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Abstract

We address the problem of representing captured im-
ages in the continuous mathematical space more usu-
ally associated with certain forms of drawn (’vector’)
images. Such an image is resolution-independent so
can be used as a master for varying resolution-specific
formats. We briefly describe the main features of a
vectorising codec for photographic images, whose sig-
nificance is that drawing programs can access images
and image components as first-class vector objects.
This paper focuses on the problem of rendering from
the isochromic contour form of a vectorised image and
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demonstrates a new fill algorithm which could also
be used in drawing generally. The fill method is de-
scribed in terms of level set diffusion equations for
clarity. Finally we show that image warping is both
simplified and enhanced in the vector form and that
we can demonstrate real histogram equalisation with
genuinely rectangular histograms straightforwardly.

Keywords: Model-based coding, Rendering, Level
Sets.

1 Introduction

A common problem in distributing digital images and
movies is that of catering for varying image or film for-
mats. For example a short sequence of a feature film
may be shown on standard TV (768 × 576), HDTV
(1920 × 1024), internet video (various), or even mo-
bile phones (anything from 384 × 256 upwards). If
shown for publicity reasons the producers will want
this to be shown at the best quality possible. In effects
houses which concentrate on advertising a significant
proportion of time is spent just converting between the
various digital formats on which the advertisement is
to be shown. The problem arises because all digital
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images have to be sampled in order to be seen at all,
but different kinds of display device have, of necessity,
to show the images at differing resolutions.

Vector formats, historically associated with drawn
images rather than with photographs, can provide a
resolution-independent format but none of the exist-
ing fully automatic fill rules for vector formats work
well on photographic images. This paper describes
a new fill regime based on diffusion which results
in images which are visually indistinguishable from
their originals after conversion into and out of a vec-
tor representation. There are a number of systems and
plug-ins available to turn images into vector form (e.g.
Adobe Live TraceTM) but they are all compromised
by the absence of a good rule for determining vary-
ing colour values in a continuous field. Tools like Live
TraceTMextract isochromic contours from sampled im-
ages but have to extract a sufficiently large number
of contours to preserve the illusion of a smooth sur-
face on a sampled display. This is because the usual
rule for automatically filling between contours is to
provide a constant colour (here called flat fill) in the
viewable rasterised version of the image so the re-
sults can be thought of as providing a series of step
changes in colour values rather than a continuous vari-
ation in those values. In Figure 1(b) we have used a
flat fill regime on an image which was vectorised for a
diffusion-based fill regime of the kind described later
in this paper. The diffusion-based approach allows for
the use of fewer contours without compromise to the
appearance of smoother parts of the image and this has
shown up a particular weakness of flat fill in the form
of visible bands of colour changes (Mach bands). In-
deed the usual application of such systems is to pro-
duce an artistic effect rather than a realistic outcome.

In this paper we show how to resolve this problem.
As the contours can be thought of as a model of the
image they need to be converted to a sampled image
format in order to be seen on raster display devices.
Thus a rendering process, entirely analogous to ren-
dering processes used in 3D graphics, is required. The
problem here is, if flat-fill is insufficient, how do we
determine the intermediate pixel values between con-
tours when rendering back to the sampled form? This
problem and this paper’s contribution to its solution
are best illustrated in Figures 1(a)-(c) above. In Fig-
ure 1(b) the straightforward approach of flat fill has
been taken. More explicitly each contour footprint,
here defined as the image region uniquely enclosed
by a contour, has been filled with a constant ‘aver-

(a)

(b)

(c)

Figure 1: Top to bottom: (a) Original digital photo (b)
Rendered: flat-fill (c) Rendered: interpolated fill
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age’ colour. In Figure 1(c) a diffusion-based inter-
polation technique (described in section 4) has been
used instead. Each image was rendered from the same
contour set. In Figure 1(b) the different outcomes are
quite noticeable; flat fill shows Mach-banding artefacts
which are wholly absent with the interpolated fill of
Figure 1(c). As can be seen in Figure 1(c) the interpo-
lating fill technique produces satisfactory results even
though a quite simple rule has been used to determine
which levels to use in the vector form.

A major problem in determining this vector form
is that of determining how many contours to use. A
naı̈ve approach would be to use one contour for ev-
ery unit of colour quantisation but this not only pro-
duces far more contours than are needed for a visually
faithful reproduction of the image but also far more
detail in defining each contour than is needed. If flat
fill is used within contour boundaries the inefficient
naı̈ve approach is the only technique which will as-
sure an artefact-free result. Techniques based on mor-
phological principles (e.g. [Ser82]) do this and, while
we reference these techniques as part of the historical
record, we would like to draw a distinction between
the morphological approach and ours, notably in terms
of the number of levels required for a visually satisfac-
tory rendering. In such an approach all that would be
needed for a visually faithful rendering would be to
fill the contour with an ‘average’ colour quantised to
be the border colour. In fact far fewer contours are
needed in practice as we will show here.

To illustrate the contours without too much vi-
sual confusion we chose the out-of-focus image Fig-
ure 2(a). Here the images have been rendered from
contour sets representing the YUV components of a
colour image. As can be seen in Figure 2(c),(d) and
Figure 2(f),(g) there is very little detail in the U, V
components so the size of the dataset is dominated
by the Y-component. (This remains true even with
a sharp, high-definition image.) The Y component
(grey-scale) is held in levels-of-10 256 level quanti-
sations, i.e. the colours 127, 127+10 etc. 127-10
etc. of which there are 25 altogether; while the U,V
components, being more subtle in variation, are held
in levels-of-5 (so 127, 127-5, 127-10 etc.) of which
there are 49 altogether. This selection of contour lev-
els has proved satisfactory for most of the images we
have used here. We use Bézier chains to define contour
borders, initially ignoring continuity between adjacent
segments. The contours for the YUV components of
Figure 2(a) are shown in Figure 2(e)(f)(g). The red

contours are unsmoothed versions of the green ones.
Smoothing is achieved by ’snapping’ together end-
point tangents if they fall within a certain threshold
of being directionally opposite. This threshold value
is one of several coefficients which can be modified to
improve the image in one way or another.

This paper is structured as follows. The next sec-
tion 2 covers previous work in this area, some of which
reaches back to the earliest days of computer graphics.
Section 3 discusses the main features of the vectoris-
ing codec we have used here, which has an encoder
which works from a raster image to produce a vector
image format and a decoder which renders the vector
format back into a raster image. Section 4 discusses
the decoding stage in more detail, and in particular the
principles behind the diffusion-based interpolating fill
process. We will see that this fill could be used just like
any other area fill technique used in rendering vector
format images, and on its own would give a drawing
program (or Scalable Vector Graphics SVG[DHH02]
- interpreter) the ability to reconstruct contourised im-
ages to whatever degree of fidelity is required. Sec-
tion 5 discusses some common image manipulation
functions, including histogram equalisation, and here
shows the consequences of producing truly rectangu-
lar histograms which are unachievable using sample-
based techniques. Section 6 reviews where this work
places vector image formats and section ?? will con-
clude the paper.

2 Previous work

Vectorising (contourising) as applied to an array of
sample points is a technique whose origins go back
to geographical information systems [WW67], where
contour maps were to be produced from spot height
surveys, and was first applied directly to photo-
graphic images by Matheron[Mat75] and later by
Serra[Ser82] (these are the early references to the mor-
phological approach). At about the same time Naka-
jima et al.[NAT83] (a more accessible reference is
Agui et al.[ASNA87]) proposed an approach more
closely allied to the techniques of computer graph-
ics. The fill method used in image reconstruction in
all these references is flat fill. More recently Price and
Barrett[PB06] and Sun et al.[SLWS07] have proposed
methods for generalising from flat fill while keep-
ing the same number of contours[SLWS07] or sam-
ple points[PB06] by building an adaptively subdivided
mesh where colours are associated with mesh inter-
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(a) Colour image (b) Y-component (c) U-component in greyscale (d) V-component in greyscale

(e) Contourised Y for 2(b) (f) Contourised U for 2(c) (g) Contourised V for 2(d)

Figure 2: Colour components and their contours

section points, although some interaction is required
to determine the starting shape of the mesh. Both
the method of contour finding and mesh generation
(Live TraceTM[PB06, SLWS07] and gradient mesh
tool[SLWS07] respectively) are available in commer-
cial drawing packages but the papers focus on smooth
colour interpolation and mesh optimisation for mini-
mal dataset size. However this approach simply swaps
one set of sample points for another more feature-
oriented set, as befits the type of calculation they want
to do, and offers no help to calculations like histogram
equalisation or processes involving preserving features
of the isosurface topology (The isosurface is defined
by a given set of isochromic contours selected from
the set of quantised colours used).

Another approach which does not use contours, but
rather chooses edges as the key feature, is that due
to Orzan et al.[OBBT07, OBW+08]. Here the idea
is to use edge-lines as the vectors and to decorate the
lines with colour data. This is then propagated away
from the edge using a Poisson equation. When used
for images the edge lines correspond to discontinuities

in otherwise smooth shading and reconstructed images
look a lot like their original forms although the un-
constrained use of Poisson equation diffusion results
in quite inaccurate diffusion boundaries. It is the in-
sight of Lindeberg [Lin98] (and others) that this inac-
curacy tends not to be noticed which Orzan et al. are
exploiting here. They also note[OBW+08] that a sim-
ilar decorated-edge representation can be used to pro-
duce smooth-shaded images of a kind difficult to gen-
erate by other means. Similarly the diffusion method
described in this paper could be used to generate dif-
ferent forms of smooth-shaded synthetic vector image
although the method of control would be quite differ-
ent.

In the end any accurate method of vectorising a
photographic image needs to have some kind of in-
terpretation of just what a pixel is and in essence we
make a different interpretation of an image pixel on
input to the interpretation made on output. Two papers
which discuss this problem in ways we pay particu-
lar attention to are those due to Blinn[Bli05] and to
Smith[Smi95]. Blinn discusses eleven distinct ways in
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which to consider what a pixel actually is and this in-
cludes a discussion of the relationship between a sam-
ple and a sensor which generate samples, while Smith
makes a strong argument for not considering a pixel
as being a square over which some simple form of in-
tegration is done (e.g. a tent filter). Pixel generation
(in our decoder) uses supersamples under the footprint
of a convolution kernel, which is quite different to the
assumptions about input although the nature of the in-
put environment may be taken into consideration when
deciding what the pixel value might be, for example to
use noise statistics to determine how closely to approx-
imate the round off in quantisation. In fact we have
combined regular 4 x 4 supersamples (sometimes 9 x
9 supersamples on a 4 x 4 sampling grid) by integrat-
ing over a square in all our images in this paper with-
out being caught out, but more stringent sampling or
averaging regimes are not excluded by our approach.

3 Main features of our vectorising
codec

An image vectorising codec starts from a sampled im-
age, typically one obtained from a digital camera, en-
codes it into an annotated contour set (derived as and
collected into level sets) and subsequently decodes it
back into a sampled image after whatever image trans-
formation processes required are applied to it. A dia-
gram of the main encoder stages used to produce the
images in this paper is shown in Figure 3, and the cor-
responding decoder stages are shown in Figure 7.

Figure 3: Encoder structure

3.1 Contour representation

We will now set out the principal features of our ap-
proach. In our codec individual contours are always
represented by closed Bézier chains; contours clipped
by the image border are completed by the shape of the
border segment which falls within the contour foot-
print. This has certain implications for constructing
the intermediate vector format and for the diffusion
process involved in decoding (section 4.2).

Contours are found by first finding where they in-
tersect lines between sample points derived from the
original pixels. A key aspect of the input process is the
explicit assumption that the pixel is contaminated by
noise which can arise from any source, quantisation,
sensor noise, even numerical inaccuracy, so is essen-
tially of unknown origin. For example when consider-
ing the degree of accuracy to which the isosurface is
modelled the strictest requirement we can safely make
is that the isosurface model lies everywhere inside the
error bounds of the pixels.

Pixel error can be modelled in a number of ways, es-
sentially either globally or locally. The accuracy of the
value derived from the model is not critical although
too crude a model could result in retaining image noise
in the final result or a result which loses detail. While
more accurate local approaches are covered in Patter-
son and Willis[PW06] we should say that all the im-
ages in this paper were generated assuming a simple
global noise value (±constant around each pixel value)
without apparent loss of detail due to that assumption.
If we are to attempt to preserve noise statistics in the
final image, as suggested earlier, more accurate, local,
methods will be needed.

Error terms ε, however derived, can be converted
into spatial errors δx, δy, in the x or y directions by
applying the formulae:

δx = ε

(
∂φ

∂x

)−1
, δy = ε

(
∂φ

∂y

)−1
(1)

Here φ = φx,y is the piecewise continuous approxi-
mation of the ’true’ isosurface. We now need to intro-
duce some notation, as shown in Figure 4.

3.2 Pixel extension (pixel mapping)

The first stage in the encoder is described as ’pixel
mapping’. Here we double the image samples in each
direction so that each set of 2 x 2 samples provided to
the contour finder corresponds to a ’map’ of the origi-
nal pixel. However the new samples are all calculated
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by a non-linear process due to Carrato et al.[CRM96]
which emphasises edge detail, as more conventional
interpolation (we use linear interpolation elsewhere for
reasons which will be discussed shortly) does not in-
troduce any new information.

Figure 4: Forward differences table in x

The re-sizing step is in part intended to allow some
distance between contours we take as adjacent al-
though inevitably reconstructed edge values are of-
ten not identical with their original values (this is
not noticeable to the naked eye) and the Carrato-
sharpening is intended to defeat an ambiguity problem
which arises in interpreting contour trajectories with
the “marching squares” algorithm because of uncer-
tainty over the centre sample in a pixel map. Carrato
will bias the solution one way or another depending
on surface topology and, although it would seem as
though we have merely pushed the problem down to
the next (second) level in fact linear interpolation is
quite adequate for the second order case. (Surfaces
tend to flatten out locally with more interpolants.) The
scheme is illustrated in Figure 5(a)-(c).

Here Figure 5(a) shows what we mean by mod-
elling an image in terms of pixels, which may have
many interpretations[Bli05], but commonly (despite
Smith[Smi95]) as little squares. For our purposes a
more appropriate model would be point samples ad-
dressed from the pixel centre (Figure 5(b)). Figure 5(c)
shows one of the interpolated pixel values in red. Us-
ing the Carrato formula this value would be calculated
using the following indices.

φx+ 1
2
,y = φx,y +

k1 + 1

k2 + 2
.∆1

x,y

where

k1 = p.
(
∆1
x−1,y

)2
and

k2 = p.

((
∆1
x−1,y

)2
+
(
∆1
x+1,y

)2)

For the images in this paper we used the value
p = 0.5. Similar equations prevail in the y-direction.
The errors in the interpolated values are determined
by subtracting the maximum and minimum interpolant
values, using the limiting errors in the pixel values
contributing to the result. For these differences, the
index map for the error calculation is as follows.

∆1
x,y ± (|εx,y|+ |εx+1,y|)

where the error εx,y is the (designated) error in Φx,y.
The resultant error is then associated with the interpo-
lated pixel which participates in all subsequent calcu-
lations indistinguishably from the originals.

The spatial errors in equation 1 are quoted in terms
of continuous derivatives but once again we use first
differences to generate the needed values, this time
central differences, i.e. we use the formulae

δ ≈ ε left(∆lC
x,y

where

∆lC
x,y =

∆1
x−1,y + ∆1

x,y

2

(and corresponding formulae for the y direction). In
the following discussion we will take ε = ±0.5, the
quantisation error, which is the smallest value of ε we
can assume, but when encoding the image examples
we have used here we essentially scaled ε by a constant
amount chosen subjectively and intended to reflect our
sense of how noisy the image was. Most digital im-
ages available to us have been through a process of
JPEG encoding. It would be possible to trace through
the decoding process to determine the per-pixel quan-
tisation error which is typically image-dependent and
spatially variable in that image, although we did not
actually do this. For us the correct way of handling the
effects of JPEG encoding is simply to use these quan-
tisation errors as a lower bound for ε if other methods
of estimating it are in play.
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Figure 5: Image patch as (a) Pixels (b) Addressed point samples (c) Pixel maps

Figure 6: Pixel tile with (a) ε = −0.5 (b) ε = +0.5 (c) ε = 0.0

3.3 Constructing contours

To show how a contour is determined we will use an
example in which the error term is taken to be the
quantisation error (±0.5). This is shown in Figure 6.
If we determine the path of a contour in terms of its
intersections with the borders of a box whose corners
are decorated with sample values we can interpolate
between sample values to get an ’exact’ solution, thus
allowing the ’exact’ computation of the lower bound
of the contour trajectory, Figure 6(a), and the upper
bound, Figure 6(b). When these are transferred to the
pixel tile with no error bound (ε = 0) they delimit the
region we refer to as the ribbon of error within which
any contour trajectory is equally valid. This is true for
any realistic calculation for the pixel error. In fact we
associate these errors with points on the contour line
when fitting the Bézier chain but any fitting algorithm
(e.g. the method outlined by Schneider[Sch90] or by
Vansichem et al.[VWR01] has to take into account dif-
ferent values for that error around each sample point.

One way to relax this condition is to multiply the de-
rived error values with a constant and the consequence
will be to reduce the number of segments in the chain
and increase its smoothness.

It turns out that failing to take into account the pres-
ence of noise results in large numbers of Bézier seg-
ments in every contour as it twists and turns around
single pixel-sized ’features’ which are no more than
noise-induced deviations from local correlation.

If instead we account for noise adequately we get
much smoother curves (with many fewer segments)
whose smoothness has, up to a point, no perceptible
effect on the resultant render. As indicated earlier the
interpolation formula used is that for linear interpola-
tion, that is by solving in the appropriate direction for
the point where the linear interpolant along x or y is
equal to the sought contour value, and then interpo-
lating between the sample errors by the same amount.
This is entirely equivalent to a process of solving for
two isosurfaces, and is in fact safer, numerically. If
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we had used a local error measure then we could have
determined which degree of interpolation was appro-
priate on a solution-by solution basis by finding which
difference approximated to zero within the calculated
error bounds for that difference[PW06]. However past
experiments with a pixel-level noise estimator have
showed that for the majority of cases (approximately
two-thirds in typical images) only linear interpolation
could be justified and the rather basic assumptions
about noise made here would not justify higher or-
der interpolation anywhere. The resulting polyline ap-
proximation to the ’true’ contour is simplified by find-
ing the Bézier chain with the fewest segments which
fit within the error ribbon the polyline approximation
defines.

In an encoder the contour values can be determined
by a blind strategy or an adaptive strategy. In this pa-
per we have used a simple but (reasonably) effective
blind strategy of pre-selecting the values to be found.
As a consequence all the images in this paper are rep-
resented by the same choice of contour levels and all
the contours are found at the same time by a single
scan of the image from top to bottom. Here we ex-
amine each pixel to see which contours pass through
a bounding box around its centre and then join up the
contours by matching adjacent bounding box edges.
This scan-based approach is only really possible with
a blind strategy as an adaptive strategy will of neces-
sity contain a stopping condition based on testing the
need for the contour loop under consideration.

4 Rendering between nested con-
tours

The outcome of the process is a hierarchy of con-
tours (including contours R and S) defined in terms of
the relation R encloses S defined as follows in terms
of closed connected regions such as A . To define
encloses(, ) we start with the well-known inside test
inside() where p inside A ⊃ WA(p) = s where
WA(p) is the winding number for p in the closed re-
gion A and s is consistently +1 or -1 for every point p
in the region. Now we need footprint() defined as:

footprint(A) = {p|p inside A}

and hence:

A encloses B ⊃{
B ⊂ footprint(A) ∧
∃̄C,A encloses C ∧ C encloses B

}

SoAenclosesB is an ordering relation between in-
dividual closed contours in each level and determines
all the contours B which are enclosed by A and by no
other contour. Rendering the vector format consists of
rules for drawing and filling these contours in order.
The decoder, shown here as Figure 7, ’simply’ applies
the fill rule for the footprint of each pair of contours
in the hierarchy as defined by the footprint of the en-
closing contour subtracted from the footprint of all the
contours it encloses directly. So although (here) con-
tours are generated in levels (i.e. all the contours at
a given level) they are ordered in terms of individual
pairs of contours.

Figure 7: Decoder stages

The principal issue in rendering is to use a process
which mimics to some degree the fall-off in values of
pixels from a higher level to an adjacent lower one
(or vice-versa). The intention is to develop a simple
diffusion-based fill algorithm between levels, as de-
fined by level lines (isochromic contours). We will
first develop the idea in Level Set terms and then show
how to implement it without having to solve the differ-
ential equations which the invocation of level sets im-
plies. The reason for doing this is that Level Set theory
makes the issues clear in a direct and easily visualis-
able manner but the complexities of solving the equa-
tions led us to use known fast, scanline based methods
to give us quick renders.

We derive the formulae in terms of a simple case
(Figure 8) of a single outer contour with level value R
surrounding a single inner contour level S, and then
generalise. We want to arrange for the inner con-
tour S = ψ(0) to first expand (in the terminology of
Vincent[Vin93]: ’to dilate’) at a uniform (unit) speed
until it wholly contains R (Figure 8(a)). At all times
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(a) Dilation of ψ to include R (b) Contraction of ψ inside S (c) Reconciliation of R and S in-
dices

(d) Pinching of isochromic con-
tour by shape

(e) Effect of two interior contours
on intermediates

(f) Effect of two interior contours
on intermediates

Figure 8: Contour creation

the level line for ψ(t) over the interval 0 ≤ t ≤ 1 gives
the shape of the intermediate dilation at instant twhich
we note is wholly dependent on the shape of S and
has no connection with the shape of R. If, at the same
time, the corresponding level line for R is contracted
(’eroded’[Vin93], as in Figure 8(b) at uniform speed
until it falls wholly within S then the level lines for in-
termediate erosion at time point t2 , say, will intersect
the level lines for dilation in a range around another
time point t1. These time points t1 and t2 now corre-
spond to the times taken to reach the nearest points on
R and S respectively, so define linear distances within
R − S (R with S removed from within it) which can
be used to interpolate colours associated with R and S
respectively at the points of intersection of these two
curves. In fact we can go further and say that if we
take any point p inside R − S then the time taken to
reach it from R is the morphological distance from the
boundary ofR, and the time taken to reach it from S is
the corresponding distance from S. So by using these
distances as interpolants we get (within later caveats)
the right intermediate colour for the point p.

4.1 Level Set diffusion formulae (expansion)

Reviewing and extending what we have said so far,
for any point inside the region R − S the shortest dis-
tances to the boundaries ofR and S respectively deter-
mine the interpolation of the colours associated with
the bounding levels R,S at that point. These interior
colours will usually vary linearly from the values as-
sociated with one contour to the other, but this only
happens if the geodesics running through the points in
question are straight lines, i.e. the boundaries are not
occluded from the point. In more complicated situ-
ations this approach generates interior colours which
vary as though affected by surface tension, which is
likely to fit what is actually found. This is shown fur-
ther in Figure 8(d) where the intermediate contour or
isochromic line is actually split into two and there is
a local ’bubble’ in the middle of the lower lobe of the
outer contour. An analogous situation is shown in Fig-
ure 8(e) and (f), where there are two interior contours
in the footprint of the outer contour. In Figure 8(e) the
isochromic line has not yet joined up while it has done
so in (f).

Taking the outwards direction as positive (as shown
in Fig 9(a), the level set equation for the expansion

urn:nbn:de:0009-6-32659, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 3

(dilation) of ψ is:

∂ψ

∂t
= K

∇ψ
|∇ψ|

where

K =

{
1 if |distR−S(ψ(t), R)| > 0
x otherwise

(2)

Here ψ(t) is the expansion of ψ(0) clipped by R =
φ(0).

The function dist() gives geodesic distances of
points in R, R(a) say, from S using the value of t at the
points at which ψ(t) = R(a). It is defined formally in
the Appendix but may informally be thought of as the
geodesic distance between two points, or a point and a
boundary within an irregular, complete enclosure on a
finite plane.

4.2 Contraction formulae and reconciliation
of outcomes

We can obtain the morphological distance fields for
−R and +S by evaluating equation 2 and its matching
partner for the erosion[Vin93] of R, equation 3 as in
Figure 3(b):

∂φ

∂t
= −K ∇φ

|∇φ|
where

K =

{
1 if |distR−S(ψ(t), S)| > 0
0 otherwise

(3)

This will give two Euclidean distances t1,t2 , where
ψ(t1) = ψ(t2) at zero or more points inside R−S (as
in Figure 3(c)) so we can calculate the colour values C
of those points from the colours
CR, CS associated with level lines R and S respec-

tively as:

C = CR

(
t2

t1 + t2

)
+ CS

(
t1

t1 + t2

)
We have used diffusion twice to give us morpholog-

ical distances from each point in space in terms of the
time to reach each of the two levels (here the speed of
travel is unity so time = distance). When normalised
by the sum of the distances this gives us an interpo-
lation ratio between the two contour values which is
linear for simple geometries but quadratic with a pos-
itive curvature - quite similar to the effects of surface

tension - when the contour geometry becomes compli-
cated. We refer to this process as double diffusion and
note that isochromic lines are in effect interpolants be-
tween the shapes of the inner and outer contours, so it
should properly be called double diffusion interpola-
tion.

For this paper we used a computationally simpler
measure than Euclidean distance, namely Manhattan
distance, calculated outwards (inwards) from a border
defined in terms of those pixels which contained the
border contour. The Manhattan distance can be calcu-
lated like a fill process in which successive erosions or
dilations define an ascending index starting at 1. Al-
though the Manhattan distance is always an overesti-
mate this tends to get normalised by the division of in-
dices calculated in the same way. If the calculation of
dilation (or erosion) is carried out in a quantised man-
ner this naturally supports Manhattan distances, but if
it is carried out continuously (e.g. by equations 2 and
3) this naturally supports Euclidean distances and the
precise calculation of interpolants which are smooth
everywhere.

5 Example applications

Apart from Figure 1 all the examples showing our in-
terpolation approach are applied to the reconstruction
of Y UV images with Y at intervals of 10 and UV
at intervals of 5. In Figure 9(a) we show an origi-
nal pixel image (the standard test image ’Lena’) and
its re-rendered equivalent in Figure 9(b). At intervals
of 10 between Y levels the re-render is visually in-
distinguishable from the original (input spatial resolu-
tion 256 × 257). Additionally we have shown in Fig-
ure 9(c) and (e) two portions of ’Lena’ scaled by 4
and 8 respectively using bilinear interpolation (which
is usually preferred in the film industry over higher or-
der methods, because it gives a more ’punchy’ image).
As one expects the detail becomes more blurred. By
comparison we have scaled the control points for the
contours in Figure 9(b), again by x 4 and x 8 and ren-
dered these as in Figures 9(d) and (f) where we can see
that more detail has been carried into Figure 9(f) than
in Figure 9(d).

For our second application we chose a different kind
of operation, histogram equalisation. The purpose be-
hind histogram equalisation is to adjust pixel values so
that each sub-region of the image yields equal energy.
Properly histogram-equalised images should show the
highest contrast everywhere in the image and this is
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(a) Original ’Lena’ image (b) Rendered from contours (x1)

(c) Original x4 (bilinear) (d) Contour control points x4

(e) Original x8 (bilinear) (f) Contour control points x8

Figure 9: Rendering ’Lena’ image with various techniques
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Figure 10: (a) Histogram equalised by pixel (b) Equalised by level reassignment

Figure 11: Histogram equalisation from reduced image contrast
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supported by a rectangular histogram across the range,
particularly for the Y component of a YUV image.
Unfortunately pixel-based histogram equalisation usu-
ally only manages to achieve the sort of result in Fig-
ure 10(a). The diffusion interpolating technique how-
ever does not require level lines to be associated with
integral values although one might start out that way.
Instead one could determine what level values would
give the nearest to a rectangular histogram. The neat-
est way of doing this would be to start off with con-
tours of values which vary in powers of 2 around 127,
i.e. 127, 63, 191, 31, 47, 159, 223 etc. The 127 con-
tour should partition the image area exactly in half and
if not, its value needs to be reassigned to whichever
contour comes closest to achieving that partition, if
necessary generating contours (levels) to ensure that
partitioning proximity.

We re-assign the levels by indexing the inverse func-
tion H−1() by the proportion p of pixels actually cov-
ered (0 ≤ p ≤ 1). Here H(l) = 2ln(l+1)−8 so
H−1(p) = p∗28−1 (for an 8-bit per primary quantised
colour space). Figure 10 shows the results of perform-
ing histogram equalisation in this way. Here the first
row shows the resultant images and the second row
shows the corresponding histograms. It is clear that
the right hand image Figure 10(b) has the strongest
contrast enhancement of the two images and in partic-
ular lacks the artefacts of the left image Figure 10(a)
which are in the main caused by the gaps introduced
by pixel reassignment in the histogram.

6 Discussion

Vector formats for photographic images have been
studied for various purposes since the mid 1970s and
there are broadly two approaches, the morphologi-
cal approach which in effect requires every individ-
ual quantisation of the colour level to be represented,
and the topological approach which attempts to model
the isosurface as economically as possible. Level sets,
as we have used them here, are a bridge between the
two approaches and can benefit from results in either.
Many image manipulation operations on this form are
both simpler and seem to give better results (as here,
warping and histogram equalisation) than their raster
equivalents. One kind of transformation is particularly
straightforward, that of varying the colour depth res-
olution in the resulting image. This is because the
final samples for the observed image are calculated
as a convolution of samples into the continuous field

and these need then to be quantised to whatever colour
depth is required. Thus the vector form is indepen-
dent both of spatial and colour depth resolutions in the
original input.

However there are residual problems with the vector
approach which can be summarised in terms of conver-
sion speed and file size. Conversion times in and out
of the vector format are approximately linear with in-
put image size although it is known that images with
a lot of high frequency detail take longer to encode
and decode than images with a more usual distribu-
tion of frequencies. For example the ’mandrill’ image
(another one of the standard test set) takes twice as
long to encode as ’Lena’. On a 500MHz PC ’Lena’
at 256 × 257 took 15 seconds to encode and 20 sec-
onds to decode, but this is without any graphics ac-
celeration assist. The codec is (by intention) well-
suited to streaming and parallelisation. Our view is
that, given the degree of support available for graphics
processes, these times will be significantly improved
in practice. On the other hand the fixed contour level
setting strategy resulted in file sizes 10x larger than
their pixel equivalents which we did not attempt to ad-
dress in the work being reported here. However, the
results of Lindeberg[Lin98] suggest we have been far
too conservative in fixing the local resolution of con-
tour segments in smooth areas. If we compute a res-
olution measure which scales with local smoothness
we should be able to significantly reduce the number
of segments per contour. We have also (knowingly)
been far too conservative in the numbers of contours
we find, possibly by as much as a factor of 20, but it
will take a (much more complex) adaptive encoder to
find the local optima. Compression is an obvious focus
for future work.

Our original concern was to be able to reproduce
photographic images from contour form so that they
looked visually indistinguishable from the original. In
this we were generally successful. A particularly de-
manding example is shown in Figure 12 where a pho-
tograph of a seagull, Figure 12(a) has been vectorised
and decoded again using the exact regime described in
this paper. While the results impressed us they never-
theless show that the method of setting fixed contour
levels to find is not perfect (the insets of the same re-
gions in Figure 12(b) and 13(d) which are double im-
age size differ visibly).

Reliably better results could be obtained with an
adaptive encoder which starts as we have done here by
encoding contour 127 then splitting the intervals on ei-
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Figure 12: (top to bottom): (a) Seagull (original image) with neck feather detail from below beak (b) Vectorised
image render with same feather region
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ther side etc. Such an adaptive encoder (e.g. [PW06])
would maintain a test render and only split an interval
further if the pre-render resulted in pixel values falling
outside the assumed error bounds around the original
pixels. Where this condition happened locally, a local
decision to subdivide further could be taken. We es-
timate that such a codec would take twice as long to
encode as our fixed-level encoder. It would take con-
siderably less time to decode, although this time would
be more image-dependent than before. File size should
be significantly improved also. The gains here also
depend on the noise-estimation method used as well
as the extent to which the diffusion process mimics
the expected variation of pixels values within a con-
tour footprint. Here there are a number of possible
improvements to be made.

The main improvement is to use a standard level
set approach [Set99] of adding or subtracting (depend-
ing on the sign convention used) the traversal speed
of the level line with a (usually) small amount, cal-
culated as (say) 0.01 x curvature, where curvature is
calculated as ∇ ∇ψ|∇ψ| This has the effect of smooth-
ing out ’shocks’ or discontinuities in the evolving line,
which is a common problem in interpolating systems
[Ree81]. (We note also that loops are another prob-
lem with 2D interpolators but the rules for interpreting
Level Set solutions explicitly precludes these under the
’weakest solution’ rule; instead the loop is cut off at a
point which often leaves a visible shock.) Shocks also
arise when two advancing fronts intersect one another,
as in Figure 8(e) and (f) but again the ’weakest solu-
tion’ [Set99] applies to determine a single front. Again
the foregoing modification smoothes away the discon-
tinuities, but the calculated indices are no longer com-
puted from wholly linear (Euclidean) distance values.
This would only normally be done away from edges
so requires a separate edge detection process to work
properly. It is also possible to manipulate these indices
further so that tangents in the trajectories of index val-
ues are matched across contour boundaries to achieve
G1 continuity (C1 can be achieved with greater diffi-
culty, typically as a post-process if needed after estab-
lishing G1). While we would expect an improvement
in image quality (and a matching improvement in file
size) by these measures, such improvements are usu-
ally visually unnoticeable in an unwarped image.

Our motivation for this work has been based on the
intuition that contours will commonly follow the fea-
tures of objects in the image. We hope in the future to
be able to show that ’difficult’ operations like matte-

pulling and hole-filling will be enhanced by vector for-
mats in addition to the processes whose enhancement
we have already demonstrated. Image re-sizing is such
an example where the vector format can be exploited
to define localised warps aimed at preserving the slope
angle at edges. This has the effect of retaining fea-
ture sharpness but vector image resizing under various
regimes is potentially the subject of an entire paper
in itself, so, despite its importance to some industries,
this has not been discussed here.

What we have shown already is that there is a vi-
able continuous image format and that it can be used
for some conventional operations which are not han-
dled easily in sampled formats. Moreover, while the
representation cannot reveal more detail than in the
original sampled image, it does offer a robust model
of that image, with all the advantages of being able to
render it at different qualities for different devices. It
thus has the advantages that SVG offers for graphical
pictures but with the ability to deliver the full quality
of photographically-captured images.

7 Conclusions

This paper describes a vectorised image codec which
finds contours for non-consecutive quantisations and
fills them using a simple-seeming diffusion process
during rendering. This two-part process turns out to be
surprisingly powerful, allowing full control of the con-
tinuity of the rendered isosurface, for example not at-
tempting to enforce more than C0 continuity at edges,
although we have not demonstrated this in examples
here. We are aware that there is considerable scope for
improvement of the codec although the results we ob-
tained here demonstrate or the first time near-perfect
reproductions of most photographic images from con-
tour maps. Given the multiple potentials of the ap-
proach and given the fact that the ’traditional’ objec-
tions to vector artwork seem to be melting away we ar-
gue that this whole approach to image-making, which
banish pixels from anything beyond external represen-
tations, deserves closer scrutiny and further work.
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Appendix: Derivation of dist()

In practice most of the following equations break
down in the case of extreme conditions on the num-
bers of infinitesimal points inside a given footprint()
so we say that ℵ(footprint(R)) >> 1 everywhere
(ℵ stands for ‘cardinality’ or number of members of
the set). There is no such restriction on S. We note
also that we have slipped from using the terms R, S
for borders to the regions enclosed by these borders,
and this is distinguished in the following treatment.

We start by defining lines in terms of the adjacency
of infinitesimal points, then define special lines, no-
tably geodesics, which gives minimal distances. Fi-
nally we derive dist(, ) in terms of geodesics in the
plane.

So, the adjacency or (directly) reachable relation↔
between infinitesimal points a and b in (any) Cartesian
region R is defined using Euclidean distance

δ(a, b) =
√

(ax − bx)2 + (ay − by)2

as follows:

a
[

R]↔b ⊃ a ∈ R, b ∈ R− {a} ∧ ∃̄c ∈ R : δ(a, c)
< δ(a, b)

a
[

R]↔b ⊃ {a, b} ⊆ R : b
[

R]↔a

a
[

R]∗↔b ⊃ {a, b} ⊆ R,∃c ∈ R : a
[

R]↔c ∧ c
[

R]∗↔b

also: a
[

R]∗↔b ⊃ {a, b} ⊆ R : a
[

R]↔b

and a
[

R]∗↔a ⊃ a, b ∈ R : a
[

R]∗↔b ∧ a = b

If R is a simply connected region, then ∀p ∈ R, ∃̄q ∈

R−{p},¬ p
[

R]↔q In other words p is reachable from
every other member of R, and viceversa. Here the su-
perimposed star symbol denotes Kleene closure.

A continuous line lR is a proper, partially ordered
subset of a closed region R defined in terms of the
union of a chain of overlapping local regions rR(a) ⊆
lR , so lR ⊂ R and is defined as follows (we drop the
appended R when it is unambiguous to do so):

rl(b) =

{
a|{a, b} ⊆ lR : a

[

l]↔b
}

lR =

{
b|∃a ∈ lR : a

[

l]↔b ∧ l < ℵ(rl(b)) ≤ 3

}
Lines are connected unordered lists of points. A

member of the set will have exactly two or three adja-
cent points. A line may be open or closed, depending
on whether it has zero or two end-points in the end-
point set Pl for the list lR.

Pl = {a|{a} ⊆ lR : ℵ(rl(a)) = 2}

If ℵ(Pl) = 0, line l is closed, otherwise (ℵ(Pl) = 2)
line l is open, with two end-points.

A closed line lR partitions a connected region R
(here the equivalence class defined by inside()) into
a simple region R′(lR), the border lR ⊃ R, and
lR = R− footprint(R′) iff

∀c ∈ R′(lR), c insideR′(lR) ⊃ |WR′ .c()| = 1

The border lR is thus explicitly excluded from being
part of the region R as only points unambiguously in-
side count. Care has to be taken when deciding when
the border points are going to be included in a set or
partition, or not.

These formulae define the length function 〈, 〉()
along a line in terms of Euclidean distances δ(, ) be-
tween the smallest line segments. Lengths, here, imply
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that points are organised as lines (as above).

a ∈ lR ⊃ 〈a, a〉l = 0

{a, b} ⊂ lR ∧ a
[

l]↔ b ⊃ 〈a, b〉l = δ(a, b)

{a, b, c} ⊂ lR ∧ a
[

l]↔ c ∧ c
[

l]∗ ↔ b ⊃
〈a, b〉l = δ(a, c) + 〈c, b〉l−{a}

The function geo(, ) defines a geodesic, the shortest
distance between two points inside a closed, finite, ir-
regular boundary.

geoR(a, b) ={
c|∀l ⊂ R : 〈a, c〉geoR(a,c) + 〈c, b〉geoR(c,b) ≤ 〈a, b〉l

}
We can now define the (polymorphic) morphological
distance function dist(, ) between two points a, b:

distR(a, b) = 〈a, b〉geoR(a,b) ⊃ (geoR(a, b) ⊂ R)

also between a point a in a closed region R and a
closed region S enclosed by R:

distR(a, S) =
[

b∈ S]min〈a, b〉 ⊃{
R encloses S ∧ ∃B ∈ S : ∀c ∈ S,
distR−footprint(S)(a, b, ) ≤ distR−footprint(S)(a,c)

}
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