.5 Available APIs

uddi4j http://sourceforge.net/projects/uddi4j/
UDDI4J is a Java class library that provides an API to interact with a UDDI (Universal
Description, Discovery and Integration) registry.

SOAP::lite http://sourceforge.net/projects/soaplite/
SOAP::Lite is a collection of Perl modules that provides a simple and lightweight implementation
of SOAP, XML-RPC, UDDI and other webservice-related specifications.

phpuddi http://phpuddi.sourceforge.net/
phpUDDI is a set of standalone PHP classes with no external dependencies, supporting the basic
UDDI 1.0/2.0 Inquiry APIs. However, it is not able to publish documents and is therefore of little
interest in this context.

Of these three, SOAP::lite proved to be the most relevant to our needs. This was due to its
relatively large function set, ability to publish, simple API and the generally large number of Perl
libraries with which it could be combined, which make additional tasks such as XML processing
or database access very simple.

Therefore, I tested browse and publish capabilities (see source code in Appendix II), and found
that I could successfully publish single businesses with no problems. Since SOAP::lite is still
rather recent and is distributed as untested for publishing purposes, I would nonetheless
recommend a look at the uddi4j libraries in the event that this were to become a production
system. As uddi4j is an IBM production library, the probability is that it will receive relatively
frequent updates or at least support in terms of bug fixes and continued use. That said, it is
possible that SOAP::lite is more frequently used than uddi4j and that bugs will therefore be
discovered and removed.

2.6. Inserting records directly into MySql for jUDDI

In a sense, this was the easiest of the available methods, principally because it involved no
potential difficulties with the UDDI interface and made use only of simple tried and tested
technology (eg. perl's DBI, the database interface, which is a very mature set of APIs and very
well documented). On the other hand, this conclusion did not reckon with the major difficulty of
that approach - the database itself.

11

jUDDI is not extensively documented. FAQs and other information are available on the Web, but
they are relatively sparse, perhaps due to the fact that UDDI remains an infrequently seen
technology and is therefore not common enough for many expert contributors to exist. The
database itself is entirely undocumented and extremely complex, the only clues to its usage
coming from the choice of table and column IDs. Short of taking the time for a complete
examination of the jUDDI source code, the only way of figuring out the precise preferred
placement of variables within the database was to insert data structures, and examine their
representation within the database.

12

3. Mapping IESR to UDDI

As seen above, a number of approaches are actually available for inserting information into the
UDDI directory, two of which are scriptable using Perl, one of which depends on relatively
recent and untested APIs and the other depending on the stable database API. The theory at this
stage would suggest that we were therefore home and dry, with nothing left to do but writing a
little XML-parsing code to extract the information from the various test IESR records and insert
it into the UDDI server using either of the above methods. Unfortunately, in the immortal words
of Douglas Adams, we could not even be said to be home and vigorously towelling ourselves off.

The remaining issue is the question of tmodels. tModels are UDDI data structures, used to define
taxonomies as well as defining a service's technical interface. tModels are complicated, and every
other structure in the UDDI data model references them. In fact, they are even able to reference
themselves - tModels are self-referential, in that they can categorise themselves by reference to
themselves! For classification; the tModel is used as a namespace or taxonomy. Whilst
unchecked taxonomies can be used by means of the UDDI keyword system, typically useful in
situations involving just a small group of people, the established method for creating a taxonomy
is to register a new tModel to document the meaning and intended use of that taxonomy. Thus,
each entity typically points at a tModel to define the namespace/taxonomy in which it is
classified.

• businessEntity, the information about the parent business, points at a tModel to define its
namespace.

• businessService, describing the function of a given service, points to tModel to define its
namespace.

• publisherAssertion, describing the relationship between two entities/parties, refers to it to
define namespace.

• bindingTemplate, which provides technical information about the entry point to services
as well as specifications to do with construction, references interface specifications for the
service by pointing at the tModel in question.

TModels exist in order to solve problems relating to natural language and ambiguity, and to
facilitate searching by service type information. Service types are typically described simply as a
collection of references to tModels. Each tModel is referred to using a globally unique ID, and
each referenced tModel must be registered in the UDDI registry. Certain tModels are already
available by default in each UDDI server, such as HTTP, homepage, SMTP, fax and FTP, but
less basic technologies are not defined by default and must be registered before service
information can be registered.

It is perhaps worth adding here that in general, the UDDI data model specifies the following:

Any one business entity can have several business services - IBM, for example, can provide a
world clock web service as well as a service that translates single words from English to Swahili.
Any one business service can have one or more binding templates - the world clock service may
actually be available through a number of interfaces, or the English-Swahili dictionary might be
available through both encrypted and unencrypted channels.

The tModel service is independent of this. It is the basis information upon which the rest of the
system is built. Therefore, it is both important and the source of much of the complexity of
UDDI. Providing a simple qualitative textual description of a web service can be done very

13

simply; the difficulty is to make a description available that is sufficiently meaningful to be
useful beyond the purely human level, since UDDI is capable of use as a machine-to-machine
service registry permitting automated service discovery, and to ensure that the descriptions are
sufficiently complete to permit one to interact with the service on that information alone.

Therefore, it has two tasks: application as a taxonomy, in order to provide that meaningful
description, and application as a technical fingerprint, which is to say, specific information
defining service type, protocols, formats, rules, and so forth. Each standard protocol definition is
to be registered as a tModel, and services which are compliant with them must register
themselves as such by referring to the tModel in question in the bindingTemplate.

Thus, in order to get IESR data into the UDDI database and have it be useful on a rigorous level
(accurate/machine-readable), we require tModels defining each technical detail of each of the
services referred to in the IESR information. We then need to refer to these when adding each of
the IESR services to the database. From where are these tModels to be specified?

14

3.1 Choosing a mapping

How should the collections/agent information, as seen in the right column (IESR) be mapped into
the UDDI model (left)? Here, one recognises the grounds behind the frequently heard complaint
that “the UDDI data model is inflexible”. The model permits one to map businesses, services, and
relationships between businesses. It does not lend itself easily to collections, agents and services.

One possible solution would involve mapping the relationship between the collection entity and
the agent entity as a business to business mapping – as a UDDI relationship. Using business
relationships, one can map connections such as publisher assertions – relationships are mapped
by assertions provided by both parties, and the specific nature of the relationship is provided by a
keyedReference. A built-in canonical tModel (uddi-org:relationships) supports parent-child, peer-
to-peer and identity type relationships.

The mapping provided by Matthew Dovey works rather differently, as it treats the business
service as the collection, the binding templates available as the services, and so on. The IESR
agent is the business entity. On one level, this works well – the business entity may own several
business services, so the agent may own several collections – but on the first glance, binding
templates do not appear from the UDDI specification to be designed to encompass several
services as dissimilar as one might reasonably expect IESR services to be. They generally seem
to refer to endpoints, that is to say, URI locations (and associated connection information, eg,
protocols) pointing to a place on the network at which a service interface is located. UDDI
binding templates do not offer many places for categorisation information, whereas business
services include a categoryBag of keyedRefs. One can place the required extra information in
tModels referenced by the binding templates, although this appears at first blush to be a relatively
complex approach.

To see this, one might take an example of a standard UDDI entry:

From this example, one notes that the BusinessService itself is intended to contain one family of
services, each of which do similar things; the group of binding templates contained within one
business service simply serves to point one to various ways and means by which one can access
that service.

BusinessService:
Name: Anti-Road-Runner_Devices

BusinessEntity:
Name: ACME corp.
Description: Cartoon explosive services

Represents logical service
classification – describes a family
of services

Represents an entity which may
or may not offer any services

BindingTemplate:
Access Point: Desperation Town
Service Protocol: Cartoon Delivery

Describes instances of the
business service, a technical entry
point/protocol, or a separately
hosted instance

15

Note that the BusinessService and BindingTemplate approximate to a WSDL description:

(Source: http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/)

The question of how the collections/agent information should be mapped into the UDDI model is
not yet resolved. The way in which one chooses to map IESR collections and services to the
UDDI model surely depends on the nature of the IESR collection as an entity. If it contains only
one group of services, then it maps well to the BusinessService entity in UDDI; if it contains
several, it would seem to map better with the BusinessEntity.

For example, if one wishes to represent an image library in IESR, a collection which contains an
OAI repository and a SRU server, the Dovey mapping would return the following:

businessService: Image library
bindingTemplate: OAI repository for image library
bindingTemplate: SRU server for image library

whereas a UDDI mapping following the Acme example would return:

businessEntity: Myself
[is declared as parent of:]
businessEntity: Image library

businessService: OAI repository harvesting
bindingTemplate: Available on port 80 of machine ____ using OAI

businessService: OAI repository searching
bindingTemplate: Available on port ___ of machine ____ using z39.50
bindingTemplate: Available on port ___ of machine ____ using SRU
bindingTemplate: Available on port ___ of machine ____ using SRW

Typically in UDDI, a businessService tends to represent a discrete function, with
bindingTemplates operating as bookmark pointers to a given address, protocol and access
method. However, bindingTemplates can contain a lot of information, so it would be possible to
classify service functionality in the bindingTemplate. How simple would it be to search
information stored in each mapping? These issues will be discussed along with other possibilities
such as adaption of IESR data so that a closer but still analogous mapping could be found.

16

http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/

4. Conclusion

The aim of mapping IESR to UDDI, has proven to be reasonable, and the technologies available
are adequate for the task. However, a great deal of work still remains, mostly in defining a set of
tModels that are sufficiently extensive to cover the task at hand. Direct injection of information
into the jUDDI MySQL backend database has proven to be possible, if relatively complex in
implementation, as is making use of one of the available UDDI APIs, whether in Java or in Perl.
Whilst the direct MySQL manipulation method is by far the simplest for a UDDI non-specialist
to use and understand, it remains a solution useful only because of the narrow constraints of our
particular situation; later versions of the jUDDI system may not even retain the same database
table model, rendering the mapping previously used useless until revised.

The technical side of the problem is essentially solved. The remaining issues are mostly those to
do with the mapping, and a solution to these issues is probably best achieved by discussion with
Matthew Dovey and others. Yet this is not the most significant question, as the major issue is to
evaluate UDDI itself: UDDI, despite or possibly as a result of its potential, is seemingly
overcomplicated.

During this project, the justness of several of the complaints surrounding the UDDI spec has been
demonstrated – or the pitfalls that led others to those conclusions have been encountered. This
specification gives the impression that it is inflexible and difficult to apply. And yet, UDDI
advocates claim that the specification is, once understood, ideally engineered for the problem
group that it is designed to solve – which, from all evidence, is remarkably compatible with the
requirements of IESR.

As yet, no absolute conclusion can be drawn. Once the mapping questions are solved to general
satisfaction, once the demonstration server is up, populated and available, the machine-readability
of the information and the resulting repository is available, it will be possible to comment further.
The ability of a UDDI implementation to act as a repository for this data is not in doubt; rather,
the usability of the result remains questionable, as does the appropriateness of the approach for
IESR purposes.

A successful result depends on a standardisation and profiling effort, to ensure that the mapping
that is used is well documented and understood, that it fulfils the actual user requirements, and
that it satisfies compatibility with the IESR data. In practice, is there sufficient advantage from
the use of UDDI to offset those disadvantages?

17

Bibliography

Fielding, R. (2000). Representational State Transfer (REST). From doctoral thesis, Architectural
Styles and the Design of Network-based Software Architectures
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Govoni, D. (2002). Web Services over P2P networks. SOA Web services journal.
http://webservices.sys-con.com/read/39425.htm

Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K. (2002) Importing the Semantic Web in
UDDI. In Proceedings of Web Services, E-Business and Semantic Web Workshop, CAiSE 2002.,
pages pp. 225-236, Toronto, Canada. Bussler, C., Hull, R., McIlraith, S., Orlowska, M. E.,
Pernici, B. and Yang, J., Eds.

Sun, C., Lin, Y., Kemme, B. (2004). Comparison of UDDI Registry Replication Strategies.
Proceedings of the IEEE International Conference on Web Services (ICWS’04),
http://www.cs.mcgill.ca/~ylin30/paper/ICWS04.pdf

UDDI Consortium (2002). UDDI replication specification.
http://uddi.org/pubs/Replication-V2.03-Published-20020719.pdf

Zhang, L, Chung, J., Zhou, Q. (2002). Developing Grid computing applications, Part 1. IBM
DeveloperWorks article.

18

http://uddi.org/pubs/Replication-V2.03-Published-20020719.pdf
http://www.cs.mcgill.ca/~ylin30/paper/ICWS04.pdf

Appendix I: phpuddi code

To be included in UDDI.inc:

 var $regarray =
 array('REG' =>
 array('Inquiry' =>
 array('url' => "reg.ukoln.ac.uk/juddi/inquiry",
 'port' => 80),
 'Publish' =>
 array('url' => "reg.ukoln.ac.uk/juddi/publish",
 'port' => 80
));

Standalone code making use of the definition above:

<?php
require_once 'UDDI_Inquiry.inc';

$my_uddi = new UDDI_Inquiry('REG');
$my_uddi>version = 2;
$my_uddi>debug = TRUE;

$input = array(
 'findQualifiers'=>'sortByNameAsc,sortByDateAsc',
 maxRows=>50,
 'name'=>'%o%'
);

$result = $my_uddi>find_business($input);
$result = htmlspecialchars($result);

echo "<pre>$result</pre>"
?>

19

Appendix II: UDDI::lite (SOAP::lite) code

1. Querying the database

#!/usr/bin/perl
use UDDI::Lite
 import => 'UDDI::Data',
 import => ['UDDI::Lite' => ':find', ':get'],
 proxy => 'http://reg.ukoln.ac.uk/juddi/inquiry',
;

my @parameters = (
 findQualifiers([findQualifier('sortByNameAsc'),
 findQualifier('caseSensitiveMatch')]),
 name('%a%'),

);

my $b = find_business(@parameters);
for ($b>businessInfos>businessInfo) {
 print $_>name, "\n";
}

2. Adding records to the database

#!perl w

use strict;
use UDDI::Lite
 import => 'UDDI::Data',
 import => 'UDDI::Lite',
 proxy => "http://reg.ukoln.ac.uk/juddi/publish",
;

my $name = 'Sample business ' . $$. time; # just to make it unique

print "Authorizing...\n";
my $auth = get_authToken({userID => 'juddi', cred => 'password'})
>authInfo;
my $busent = businessEntity(name($name))>businessKey('');

print "Saving business '$name'...\n";
my $newent = save_business($auth, $busent)>businessEntity;
my $newkey = $newent>businessKey;

print "Created...\n";
print $newkey, "\n";
print $newent>discoveryURLs>discoveryURL, "\n";

print "Deleting '$newkey'...\n";
my $result = delete_business($auth, $newkey)>result;
print $result>errInfo, "\n";

To save a service rather than a business (or as well as...) the following syntax
is appropriate:

20

my $busent = with businessEntity =>
 name("Contoso Manufacturing"),
 description("We make components for business"),
 businessKey(''),
 businessServices with businessService =>
 name("Buy components"),
 description("Bindings for buying our components"),
 serviceKey(''),
 bindingTemplates with bindingTemplate =>
 description("BASDA invoices over HTTP post"),
 accessPoint('http://www.contoso.com/buy.asp'),
 bindingKey(''),
 tModelInstanceDetails with tModelInstanceInfo =>
 description('some tModel'),
 tModelKey('UUID:C1ACF26D967244049D7039B756E62AB4')
;

my $newent = save_business($auth, $busent);
print $newent>businessEntity>businessKey if ref $newent;

21

Appendix III: jUDDI SQL installation script

Taken from http://wiki.apache.org/ws/Deploy_jUDDI_on_Tomcat_and_MySQL

#
Create the jUDDI database
#
DROP DATABASE IF EXISTS juddi;
CREATE DATABASE juddi;
#
Sets global privileges to user juddi
#
REPLACE INTO mysql.user SET
 Host = '%', # any hostname (including localhost)
 # alternatively '192.168.0.1/255.255.255.0', '129.%', 'localhost'
 User = 'juddi',
 Password = PASSWORD('123456'),
 Select_priv = 'Y',
 Insert_priv = 'Y',
 Update_priv = 'Y',
 Delete_priv = 'Y',
 Create_priv = 'Y',
 Drop_priv = 'Y',
 Reload_priv = 'Y',
 Shutdown_priv = 'Y',
 Process_priv = 'Y',
 File_priv = 'Y',
 Grant_priv = 'Y',
 References_priv = 'Y',
 Index_priv = 'Y',
 Alter_priv = 'Y'
 # Show_db_priv = 'N',
 # Super_priv = 'N',
 # Create_tmp_table_priv = 'N',
 # Lock_tables_priv = 'N',
 # Execute_priv = 'N',
 # Repl_slave_priv = 'N',
 # Repl_client_priv = 'N',
 # ssl_type = 'X509',
 # ssl_cipher = '', # blob
 # x509_issuer = '', # blob
 # x509_subject = '', # blob
 # max_questions = '0',
 # max_updates = '0',
 # max_connections = '0'
;
FLUSH PRIVILEGES; # required

#
fix the mysql security gaps
NOTE: allowed access from root@localhost, root@domain.com
#
DELETE FROM mysql.user WHERE User='';
UPDATE mysql.user SET Password=PASSWORD('123456')
 WHERE user='root';
FLUSH PRIVILEGES; # required

#
Optionaly Set db provilege and host privileges
This should be used if the juddi user should not
have global privileges. In detail mysql access control
is calculated as follows:
global privileges
OR (database privileges AND host privileges)

22

OR table privileges
OR column privileges
#
INSERT INTO mysql.db SET
 Host = '%', # if blank intersect with the mysql.host record
 Db = 'juddi%',
 User = 'juddi',
 Select_priv = 'Y', Insert_priv = 'Y',
 Update_priv = 'Y', Delete_priv = 'Y',
 Create_priv = 'Y', Drop_priv = 'Y',
 Grant_priv = 'N', References_priv = 'Y',
 Index_priv = 'Y', Alter_priv = 'Y',
 Create_tmp_table_priv = 'N',
 Lock_tables_priv = 'N'
;
INSERT INTO mysql.host SET
 Host = '%',
 Db = 'juddi%',
 Select_priv = 'Y', Insert_priv = 'Y',
 Update_priv = 'Y', Delete_priv = 'Y',
 Create_priv = 'N', Drop_priv = 'N',
 Grant_priv = 'N', References_priv = 'N',
 Index_priv = 'N', Alter_priv = 'N',
 Create_tmp_table_priv = 'N',
 Lock_tables_priv = 'N'
;

#
create the jUDDI tables
#
USE juddi;
SOURCE juddi_mysql.ddl;

#
add a jUDDI publisher
#
PUBLISHER_ID The user ID the publisher uses when authenticating.
IMPORTANT: This should be the same value used to authenticate
with the external authentication service.
PUBLISHER_NAME The publisher's name (or in UDDI speak the
Authorized Name).
ADMIN Indicate if the publisher has administrative privileges.
Valid values for this column are 'true' or 'false'. The ADMIN
value is currently not used.

INSERT INTO PUBLISHER (PUBLISHER_ID,PUBLISHER_NAME,ADMIN)
 VALUES ('juddi','juddi user','false');

23

