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Application of the bispectrum for detection of small

non-linearities excited sinusoidally

C. R. P. Courtney, S. A. Neild, P. D. Wilcox, B. W. Drinkwater
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Abstract

The non-linear behaviour of damaged systems excited by vibration or ultrasound offers
potential as a technique for damage detection in machine condition monitoring and non-
destructive testing applications. The bispectrum, a third order spectrum, has properties
that lend themselves to the measurement of non-linearities in systems. The properties
of interest are insensitivity to Gaussian noise and ability to detect quadratic phase cou-
pling. However, thus far analysis of the statistics of bispectrum estimation have been
mainly aimed at stochastic systems. Many applications to vibration and ultrasound in-
volve primarily deterministic, periodic excitations in the presence of stochastic noise.
This paper considers the properties of a bispectrum estimate when applied to a system
with weak quadratic non-linearity excited by the superposition of two sinusoids in the
presence of additive Gaussian noise. This is compared, using signal-to-noise ratios, to
the powerspectrum, with the results validated using numerical data. Also addressed is
the effect of quadratic phase coupling on such a system (in the absence of noise).
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1. Introduction

This paper is concerned with the analysis of periodically excited systems using a third
order spectrum, the bispectrum, to identify weak non-linearities for damage detection.

The use of non-linear interactions for damage detection in engineering materials was
originally proposed using the measurement of harmonic amplitudes in fatigued aluminium
excited with ultrasound [1, 2]. Interest in the measurement of non-linearity as a non-
destructive testing tool was re-ignited in 1998 with Nagy’s paper [3] on the sensitivity of
harmonic generation to microscopic damage. Donskoy et al. [4] later demonstrated an
approach using the intermodulation of two frequencies looking at the responses at the
sum and difference frequencies. Much work has been published in this area, considering
both low frequency vibrations [5–8] and ultrasonic frequencies [9–12]. A review of the
research is given in [13].

The commonly used powerspectrum is second order with respect to signal amplitude
and results in a frequency-amplitude relationship. The bispectrum is third order and
results in a frequency-frequency-amplitude relationship that shows the coupling between
signals at different frequencies. Two important properties of the bispectrum [14] have
motivated its use in the analysis of non-linear systems: i) the bispectrum of Gaussian
noise is zero and ii) the bispectrum detects quadratic phase coupling between frequency
components, a signature of quadratic non-linearity.

The use, in 1963, of the bispectrum to analyse the non-linear interaction of ocean
waves [15] instigated interest in the bispectrum as a tool for analysing non-linear inter-
actions. Initially interest was in identifying non-linear behaviour in stochastic systems
with the technique applied in fields as diverse as oceanography [15], economics [16], elec-
troencephalography [17, 18], fluid mechanics [19] and plasma physics [14]. Consequently
the development of the theoretical grounding and computational tools was primarily
concerned with the treatment of random processes [17, 20–23].

In 1995 Fackrell et al. [24, 25] considered the properties of bispectra applied to peri-
odic signals with particular attention to using bicoherence (a normalised bispectrum) in
machine condition monitoring. Periodic signals were shown to produce a ‘bed of nails’
form in the bispectrum, with deviations from this form indicative of deviations from pe-
riodicity, resulting from damage. This approach was applied to a beam with a loosened
nut attaching it to a shaker fed with white noise, a perspex model of a ship’s double hull
excited by a periodic input and a vacuum cleaner. Howard [26] considered the theory
of applying the bicoherence and tricoherence to phase modulated and amplitude mod-
ulated periodic signals with a view to using higher order spectra for machine condition
monitoring and demonstrated that for inputs of frequency fc modulated in phase or am-
plitude at frequency fm the bicoherence approached unity for coupled frequency pairs
(fm, fc − fm for example) and zero for other frequencies. It was noted that, in theory,
other signals occurring at these pairs of frequencies, but not phase coupled, would not
appear in the bicoherence, although this was not demonstrated with the numerical data.
Collis et al. [27] demonstrated numerically, using narrow-band-filtered Gaussian inputs,
that the bispectrum could distinguish quadratically-phase-coupled signals generated by
a quadratic non-linearity from signals having the same powerspectrum, but uncorrelated
phases. The bispectrum (and the bicoherence) was applied by Boltežar et al. [28] to
the dynamics of washing machines, demonstrating that certain excited modes of the os-
cillation could be associated with quadratic phase coupling. It has been demonstrated
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experimentally that the bispectrum can be used to monitor the increase in second har-
monic generation by a rotating axle which is cracked or misaligned [29].

The application of bispectral analysis to detection of fatigue cracks was suggested
by Rivola and White [30]. The concept, that non-linear systems produce harmonics
of the driving frequency that result in a non-zero bicoherence, was demonstrated by
numerical solutions for a sinusoidally driven bilinear oscillator. Experimentally it was
demonstrated that the bicoherence of the acceleration of a bronze beam, excited with
white noise by a shaker, was sensitive to cracks introduced into the beam. Hillis et
al. developed a test for fatigue cracks in metal engineering parts using the bispectrum
peak due to intermodulation of two ultrasonic excitations [11, 31].

Application of the bispectrum to damage detection has involved, in several cases,
its use in systems excited sinusoidally. However the theory underpinning the use of
the bispectrum has largely been developed for non-periodic stochastic systems, leading
to some ambiguity as to the properties of the bispectrum when applied to sinusoidally
excited systems and how they may be best exploited. This paper analyses the statistics
of bispectrum estimators when a weakly non-linear system is excited at two frequencies
in the presence of Gaussian noise. The aim is to quantify any noise suppression effects
for these systems and identify how to detect quadratic phase coupling in the system
response. For comparison, the statistics of powerspectrum estimators for the same system
are also applied. Appropriate signal-to-noise ratios are developed for the comparison of
the sensitivity (i.e. the ability to reliably detect small non-linearities) of the bispectrum
to that of the powerspectrum.

2. Definitions

For a stationary, random signal x(t) the second-order spectral density (power spec-
trum) is given by[27]:

P (f) = E[X(f)X∗(f)] (1)

where X(f) is the Fourier transform of x(t), E[...] indicates the expectation value (or
equivalently the average over a statistical ensemble) and ∗ denotes the complex conjugate.
The second order spectrum is a widely known and commonly used spectra but it is just
one of a family of spectra of increasing order. This paper considers the powerspectrum
and the third-order spectrum; the bispectrum. Details of higher order spectra can be
found in [32]. The bispectrum is given by

B(f1, f2) = E[X(f1)X(f2)X
∗(f1 + f2)] (2)

These are the direct definitions, each of the spectra can also be written indirectly in
terms of autocorrelation functions, see for example [21, 22]. Due to the symmetries in
the bispectrum the region bounded by the lines f1 = 0 and f1 = f2 (shown in Fig. 1)
contains all the available information[17, 20, 33]. It is clear from Eq. 2 that if X(f1) = 0,
X(f2) = 0 or X(f1 + f2) = 0 the bispectrum at f1, f2 will also be zero. Less obvious is
that, for the bispectrum to be non-zero, the phases of these three components must be
quadratically phase coupled [21]. This phase relationship is one of the reasons that the
bispectrum has excited much interest in the analysis of non-linear systems and will be
discussed at a later stage in this paper. In short, signals resulting from the non-linear
interaction of some excitation components have a specific phase relationship with the
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Figure 1: Region of interest for Bispectrum. The frequency field is divided into the region containing
useful information (not shaded), a region where the information is redundant due to the symmetry about
f1 = f2 and the part of the region where one of the components (that at f1 + f2) exceeds the Nyquist
frequency, fNq.

excitations that caused them. In the powerspectrum the phase information is lost and
hence this phase relationship between different frequencies cannot be exploited.

Previously the bispectrum has most frequently been defined and discussed in the
context of application to random responses, for which there is a great deal of literature
from the signal processing community (see for example [17, 20, 21]). However recent
applications to machine condition monitoring and non-destructive testing have applied
the bispectrum to responses with strong deterministic, periodic components. For a de-
terministic response (i.e. one which invariably produces a given response, containing no
random element) the expectation values in Eqs. 1–2 are redundant (there is only a single
possible waveform in the statistical ensemble) and the bispectrum is the product of three
Fourier transforms:

B(f1, f2) = X(f1)X(f2)X
∗(f1 + f2) (3)
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For purely deterministic responses the quadratic phase coupling feature does not manifest
itself.

However, real systems, even where the intention is to use deterministic excitations,
produce a mixture of deterministic signals along with stochastic noise. This leads to
a second motivation for using the bispectrum; the bispectrum of Gaussian white noise
is identically zero and so the bispectrum has potential for the removal of noise from
otherwise deterministic sinusoidal signals.

2.1. Estimation

In general the expectation values in Eqs. (1) and (2) need to be estimated from a
finite quantity of available data. The most straightforward method of evaluating the
spectra is to use a number of different records, calculate an estimate of the required
spectrum of each record and then average over those spectra. This approach is taken in
this work.

General Procedure. Data consisting of M discrete time series xi(tj), each measured at N
points (tj = j∆t; j = 1, 2, ..., N), is considered. Three spectral estimates are considered:
the average power spectrum, the power spectrum of the average response and the bis-
pectrum. The two approaches to estimating the powerspectrum both involve averaging
in the frequency domain. The average powerspectrum involves calculating the power-
spectrum of each time series, before averaging and the powerspectrum of the average
response involves first averaging the frequency domain response over all time series and
then calculating the powerspectrum.

The general approach can be summarized in four steps

1. Remove mean of each record, xi(tj)

2. Perform fast Fourier transform to obtain Xi(fk), for each record (xi(tj)) at
frequencies fk = 1

n∆tk for k = 1, 2, ..., N/2.

3. Calculate appropriate spectrum for each record from Xi(fk).

4. Average spectrum over M records

The aim, when dealing with stochastic signals is to reduce the variance of the estimate.
In this paper averaging over large numbers of records is used to achieve this. Alternative
methods include using longer records and averaging in the frequency domain before
averaging over the records [17, 22], however the effect on the variance of the bispectrum
for a given record length is equivalent to dividing into records [34]. Parametric methods
offer an alternative to conventional methods [21], but will not be discussed here.

Estimation of the Powerspectrum. For the powerspectrum, as defined in Eq. (1), the
general estimation approach is taken with the powerspectrum for each record calculated
and then an average performed:

P̂ (fk) =
1

M

M∑

i=1

Xi(fk)X∗
i (fk) (4)

For deterministic excitations an alternative method may be applied, in which the time-
domain responses are averaged (or equivalently the frequency-domain signals) before the
powerspectrum of the average response is calculated:
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P̂ ′(fk) =
1

M2

M∑

i=1

Xi(fk)

M∑

h=1

X∗
h(fk) (5)

Estimation of the Bispectrum. The general approach outlined above is taken with the
bispectrum calculated for each record and then averaged over all records:

B̂(fl, fm) =
1

M

M∑

i=1

Xi(fl)Xi(fm)X∗
i (fl + fm) (6)

Sections 4 and 5 compare the statistics of both these approaches for estimating the
powerspectrum with those for bispectrum estimation and demonstrate that the high
variance of the bispectrum estimate makes the powerspectrum estimators more reliable
for detecting weak non-linearities excited sinusoidally.

2.2. Quadratic non-linear systems

This paper considers quadratically non-linear systems where the response, x(t), for
an input y(t) is:

x(t) = αy(t) + βy2(t) + q(t), (7)

where q(t) is additive Gaussian white noise and α and β are constants that define the
linear and non-linear components of the system’s input-output relationship.

Applying two sinusoids allows mixing due to non-linearity and harmonic production
to be observed. A suitable input is:

y(t) = S1 sin(2πF1t + φ1) + S2 sin(2πF2t + φ2). (8)

Substituting Eq. (8) into Eq. (7) and applying trigonometric identities (ignoring terms
that are constant in time) gives a response:

x(t) = αS1 sin(2πF1t + φ1) + αS2 sin(2πF2t + φ2)

−β
S2

1

2
cos [2π(2F1)t + 2φ1]

−β
S2

2

2
cos [2π(2F2)t + 2φ2]

+βS1S2 cos (2π(F2 − F1)t + (φ2 − φ1))

−βS1S2 cos (2π(F2 + F1)t + (φ2 + φ1))

+q(t) (9)

In the frequency domain (ignoring contributions at negative frequency which fall
outside the useful region of the powerspectrum and the bispectrum) this can be written
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as:

A(f) = F [x(t)] = −i
αS1

2
δ(F1 − f)eiφ1 − i

αS2

2
δ(F2 − f)eiφ2

−βS2
1

4
δ(2F1 − f)ei2φ1

−βS2
2

4
δ(2F2 − f)ei2φ2

+
βS1S2

2
δ(F2 − F1 − f)ei(φ2−φ1)

−βS1S2

2
δ(F2 + F1 − f)ei(φ2+φ1)

+Q(f) (10)

where F [ · ] is the Fourier transform, Q(f) = F [q(t)] is the Fourier transform of the
Gaussian noise and δ(f) is the Dirac delta function.

The non-linearity introduces signals at frequencies other than those present in the
input: those at 2F1 and 2F2 are denoted the harmonics and those at F1 + F2 and
F2 − F1 are the intermodulation, or mixing, signals. Note that the signals resulting
from the non-linearity are related in phase to those that generated them by relationships
of the form φa + φb − φc = 0, where φa, φb and φc are the constant phase differences
associated with the three related components. This is quadratic phase coupling and
offers a way of distinguishing signals at a particular frequency that are due to system
non-linear behaviour from those which are not. The statistics of estimating the response
due to mixing at F1 + F2 will be considered, analogous calculations are possible for the
harmonics or the other mixing signal. Only components that contribute to B(F1, F2)
are of interest and so a reduced time-domain response is defined that contains only the
information corresponding to the excitation frequencies , the intermodulation signal at
F3 = F1 + F2 and the noise Q(t), and neglects all other terms in Eq. (9):

x(t) = S1 sin (2πF1t + φ1) + S2 sin (2πF2t + φ2) − S3 cos (2πF3t + φ3) + q(t). (11)

Although S3 and φ3 are defined as independent variables for generality, for quadratic
systems S3 = βS1S2 and φ3 = φ1 + φ2. In the reduced response t = 0 is selected such
that φ1 = φ2 = 0 and hence φ3 = 0. The deterministic part of the signal is denoted
x(S)(t) = S1 sin 2πF1t + S2 sin 2πF2t − S3 cos 2π(F3)t and so the total response can be
written more concisely as:

x(t) = x(S)(t) + q(t). (12)

The positive-frequency domain response can be written as:

X(f) = F [x(t)] = X(S)(fn) + Q(fn)

= −i
αS1

2
δ(F1 − f)eiφ1 − i

αS2

2
δ(F2 − f)eiφ2

−S3

2
δ(F3 − f)eiφ3 + Q(f) (13)
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3. Exploiting quadratic phase coupling

The bispectrum detects signals that are quadratically phase coupled (QPC) and sup-
presses those that are not, which is why it is of interest for identifying system non-
linearity. When the expectation value over an ensemble of possible responses is considered
only those frequency pairs where φ1 + φ2 − φ3 = 0 lead to constructive addition.

To more clearly demonstrate how quadratic phase coupling affects the bispectrum,
consider a response as defined in Eq. (11), but without the noise term q(t) (as previously
F3 = F1 + F2). M measurements each of length N and labelled k are considered:

xk(t) = S1 sin(2πF1t + φ1k) + S2 sin(2πF2t + φ2k) − S3 cos(2π(F3)t + φ3k) (14)

The three components are related in frequency, and have phases φ1k, φ2k and φ3k, which
are to be specified. Using the average over M measurements to evaluate the expectation
value operator in Eq. (2) approximates the bispectrum at F1, F2 as:

B̂(F1, F2) =
1

M

M∑

k=1

Xk(F1)Xk(F2)X
∗
k(F3)

=
1

8M
S1S2S3

M∑

k=1

exp [i(φ1k + φ2k − φ3k)] (15)

Consider the case where the phases of the excitations (φ1k and φ2k) are both randomly
distributed and independent for each measurement: if the signal at S3 is quadratically
phase coupled with regard to the excitations then φ1k + φ2k − φ3k = 0 for all k and the
estimated bispectrum goes to:

B̂(F1, F2) =
1

8
S1S2S3. (16)

If the phase component at F3, φ3k, is also randomly distributed with respect to φ1k

and φ2k then the summation in Eq. (15) sums components randomly distributed in
phase and so tends to zero as M increases leading to a bispectrum of zero. This allows
detection of quadratically phase coupled responses (such as those produced by excitation
of quadratic non-linear systems) while suppressing signals at the appropriate frequency,
but with uncorrelated phase.

When sinusoidal excitations are used there are two practical approaches to probing
non-linear systems that require some thought and care with regard to quadratic phase
coupling: multiple measurements taken using the same excitation signal and the division
of a single measurement into multiple records for averaging.

If the same excitation is used for each measurement then the phase of each excitation
component is fixed: φ1k = φ1, φ2k = φ2 and Eq. (15) simplifies to:

B(F1, F2) =
1

8M
S1S2S3e

i(φ1+φ2)
M∑

k=1

e−φ3k . (17)

If the third phase is randomly distributed then the summation will tend to zero, whereas
a constant relative phase φ3k = φ3 will lead to a complex bispectrum of the amplitude
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given by Eq. (16) and phase φ1+φ2−φ3. Although this allows detection of phase coupled
systems (and suppression of signals which are not phase coupled) it should be noted that
similar behaviour occurs if the frequency domain signal at F3 is averaged:

X̂(F1 + F2) =
1

2

N

M
S3

M∑

k=1

e−φ3k . (18)

Therefore, in this case, the bispectrum does not provide any advantage, over direct
averaging of the system response, in terms of suppressing non-phase-coupled systems.

To this point it has been assumed that each record constitutes a separate measure-
ment, however for stochastic systems it is common to use a single time trace (x(tj)) and
divide it into K segments. For systems where the amplitude and phase at a given fre-
quency varies with time, dividing a single record into K segments is equivalent of making
K different measurements on the same system. It is not obvious however whether the
same approach can be applied to systems where there are ongoing sinusoidal excitations.
Consider a single record of the same form as that in Eq. (14). This record is then divided
into K sections each of n = N/K points, each record can be written:

xk(t) = S1 sin(2πF1(t + k∆t) + φ1) + S2 sin(2πF2(t + k∆t) + φ2)

− S3 cos(2π(F1 + F2)(t + k∆t) + φ3). (19)

∆t is the length of each section (∆t = n
fs

). The corresponding Fourier transforms at the
frequencies of interest are:

Xk(F1) =
1

2
iS1e

i(2πF1k∆t+φ1)

Xk(F2) =
1

2
iS2e

i(2πF2k∆t+φ2)

Xk(F3) = −1

2
S3e

i(2π(F1+F2)k∆t+φ3) (20)

(21)

Averaging over the segments gives

B̂(F1, F2) =
1

M

M∑

k=1

X(F1)X(F2)X
∗(F3)

=
1

8M
S1S2S3e

[i(φ1+φ2−φ3)] . . . (22)

M∑

k=1

ei[2πF1k∆t+2πF2k∆t−2π(F1+F2)k∆t]

=
1

8
S1S2S3e

[i(φ1+φ2−φ3)] (23)

So where the signals are quadratically phase coupled the bispectrum is real, but the
magnitude of the bispectrum is the same regardless of the phase relation, making the
detection of quadratically phase coupled systems difficult.
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4. Statistical analysis of estimators

So far as application to detecting small non-linearities is concerned the quality of
an estimator is determined by two things: the difference in magnitude of the estimated
value in the presence of non-linearities from that of a linear system and how variable
the estimate itself is. For an ideal measurement, the measured response should be zero
in the absence of non-linearity, increase with increasing non-linearity and exhibit zero
variance. These ideal cases only occur in the case of zero noise. In this section the
expected values of the estimators of powerspectrum and bispectrum defined in section 2
are evaluated for the test signal in Eq. (11) (with φ1 = φ2 = φ3 = 0), along with their
variances. Appropriate signal-to-noise ratios are defined to provide comparison of the
different spectral methods. The results will be demonstrated with artificial (and hence
well defined) data containing computationally generated Gaussian noise.

4.1. Defining signal-to-noise ratios

Comparison of the effectiveness of the methods for estimating the signals is most
commonly achieved by looking at signal-to-noise ratios (SNRs) and this approach will be
applied here. The definition of the signal-to-noise ratio is however complicated by the
expected value of the bispectrum being zero for responses with only noise.

Let Φ(β, σ) denote either the powerspectrum or the bispectrum when applied to a
response spectrum from a system with quadratic non-linearity β and Gaussian noise of
variance σ2. The most straightforward signal-to-noise ratio is to compare the expected
value for a non-linear signal with no noise, E[Φ̂(β, σ = 0)], to that for the case where

there is noise and no non-linearity, E[Φ̂(β = 0, σ)]. Hence we have an SNR:

SNR1(β, σ) =

(
E[Φ̂(β, σ = 0)]

E[Φ̂(β = 0, σ)]

)1/a

. (24)

The root power, a, is set to ensure that the SNR is proportional to the parameter of
interest, here β or equivalently S3. Hence we set a = 2 for the powerspectrum and a = 1
for the bispectrum. This definition of the SNR loosely represents the expected average
SNR from multiple measurements, however it becomes problematic for the bispectrum
as the expected value goes to zero when there is no non-linearity (i.e β = 0) and so this
SNR tends to infinity in this case.

A second SNR is defined, representing the worst-case SNR likely to be encountered in
any particular measurement. It is assumed that the worst case consists of a low outlier
being measured for the signal and a high outlier for the noise value. Taking the outliers
as a number, b, of standard deviations from the expected value yields

SNR2(β, σ) =



E[Φ̂(β, σ)] − b

√
Var(Φ̂(β, σ))

E[Φ̂(0, σ)] + b

√
Var(Φ̂(0, σ))





1/a

. (25)

As an indicator of the values of b that are appropriate: for normally distributed values,
b = 1 would indicate that 84.1% of measurements lie above the expected value minus b
standard deviations, and b = 2 would lead to 97.7% lying in that region.
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In order to quantify these SNRs and assess the effectiveness of the techniques in
detecting the signal due to a small quadratic non-linearity the expected value and vari-

ance of each estimator are evaluated. That is analytic expressions of E
[
B̂(F1, F2)

]
,

E
[
P̂ (F3)

]
, E
[
P̂ ′ (F3)

]
,Var

[
B̂ (F1, F2)

]
, Var

[
P̂ (F3)

]
and Var

[
P̂ ′ (F3)

]
are sought.

The variance of a general spectrum estimate Φ̂(S3, σ) = Φ̂(S1, S2, S3, σ,M,N), where

Φ̂ can be B̂, P̂ or P̂ ′, is given by

Var
[
Φ̂ (S3, σ))

]
= σ2

Φ̂
= E

[
Φ̂(S3, σ)Φ̂∗(S3, σ)

]
− E

[
Φ̂(S3, σ)

]
E
[
Φ̂∗(S3, σ)

]
, (26)

which also defines the standard deviation σΦ̂ of the function.

4.2. Numerical model

In order to illustrate the behaviour of the estimators artificial data with Gaussian
white noise added is generated for a sample system, defined by Eq. (7) and excited the
input defined by Eq. (8). Parameters are selected to give behaviour of the type observed
in ultrasonic intermodulation experiments of the type performed by Hillis et al. [11, 31].
Fig. 2 shows the time domain and frequency domain responses with parameters α = 1 and
β = 0.01, excited with amplitudes S1 = S2 = 1 at F1 = 300kHz and F2 = 400kHz. As
the system is quadratic S3 = βS1S2 = 0.01 at F3 = 700kHz. The system is contaminated
with Gaussian noise of variance σ2 = 1. The peak in the signal at F3 is expected to be
|X(S)(F3)| = S3

2 based on Eqs. (10) and (35).
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Figure 2: Artificial data generated for a quadratic non-linear system (with α = 1 and β = 0.01), excited
at F1 = 300kHz and F2 = 400kHz with addititive Gaussian noise of variance σ2 = 1. (a) the time
domain response , (b) the powerspectrum in the region of F3. In each case the solid line is the response
including noise and the dashed line the signal without noise added. In (b) the lower horizontal line
marks the expected value of the signal at F3 = S3/2, and the upper horizontal line shows the standard
deviation of the noise in the frequency domain, σ/N1/2 (see Eq. 35).

4.3. Statistics of noise in the frequency domain

Having defined the system and the statistical measures of interest, the analysis re-
quired to evaluate those values is performed. First the statistics of the noise in the
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frequency domain are evaluated as these are used repeatedly in the calculation of the
expectation values and variances of the estimators.

The discrete Fourier transform (DFT), which is used to transform from the time to
the frequency domain, is given by

A(fn) =
1

N

N−1∑

j=0

a(tj) exp(−i2πnj/N) (27)

assessed at fn = n/T and n = 0 . . . N − 1.
The noise is assumed to be zero-mean and Gaussian, so that the probability of the

noise at a particular time, t, lying in the infinitesimal range q(t), q(t) + dq is:

Pr[q(t)]δq =
1

σ
√

2π
exp

{
−q2(t)

2σ2

}
δq (28)

where σ2 is the variance of the noise and Pr[...] the probability density. The expected
value of a function of x, f(x), is defined as

E [f(x)] =

∞∫

−∞

Pr [x] f (x) dx. (29)

E[q(t)] = 0 as q(t) is defined as zero mean. When calculating the expected values and
variances of the spectra various powers of Q(f) occur, which in turn depend on powers
of q(t). From Eqs. (28) and (29) odd powers of the noise have a zero expected value and
utilizing the integral [35]

+∞∫

−∞

x2n exp
[
−ax2

]
dx =

(2n − 1)!!

2n+1an

√
π

a
(30)

where !! indicates the double factorial, even powers give

E[q2n(t)] =

+∞∫

−∞

q2n(t)
1

σ
√

2π
exp

{
−q2(t)

2σ2

}
dq

= (2n − 1)!!σ2n, (31)

where n is any positive integer. Of particular use in later analysis are the cases where
n = 1 and n = 2: E[q2(t)] = σ2, which (by virtue of the noise being zero mean) returns
the noise variance, and E[q4(t)] = 3σ4.

The expected value of the noise in the frequency domain, using Eq. (27) is

E [Q(f)] = E



 1

N

N−1∑

j=0

q(tj)e
(−i2πnj/N)



 =
1

N

N−1∑

j=0

e(−i2πnj/N)E [q(tj)] = 0 (32)

where the subscript for the discrete frequency has been dropped from the left hand side,
but it is assumed that f fulfils f = n/T where n is an integer.
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When it comes to evaluating the expected values of products of the Fourier transform
of the noise and the conjugate of the noise it is useful to bear in mind the expected value
of the product of independently distributed variables is equal to product of the expected
values of those variables:

E [x1x2] = E [x1] E [x2] , E [x1x2x3] = E [x1] E [x2] E [x3] . (33)

Hence the expectated value of the product of the frequency domain noise with the conju-
gate of the noise, E [Qj(f1)Qk(f2)

∗], is non-zero only if f1 = f2 and j = k. If this criteria
is met:

E [Qj(f1)Qj(f1)
∗] = E

[
1

N

N∑

l=1

qj(tl)e
(−i2πnl/N) 1

N

N∑

m=1

q∗j (tm)e(i2πnm/N)

]

=
1

N2

N∑

l,m

e(−i2πn(m−l))E [qj(tl)qj(tm)] . (34)

As q(t) consists of independent randomly-distributed zero-mean values, the expectation
value is zero when m 6= l, and the value for m = l is E [q(t)q(t)] = σ2 the summation is
zero for all indices (l,m) except the N values where l = m. For those cases the power of
the exponential term is zero (the exponential term is unity) and so

E
[
Qi(f1)Q

∗
j (f2)

]
= 1

N σ2 for i = j and f1 = f2.

= 0 for i 6= j or f1 6= f2. (35)

If the conjugate is not taken for the second term the summation goes to zero (see Ap-
pendix A.1), even for i = j, giving

E [Qi(f)Qj(f)] = 0 for all i, j. (36)

For the product of four noise terms, E
[
Qi(f)Q∗

j (f)Q∗
k(f)Ql(f)

]
, similar calculations to

Eq. (34) apply (shown in Appendix A.2) leading to:

E
[
Qi(f)Q∗

j (f)Q∗
k(f)Ql(f)

]
= 2

N2 σ4 for i = j = k = l

= 1
N2 σ4 for i = j 6= k = l

= 1
N2 σ4 for i = k 6= j = l

= 0 all others, (37)

4.4. Expected values and variances of estimators

The Powerspectrum. Applying the powerspectrum estimator defined in Eq. (4) to the
test response Eq. (11), and evaluating the expected value at F3 using Eqs. (33) and (35):

E
[
P̂ (F1 + F2)

]
=

1

M

M∑

i=1

{
E [Xi(F3)X

∗
i (F3)]

}

=
1

M

M∑

i=1

{
E
[(

X(S)(F3)X
(S)∗(F3) + Qi(F3)Q

∗
i (F3)

)]}

=
S2

3

4
+

1

N
σ2. (38)
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Note that the powerspectrum includes a noise term. This noise depends on the noise in
the initial response and the number of points used for the Fourier transform; averaging
does not reduce the noise contribution. The expected value of the conjugate product of
the estimator, required for the variance, is evaluated using Eqs. (33), (35), (36) and (37):

E
[
P̂ (F3)P̂

∗(F3)
]

= E



 1

M2

M∑

j,k=1

{
Xj(F3)X

∗
j (F3)Xk(F3)X

∗
k(F3)

}



(39)

Along with Eq. (38) this gives the variance:

Var
[
P̂ (F3)

]
= E

[
P̂ (F3)P̂

∗(F3)
]
− E

[
P̂ (F3)

]
E
[
P̂ ∗(F3)

]
=

σ4

MN2
+

S2
3σ2

2MN
(40)

The Powerspectrum of the Average Response. The expected value of powerspectrum of
the average response (defined in Eq. (5)) at F3, can be calculated using Eqs. (33), (35)
and (36):

E[P̂ ′(F3)] =
1

M2

M∑

i,j=1

{
E
[(

X(S)(F3) + Qi(F3)
)(

X(S)∗(F3) + Q∗
j (F3)

)]}

=
S2

3

4
+

1

MN
σ2. (41)

This approach to the averaging leads to a noise term that reduces with number of aver-
ages, M .

The variance of this estimate requires the calculation of E
[
P̂ ′(F )P̂ ′∗(F )

]
:

E[P̂ ′(F3)P̂
′∗(F3)] = E

[
1

M4

M∑

i,j,k,l=1

{(
X(S)(F3) + Qi(F3)

)

×
(
X(S)∗(F3) + Q∗

j (F3)
)(

X(S)(F3) + Q∗
k(F3)

)

×
(
X(S)(F3) + Ql(F3)

)}]

=
1

M4

M∑

i,j,k,l=1

{
X(S)(F3)X

(S)∗(F3)X
(S)∗(F3)X

(S)(F3)

+X(S)(F3)X
(S)∗(F3)

(
E[Q∗

k(F3)Ql(F3)]

+E[Q∗
l (F3)Qj(F3)] + E[Q∗

i (F3)Qk(F3)]

+E[Q∗
i (F3)Qj(F3)]

)

+E[Qi(F3)Q
∗
j (F3)Q

∗
k(F3)Ql(F3)]

}
(42)

The results of the summations are derived in Appendix B, and applied to Eq. (42) giving

E[P̂ ′(F3)P̂
′∗(F3)] =

S4
3

16
+

1

M3N2
σ4 +

2

M2N2
σ4 +

1

MN
S2

3σ2 (43)
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Combining Eqs. (41) and (43) gives the variance:

Var
[
P̂ ′(F3)

]
=

σ4

M2N2
+

S2
3σ2

2MN
(44)

The Bispectrum. The expected value of the bispectrum estimator at F1, F2 is given by
applying the estimator defined in Eq. (6) to the test response in Eq. (11) and evaluating
the expected value.

E
[
B̂ (F1, F2)

]
= E

[
1

M

M∑

i=1

Xi(F1)Xi(F2)X
∗
i (F3)

]
(45)

From Eq. (13) and making use of Eqs. (33), (35) and (36), gives

E
[
B̂(F1, F2)

]
= E

[
1

M

M∑

i=1

{(
X(S)(F1) + Qi(F1)

)

×
(
X(S)(F2) + Qi(F2)

)(
X(S)∗(F3) + Q∗

i (F3)
)}]

=
1

M

M∑

k=1

{
X(S)(F1)X

(S)(F2)X
(S)∗(F3)

+E [Qi(F2)] X
(S)(F1)X

(S)∗(F3)

+E [Qi(F1)] X
(S)(F2)X

(S)∗(F3)

+E [Qi(F1)Qi(F2)] X
(S)∗(F3)

+X(S)(F1)X
(S)(F2)E [Q∗

i (F3)]

+E [Qi(F1)Qi(F2)Q
∗
i (F3)]

}

=
1

M

M∑

k=1

{
X(S)(F1)X

(S)(F2)X
(S)∗(F3)

}

=
S1S2S3

8
. (46)

Note that the final step contains no noise terms and so Eqs. 15 and 16 (where noise was
ignored) can be used. The expected value of the estimator is proportional to the signal,
S3, at the mixing frequency (and so to β) and tends to zero if there is no mixing.

The variance of the bispectrum estimator is

Var
[
B̂(F1, F2)

]
= E

[
B̂(F1, F2)B̂

∗(F1, F2)
]
− E

[
B̂(F1, F2)

]
E
[
B̂∗(F1, F2)

]
(47)

where E
[
B̂(F1, F2)

]
is given in Eq. (46). E

[
B̂(F1, F2)B̂

∗(F1, F2)
]

is evaluated using
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Measure Amplitude Amplitude Variance
(no noise) (with noise)

Powerspectrum, P̂ (F3)
S2

3

4
S2

3

4 + 1
N σ2 σ4

MN2 +
S2

3
σ2

2MN

Powerspectrum of Average Response,
S2

3

4
S2

3

4 + 1
MN σ2 σ4

M2N2 +
S2

3
σ2

2MN

P̂ ′(F3)

Bispectrum, B̂(F1, F2)
S1S2S3

8
S1S2S3

8
S2

1
S2

2
σ2

16NM +
S2

1
S2

3
σ2

16NM +
S2

2
S2

3
σ2

16NM

+
S2

1
σ4

4N2M +
S2

2
σ4

4N2M +
S2

3
σ4

4N2M
+ 1

N3M σ6

Table 1: Summary of expected values of estimators and their variances.

Eqs. (13), (33) and (35) to give the variance.

E
[
B̂(F1, F2)B̂

∗(F1, F2)
]

=
1

M2

M∑

j,k=1

{
E [Xj(F1)X

∗
k(F1)]

×E [Xj(F2)X
∗
k(F2)] E

[
X∗

j (F3)X
∗
k(F1)

]}

=
1

M2

[
M

(
S2

1

4
+

1

N
σ2

)

×
(

S2
2

4
+

1

N
σ2

)(
S2

3

4
+

1

N
σ2

)]

+M(M − 1)
S2

1S2
2S2

3

64

=
S2

1S2
2S2

3

64
+

S2
1S2

2σ2

16NM
+

S2
1S2

3σ2

16NM
+

S2
2S2

3σ2

16NM

+
S2

1σ4

4N2M
+

S2
2σ4

4N2M
+

S2
3σ4

4N2M
+

1

N3M
σ6. (48)

The resulting variance in the bispectrum at the intermodulation frequency pair is

Var
[
B̂(F1, F2)

]
=

σ2

NM

(
S2

1S2
2

16
+

S2
1S2

3

16
+

S2
2S2

3

16
+

S2
1σ2

4N
+

S2
2σ2

4N
+

S2
3σ2

4N
+

1

N2
σ4

)

(49)

5. Comparison of estimators

Having calculated the expected values of the estimators and their variances, this
section compares the analytical results to numerical values, and evaluates the signal-to-
noise ratios developed in section 4.1.

5.1. Expected values and variance

Table 1 summarizes the values evaluated for the estimators of the powerspectrum and
bispectrum. The behaviour of these values is illustrated in Figs. 3 (a) and (b), which
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⋄ Bispectrum: B̂(F1, F2)

+ Powerspectrum: P̂ (F3)

◦ Powerspectrum of average response: P̂ ′(F3)

Figure 3: (a) The expected value of the estimated frequency domain response at the mixing frequency F3

due to non-linearity for a quadratic non-linear system (with α = 1 and β = 0.01), excited at F1 = 300kHz
and F2 = 400kHz with additive Gaussian noise of variance σ2 = 1. (b) The variance of the estimate.
(c) The expected value at F3 in the absence on non-linearity (α = 1 and β = 0). (d) The variance
of the estimates shown in (c). Numerical data points are as defined in legend and solid lines represent
analytical results as summarized in Table 1

show how the estimated value and its variance varies for increasing record length, N ,
with the total number of data points, NM = 250000, held constant. The system was as
described in section 4.2 and the expectation value of each estimator was determined as
the average value of the estimator over NR = 1000 repetitions of the test. In each case
the data from the model closely follows the analytical results, except at relatively low
(<1000) values of N . In this region leakage, due to windowing, of the large components
at F1 and F2 becomes appreciable at F3 and so increases the expected value over that
evaluated analytically. The variance of the estimators, for both numerical and analytical
results, are (barring the leakage effect at low N) as predicted.

In addition to how well, and how consistently, the estimators characterize the signal
due to non-linearity it is useful to know how large the measured response is for cases where
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there is no non-linearity. Fig. 3 (c) and (d) show the result of repeating the calculations
shown in Fig. 3 (a) and (b) for a system with β = 0, and hence S3 = 0. In both
the powerspectrum and the powerspectrum of the average response the numerical results
follow the values calculated in section 4.2. However for the bispectrum the expected value,
given by Eq. (46), tends to zero as S3 tends to zero. Also the bispectrum, unlike the power
spectrum, is not bounded by zero; negative values are possible and for S3 = 0 likely. For
this reason the absolute value of the expected bispectrum is plotted in Fig. 3 to allow
comparison with the powerspectrum values. As the expected value of the measurement is
expected to be zero the effect of the variation of the test results dominates. Although this
indicates a failing in the use of averaging over a number of repetitions to approximate the
expected value (and the values could be reduced by increasing NR) it does highlight that
it is not sufficient to consider only the expected value of the estimator when considering its
efficiency in producing estimates. This distinction is taken up further in section 5.2 where
appropriate signal-to-noise ratios are developed and used to compare the techniques.

From Fig. 3 it can be seen that for a given total number of points NM the statistics
of the powerspectrum of the average response are not dependent on how these points are
divided, this follows from M and N only appearing as MN or a power thereof in the
expected values and variance as shown in table 1. The expected value of the response for
the powerspectrum is unaffected by averaging (M does not appear in the noise term of the
expected value), so the noise term is minimized by maximizing N , which can be achieved
by setting M = 1. Similarly the variance of the powerspectrum estimator is minimized
when N is minimised. For M = 1 the powerspectrum coincides with the powerspectrum
of the average response, for all other combinations of M and N the average response
method is superior. It is also the case that, although the expectation value of the actual
estimate provided by the bispectrum is not dependent on the split of data, the variance
is minimized for M = 1.

Fig. 4 shows the estimated powerspectra and bispectra respectively for 100 different
values of S3 regularly distributed between zero and 0.05 calculated for N = 250000 and
M = 1. The expected value of the estimators are plotted along with these values plus and
minus twice the standard deviations. It can be seen that the majority of values (96 and 90
for the bispectrum and powerspectrum respectively) lie within the bounds of these lines.
Also shown, for comparison are the estimates obtained for S3 = 0 for each data set, along
with the associated estimates and bounds. The lower of the line used to determine the
bounds of likely individual measurement (E[Φ̂(β, σ)] − 2σΦ(β, σ)) and the line marking
the upper bound of the likely individual measurement for a linear system with the same
excitation (E[Φ̂(β = 0, σ)] + 2σΦ(β = 0, σ)) contain the majority of measured values and

it would be expected that where the E[Φ̂(β, σ)] − 2σΦ(β, σ) is significantly greater than

E[Φ̂(β = 0, σ)] + 2σΦ(β = 0, σ) then the two systems will be clearly distinguished by
a single measurement. This corresponds to the situation evaluated by SNR2 defined in
Eq. 25 for b = 2.
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Figure 4: Estimates of (a) powerspectrum of average response and (b) bispectrum for system with
S1 = S2 = 1 and S3 varied from zero to 0.1 and white noise of variance σ2 = 1 added. Spectra were
estimated using N = 250000 and M = 1. The expected value (evaluated from Eqs. (41) and (46)
respectively) is plotted as a solid line in each case and the confidence bounds given by the expected
value plus or minus two standard deviations (from Eqs. (44) and (49) respectively) are shown as dashed
lines.

5.2. Signal-to-noise ratios

Given the estimated value of the average response powerspectrum estimator, Eq. (41),
the signal-to-noise ratio defined in Eq. (24) is

SNR
(P ′)
1 (β, σ) =

√
E[P̂ ′(S)(F3)]

E[P̂ ′(N)(F3)]

=
S3

2σ

√
MN =

βS1S2

2σ

√
MN = γ (50)

(S) indicates estimation applied to signals without noise and (N) indicates estimator
applied to noise only. Eq. (50) also provides the physical meaning of the parameter
γ which is used to simplify later comparisons. Note that for a given total number of
data points, NM , this SNR is the same regardless of how they are divided between
length of measurement and number of averages. The equivalent SNR for the average
powerspectrum (using Eq. (38)) is

SNR
(P )
1 (β, σ) =

SNR
(P ′)
(1) (β, σ)
√

M
(51)

and so the powerspectrum of the average response is superior, apart from the case M = 1
where the two are the same. The same is true of the variances given in Eqs. (40) and
(44) (as seen in Fig. 3) indicating that the powerspectrum of the average response is
the better estimate of the two therefore it is this estimator that is compared to the
bispectrum.
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As the expected value of the estimated bispectrum is zero where there is no noise
the SNR defined in Eq. (24) tends to infinity and so the second SNR, which takes into
account the worst case values, is considered using Eq. (25):

SNR
(P ′)
2 =

√√√√
S2

3

4 + 1
MN σ2 − b

√
1

(NM)2 σ4 + 1
2MN S2

3σ2

1
MN σ2 + b 1

MN σ2

=
S3

2σ

√
MN

1 + b

√√√√1 +
4

MN

σ2

S2
3

− b

√
16

(MN)2
σ4

S4
3

+
8

MN

σ2

S2
3

=
γ√

1 + b

√

1 +
1

γ2
− b

√
2

γ2
+

1

γ4
(52)

Applying the definition in Eq. (25) to the bispectrum gives:

SNR
(B)
2 =

S1S2S3

8 − b

√
σ2

NM

(
S2

1
S2

2

16 +
S2

1
S2

3

16 +
S2

2
S2

3

16 +
S2

1
σ2

4N +
S2

2
σ2

4N +
S2

3
σ2

4N + 1
N2 σ4

)

b

√
σ2

NM

(
S2

1
S2

2

16 +
S2

1
σ2

4N +
S2

2
σ2

4N + 1
N2 σ4

)

=
S3

2σ

√
MN

b

×




S1S2

4 − 2σ
S3

b√
MN

√
S2

1
S2

2
+S2

1
S2

3
+S2

2
S2

3

16 +
S2

1
σ2+S2

2
σ2+S2

3
σ2

4N + 1
N2 σ4

√
S2

1
S2

2

16 +
S2

1
σ2

4N +
S2

2
σ2

4N + 1
N2 σ4





(53)

For the case where the excitation amplitudes are the same, S1 = S2 = S, Eq. (53)
simplifies to

SNR
(B)
2 =

γ
b −

√(
1 + β2S2M

γ2

)2

+ β2S2
(
2 + β2S2M

γ2

)

1 + β2S2M
γ2

. (54)

By inspection, SNR
(B)
2 is maximized when M is minimized and therefore equal to unity.

The limiting SNR2 for a noisy and weakly non-linear system is now considered, as this
is the regime where the performance of the bispectrum relative to the powerspectrum is
of particular interest. A noisy system implies that the SNR of the powerspectrum at the

mixing frequency, SNR
(P ′)
1 , is close to unity, hence γ ≈ 1. A weakly non-linear system

implies that S3 << S, which since S3 = βS gives βS << 1. The combination of these
assumptions (M = 1, γ ≈ 1 and βS << 1) enables Eq. (54) to be approximated to:

SNR
(B)
2 ≈ γ

b
− 1 (55)

Numerically this has been found to be a good approximation to Eq. (54) for values of

β up to 0.1. The approximated SNR
(B)
2 given by Eq. (55) is a function of b and γ only

and so can be compared directly to the SNR
(P ′)
2 given by Eq. (52).
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Figure 5: Comparison of SNR
(P ′)
2 , and SNR

(B)
2 evaluated using Eqs. (52) and (55) respectively. (a) The

value of SNR
(P ′)
2 with the line where SNR

(P ′)
2 =1 marked. (b) The value of SNR

(B)
2 with the line where

SNR
(B)
2 =1 marked. (c) The ratio SNR

(P ′)
2 /SNR

(B)
2 with the line where SNR

(B)
2 = SNR

(P ′)
2 marked in

addition to the two SNR
(φ)
2 = 1 lines. (d) The three lines shown in plot (c) and the regions they define

according to the SNR relationships.

The parameter γ defined in Eq. 50 encapsulates the signal, noise and quantity of data.
The parameter b is the number of standard deviations used to determine the bounds of
a measurements probability distribution when calculating SNR2 and so determines the
confidence with which a given measurement can distinguish between a linear system and
a non-linear system defined by γ. Of interest are the values of γ for a given b that give
SNR2 greater than unity (indicating that the signal can be differentiated from noise with
the confidence associated with the specified value of b) and the ratio of the SNRs. Fig.
5 shows the variation of SNR with γ and b for both the powerspectrum, evaluated from
Eq. 52, and the bispectrum, evaluated from Eq. 55 , (Fig. 5 (a) and (b) respectively)
and the ratio thereof (Fig. 5c)). Fig. 5(d) identifies resulting regions of interest in the
b,γ plane. In each case the powerspectrum outperforms the bispectrum except where
the parameter b is of the order of 1 or less. Equating the two SNRs and setting γ large
enough to ignore 1/γ terms gives b = 1.618 (giving a 94.7% confidence) as the value at
which the powerspectrum is superior regardless of γ, and the minimum value of γ which
leads to detection (ie SNRΦ

2 > 1) is lower for the powerspectrum than the bispectrum.
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6. Conclusions

This paper has considered the potential advantages in using the bispectrum to analyse
data from weakly non-linear systems driven with deterministic sinusoidal signals.

The bispectrum detects signals that are quadratically phase coupled (QPC) and sup-
presses those that are not, which is why it is of interest for identifying system non-
linearity. However, it has been shown that care must be taken in the averaging process
with systems excited deterministically in order to exploit this property of the bispec-
trum. It has been shown that if the signal at F1 + F2 is not quadratically phase coupled
to those at F1 and F2, it will be suppressed by the bispectrum if one or more of the
phases of the signals can be randomized with respect to the others in different response
records. Dividing a single long record into many shorter segments and averaging the
bispectra obtained from each segment does not achieve this; neither does any method
where the excitation is continuous between records. The bispectrum does suppress the
non-quadratically-phase coupled signal at F1 + F2 if the phases of the exciting signals
are synchronized with the start of each record and the start times are randomized; how-
ever in this case, the records could be averaged directly to achieve the same result. The
bispectrum does have a unique advantage for detecting quadratic phase coupling with
periodic excitation is the phases of one or both of the exciting signals are (independently)
randomized with respect to the start of each record.

The merit of using the bispectrum to mitigate noise in the signal was also considered,
for a sinusoidally excited system in the presence of Gaussian noise. The expectation val-
ues of the estimated bispectrum were evaluated along with their variance and compared
to the same values for the powerspectrum. It was found that although the expected
value of the noise for the bispectrum estimator was in principle zero, if the effect of the
variance of the noise was taken into account then the powerspectrum outperforms the
bispectrum for this particular application.

A. Expectation values

This appendix covers the derivation of expectation values useful to the calculations
of the main body of the work.

A.1. Product of two noise signals in the frequency domain

There are two values of interest, the expectation value of the product of the noise in
the frequency domain with its conjugate, and the square of the frequency domain signal

22



(without the conjugate).The former is derived in section 4.3 and the latter here:

E [Q(fn)Q(fn)] = E

[
1

N

N∑

l=1

{
q(tl)e

(−i2πnl/N)

}
1

N

N∑

m=1

{
q(tm)e(−i2πnm/N)

}]

=
1

N2

N∑

l,m=1

{
e(−i2πn(m+l)/N)E [q(tl)q(tm)]

}

=
1

N2

N∑

m=1

{
e(−i4πnm/N)E

[
q2(tm)

]}

=
σ2

N2

N∑

m=1

{
e(−i4πnm/N)

}

= 0. (A.1)

The final step follows from the summation over m being over a regular distribution on
the real-imaginary plane and consequently summing to zero.

A.2. Product of four noise signals in the frequency domain

Consider the expectation value of the product of four noise signals in the frequency
domain, where two are complex conjugates, E

[
Qi(f)Q∗

j (f)Q∗
k(f)Ql(f)

]
. As the variables

are independent with regard data set, any combination of indices i, j, k, l where one differs
from the others gives value multiplied by E [Q(f)] = 0. And so only cases where all four
indices are equal (i = j = k = l), or there are are two pairs of equal indices are of interest
(i = j 6= k = l, i = k 6= j = l, i = l 6= j = k). The first case (i = j = k = l) gives

E [Q(fn)Q∗(fn)Q∗(fn)Q(fn)] = E [F(q(t))F(q(t))∗F(q(t))∗F(q(t))]

=
1

N4

N−1∑

m,p,r,s=0

{
E[q(tm)q(tp)q(tr)q(ts)]e

−i(2πn(m+s−p−r))/N

}

=
1

N4

(
NE(q4(t)) + N(N − 1)E[q2(t)]E[q2(t)]

+

N−1∑

m=0

N−1∑

p=0,p6=m

{
E[q2(t)]E[q2(t)]e−i(2πn(2m−2p))/N

})
(A.2)

The summation can be rewritten in terms of summations over complete sets of indices:

N−1∑

m=0

N−1∑

p=0,p6=m

{
e(−i2πn(2m−2p))/N

}
=

N−1∑

m=0

N−1∑

p=0

{
e(−i2πn(2m−2p))/N

}
−

N−1∑

m=0

N−1∑

p=0

1

= −N (A.3)
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. E[q2(t)] and E[q4(t)] are given in section 4.3 and so

E [Q(fn)Q∗(fn)Q∗(fn)Q(fn)] =
1

N4

{
NE[q4(t)] + 2N(N − 1)E[q2(t)]E[q2(t)]

−NE[q2(t)]E[q2(t)]

}

=
1

N4

(
3Nσ4 + 2N2σ4 − 3Nσ4

)

=
2

N2
σ4 (A.4)

There are two possibilities for cases where there are two pairs of identical indices, either
there are two expectation values of the noise multiplied by its conjugate (i = j 6= k = l
or i = k 6= j = l) in which case from Eq. (35):

E
[
Qi(fn)Q∗

i (fn)Q∗
j (fn)Qj(fn)

]
=

1

N2
σ (A.5)

or there is one expectation value of the noise squared and one of the conjugate multiplied
by itself ( i = l 6= j = k), from Eq. (36):

E
[
Qi(fn)Qi(fn)Q∗

j (fn)Q∗
j (fn)

]
= 0 (A.6)

B. Notable summations

In order to evaluate the expected value of the powerspectrum of the average signal
the following summations are required:

M∑

i,j,k,l=1

{
X(S)(F3)X

(S)∗(F3)X
(S)∗(F3)X

(S)(F3)

}
=

S4
3

16
(B.1)

M∑

i,j,k,l=1

{
X(S)(F3)X

(S)∗(F3)
{
E[Q∗

k(F3)Ql(F3)] + E[Q∗
l (F3)Qj(F3)]

+E[Q∗
i (F3)Qk(F3)] + E[Q∗

i (F3)Qj(F3)]
}}

= S2
3M3E[Q(F3)

∗Q(F3)]

=
M3

N
S2

3σ2 (B.2)

and

M∑

i,j,k,l=1

{
E[Qi(F3)Q

∗
j (F3)Q

∗
k(F3)Ql(F3)]

}
= ME [Q(F3)Q

∗(F3)Q
∗(F3)Q(F3)]

+2M(M − 1)E [Q(F3)Q
∗(F3)] E [Q(F3)Q

∗(F3)]

= M
2

N2
σ4 + 2M(M − 1)

(
1

N
σ2

)2

(B.3)
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