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Abstract: Dynamic modelling of engine emissions is important because it promises significant 

improvements over static modelling for engine calibration through reduced testing and 

development times. Volterra series and neural network dynamic model structures were trained 

using transient data from an engine test stand under sinusoidal excitations and the predictive 

power over the New European Drive Cycle (NEDC) cycle was assessed for a EURO IV 

specification Diesel engine. Models were identified for oxides of nitrogen (NOx) and carbon 

dioxide (CO2) emissions concentrations based on engine speed, torque, injection timing, EGR 

rate and fuel injection pressure. The fit R
2
 values for CO2 emissions for Volterra series and 

Neural networks were 0.92 and 0.99 respectively; for NOx emissions these were 0.92and 0.998. 

Although this suggests better flexibility from the Neural network to represent the nonlinearity 

there were large variations in predictive power resulting from the partially random nature of 

model training. Also, close observation of the model predictions suggested higher accuracy for 

the Volterra series for most of the cycle, but that this model suffered from fewer, large prediction 

errors compared to smaller but more frequent errors from the neural network. 

Keywords— Design of Experiments, Dynamic Models, Neural Networks, Volterra Series. 

1-Introduction 

The current standard approach to engine calibration is to capture a high fidelity mathematical 

representation of the engine behaviour through high fidelity statistical models. Although physical 

engine models can avoid the need for experimental data in the early stages of control system 

design, the thermodynamic and chemical processes in engine combustion are often too complex 

to give an accurate representation without significant resources and model tuning [1]. In this 

process, the data driven models are fitted to experimental results measured from the engine 

operating under steady state conditions. Because of the large number of control variables on 

modern engines, design of experiments (DoE) has become the standard approach to reduce 
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experimental effort by optimising the combinations of variables at each testing point [2]. 

However, the current approach presents two major limitations: 

 Testing time remains long because of the need to settle the engine at each steady state 

point between measurements. 

 The model obtained from the experimental data is only valid under steady conditions and 

does not capture the engine behaviour during transient events. This imposes a limitation 

on the optimisation procedure which can only account for steady state operating 

conditions. 

These limitations can be overcome with a move to a dynamic calibration process using dynamic 

engine modelling. A dynamic training sequence in the form of a transient test sequence is used 

rather than a steady state test plan to obtain the model training data. In this paper different 

mathematical structures for dynamic models are compared: extended Volterra Series 

(polynomial) and Neural Network. Gühmann and Riedel [3] compared a number of different 

modelling approaches on a single training data set and identified neural networks and Volterra 

series having best performance. In their study, both the training and validation data sets were 

sinusoidal in nature however in this work the performance of their two best performing models 

are assessed over the NEDC. 

2-Methodology 

2.1-Experimental approach 

A EURO IV specification, 2.0L Turbocharged Diesel engine was used in this study for which the 

usual vehicle application was a light commercial vehicle. The engine was installed in a transient 

engine dynamometer facility allowing dynamic excitation and full emulation of the NEDC. The 

engine was controlled from a CP engineering Cadet host system with an interface to the engine 

control unit (ECU) using Accurate Technologies Ati Vision system. Engine emissions were 

sampled between the turbocharger and the close coupled catalyst and concentrations were 

measured using Horiba MEXA 7000 analysers. The test cell and communications networks are 

shown in figure 1. 

The region of interest for the models represented the operating region during the NEDC: this 

defined the speed and torque operating regions for the training data. Three calibration variables 
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were identified: injection timing, fuel injection pressure and EGR valve position. As the engine 

was supplied with a production calibration, the region of interest was defined relative to the 

“production” operating points and implemented through “adder” and “multiplier” functions 

within the ECU software. These functions are a core part of the engine strategy and have various 

uses during the calibration process. In this case they offer a simple method for applying an offset 

to the production calibration for the modelling purposes. The control of these variables was 

specified in the host system and passed to the ECU via the calibration tool using an ASAP3 link. 

The excitation ranges and methods are summarised in table 1. 

 

Figure 1: Test facility and communication network 

Variable Excitation method Full Range Idle Range 

Engine speed Direct control from host system 1000-2500rpm 800-1000rpm 

Engine load PID control of electronic pedal 

position from host system 

20-250Nm 0-20Nm 

Injection timing ‘adder’ function resident in ECU;  +/-2
o
CA +/-2

o
CA 

Common Rail fuel 

pressure 

 ‘adder’ function resident in ECU;  +/-100bar +/-25bar 

EGR valve position Indirect control through ‘multiplier’ 

function for Mass air flow set point. 

+/-10% +/-5% 

Table 1: Excitation variables, ranges and implementation 

Sinusoidal chirp signals were used to excite the system as they offer a good compromise between 

static and dynamic space coverage and are more suited to engine operation than the harsh 

changes experienced in step based signals [4]. Although random binary signals are theoretically 

better for dynamic system identification [5], their harsh nature can cause problems and even 

damage engine hardware. The training data sequence is shown in figure 2 and comprises of a full 

load and an idle phase; the torque signal has been scaled as a function of engine speed to 

represent the engine limitations and the region of interest defined by the NEDC.  
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2.2-Model Structures 

Two dynamic model structures were considered for this work and will be described in the 

following section. The dynamic models mathematical functions that depend on the current input 

settings, the previous states of these inputs and the previous states of the system output, as 

defined by equation 1; in each case the dynamic models were trained for operation at 10Hz. 

 ( )   ( (   )  (   )    (    )  ( )  (   )  (   )    (    )) (1) 
 

Extended Volterra Series: This polynomial based modelling structure is a reduced version of 

the Kolmogorov-Gabor polynomial (equation 2) which models the system by assuming that the 

non-linearity remains only between the inputs and not the output feedback (i.e. exclusion of terms 

θ8, θ9 and θ12 to θ15). The Volterra model is represented schematically form in figure 3. The 

identification of such a model is achieved by initially by regression of parameter u onto the inputs 

followed by a post optimisation phase to include the output feedback term. The model 

parameterisation is primarily dependent on regression and therefore a stable and repeatable 

process. The Volterra model is defined by the following parameters: 

 Model order: the highest exponent for the static model; typically 4th order. 

 Delay order: the number of previous input events; typically 1 or 2. 

 Interaction order: the number of grouped inputs; typically only 2-way.  

 Feedback order: the number of previous output terms included in the model; typically 1. 

 

Figure 2: Training data test plan 
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Figure 3: Schematic representation of the Volterra series model 

Neural Networks: The neural network models are interconnections of neurons which can 

perform calculations independently. The model imitates the behaviour of simplified biological 

neural network by storing highly complex and nonlinear information through varied weights (W) 

and biases (b) of the inter-connections. A typical dynamic neural network structure is shown in 

figure 4. Training of the neural network models is done in an iterative way aiming to minimize 

the fit error. For a dynamic neural network, the feedback loop is disconnected and measured 

output terms are used in their place during training. After training, the feedback loop is 

reconnected so that the simulated output is used thus providing a predictive tool. The 

initialisation of the training algorithm is a random selection of weights and biases and this can 

result in variations in fit quality on repeated training runs. Usually several rounds of training are 

conducted to give an idea of the spread and allow a good model to be chosen. For each neuron, 

the input and output relationship is defined by equation 3, the grouping of the neurons results in a 

function represented by equation 1. 

        (    ) (3) 

 

Figure 4: Dynamic neural network model 

P
o

ly
n

o
m

ia
l 

N
o

n
lin

ea
ri

ty
 

Dynamic 
filter 

X1 
 

X2 
 

X3 
 

X4 
 

X5 

y u 

D
el

ay
 t

er
m

s 

... 

y 
x 

Hidden layer 
Output layer 



 

6 

 

The neural network model is defined by the following parameters: 

 Layer number: the number of hidden layers defines the complexity of the whole neural 

network. Usually, one hidden layer composed of around ten neurons proves to be 

sufficient. 

 Delay order: the number of previous input and output events to be fed into the hidden 

layer. 

 Neuron number: since the weights and biases were separately defined for each inter-

connection between neurons, neuron number decides how much information can be stored 

in the model. Given that the inter-connection number is the factorial of neuron number, 

small neuron numbers are usually chosen to prevent over fitting. 

 Transfer function: the nonlinear behaviour of the system is represented using the 

nonlinear transfer function with each neuron. 

2.3-Model Assessment 

The models were trained paying attention to avoid over-fitting by considering reasonable model 

complexities in each case. With these statistical models it is always possible to reach a perfect 

model fit if enough terms or neurons are included; therefore it is important to assess the 

predictive power of the models on an independent validation data set. The trained models were 

validated over separate tests conducted over the NEDC cycle. The model predictions were 

compared to the measured behaviour and the quality of fit was assessed using coefficient of 

determination (R
2
), Root mean square error (RMSE), normalised RMSE and signal to noise ratio 

(SNR) as defined by equations 4 to 7. Before calculating the fit statistics for the validation 

sequence, points lying outside the multi-dimensional training region were removed from the data 

set to avoid significant use of the model in extrapolation. 
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3-Results 

An example of the Volterra series fit for NOx emissions is shown in figure 4: a detailed portion 

of the training data is shown with a fitted vs. measured plot for the complete data set. 

 

Figure 4: Fitted NOx emissions for training data for Volterra Series model. 

The model structures for best fitting NOx and CO2 emissions are detailed in tables 2 and 4 for 

Volterra series and neural network models respectively; the corresponding fit statistics for both 

model types are show in tables 3 and 5. For the Volterra model, the fit quality is broken down 

into three stages of the regression process; for the neural network modelling only the 1
st
 and 3

rd
 

stages were performed due to the time required for model training. 

1. Static polynomial: referring to the model only with current time step inputs. 

2. Dynamic polynomial: referring to a model with current and previous time step inputs. 

3. Autoregressive model: referring to the complete model with output feedback. 

For the Volterra models, NOx emissions fitted best without input delays (the 5-8s transport delay 

in the measurement process was accounted for independently by appropriate time alignment [6]); 

the autoregressive model improved R
2
 from 0.9 to 0.92. For CO2, there was a significant 

improvement from the inclusion of delay terms, with the best fit resulting from a delay term at t-

0.9s (R
2
 improving from 0.82 to 0.93). The inclusion of an autoregressive term improved the fit 

most noticeable through a reduction in RMSE and an increase in signal to noise ratio. 
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 NOx CO2 

Model order
*
 4

th
 4

th
 

Interaction order
#
 2

nd
 2

nd
 

Delay terms None 1 (0.9s) 

Output transform
&

 0.25 0.75 

Total Number of terms 

after parameter selection 
17 27 

Table 2: Volterra model structures for NOx and CO2 emissions. 

 NOx CO2 

Fit 

Statistic 

Static 

polynomial 

Dynamic 

Polynomial 

Autoregressive 

polynomial 

Static 

polynomial 

Dynamic 

Polynomial 

Autoregressive 

polynomial 

R
2
 0.9 0.92 0.82 0.93 0.93 

RMSE 114 96 0.77 0.48 0.46 

nRMSE 8.2 6.9 7.6 4.8 4.5 

SNR 13.7 15.1 19.6 23.7 24.1 

Table 3: Fit statistics for Volterra series models 

Due to the instability of training results of neural network model each candidate structure was 

repeatedly trained and the models giving best validation results were chosen. The dynamic 

network shows significant improvement on the fitting statistics (Table 5). Both NOx and CO2 

models achieved virtually perfect fit. For the NOx emission model, a dynamic autoregressive 

network with 3 neurons and 2 delay terms was found with lowest validation Normalised RMSE. 

For the CO2 model, the optimal model was found with 6 neurons and 3 delay terms. The fitting 

capability of the neural network models exceeds that of the Volterra series model because it 

allows for more flexibility in representing the nonlinearities present within the data. This is 

reflected in the fit quality for all models such as the Dynamic autoregressive NOx function which 

achieves an R
2
 of 0.99 for neural net compared to 0.93 for Volterra series.  

 NOx CO2 

Layer number 1 1 

Delay terms 2 3 

Neurons number 3 6 

Transfer Function tansig tansig 

   

Table 4: Neural network model structures for NOx and CO2 emissions. 

 NOx  CO2 
Fit 

Statistic 

Static 

network 

Dynamic 

Autoregressive 

Network 

Static 

network 

Dynamic 

Autoregressive 

Network 

R
2
 0.95 0.998 0.84 0.99 

RMSE 77.9 15.85 0.72 0.48 

nRMSE 5.6 1.14 7.1 4.8 

SNR 17 30.8 20.2 23.7 

Table 5: Fit statistics for Neural network models 
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Table 6 shows the modelling statistics for the prediction for the NEDC validation tests. 

Extrapolation was allowed for some points close to the periphery of the hull as specified by the 

tolerance limit (defined as a percentage of hull size): these were set to 3% for the NOx and 1% 

CO2 and were based on model stability in extrapolation. The NEDC validation results showed a 

statistical advantage of Neural network model over the Volterra series model, with similar NOx 

predictive results (R
2
=0.84 of Neural net against R

2
=0.81 of Volterra series) and better CO2 

predictive results (0.92 against 0.82). 

Model Structure Volterra  Neural Network 

Emissions NOx CO2  NOx CO2 

Hull limit tolerance 3% 1%  3% 1% 
% points included 
using hull 

71% 65%  71% 65% 

Predicted R2 0.81 0.82  0.84 0.92 
RMSE (ppm or %) 65 1.22  60.6 0.84 
Normalised RMSE 
(%) 

6.2 11.3  7 7.8 

Signal to Error ratio 
(dB) 

10.3 14  9.2 16.4 

Table 6: Volterra series and Neural Network fit statistics for predicted NEDC 

4-Discussion 

From the Volterra modelling results the obvious difference between emissions species is the 

requirement for delay term in the CO2 model. The NOx model sees no significant increase from 

the inclusion of these terms however the fit R
2
 increases from 0.82 to 0.93 for the inclusion of a 

0.9s delay on input terms. This suggests that the NOx emissions are primarily a static event 

whereas CO2 is more dependent on the time history of engine operation. A similar trend is seen 

for the neural network fit statistics. The Volterra series offers an advantage for this analysis as the 

explicit mathematical formula can be analysed which is not possible with the black box neural 

network approach. 

Although the neural network performs better than the Volterra series in terms of fit statistics, 

when observing the detailed simulation predictions over the NEDC the results appear somewhat 

different. The model prediction and measured validation for a portion of the NEDC is shown in 

figure 5 for both models. In this representation, the Volterra series appears to have more accurate 

prediction of engine behaviour, notably during the steady state periods. The observed differences 
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in the validation fit statistics may result from the less frequent but larger errors in the Volterra 

model. In contrast, the neural network gives more persistence but smaller errors. 

 

(a) (b) 

Figure 5: (a) Volterra and (b) neural network NEDC prediction 

Another key difference between the two modelling approaches is the stability of the 

parameterisation. The Volterra series is predominantly based on least squares regression and 

therefore gives an identical model if the process is repeated: the limited reliance on optimisation 

for the autoregressive aspects of the function is well controlled. In contrast, the neural network 

identification is based on an initial random model parameterisation that is subsequently adjusted 

using optimisation to minimise mean square error. The resulting models can be significantly 

different depending on the initial parameterisation. For each of the neural network configurations, 

a number of repeat identifications were performed (100 repeats for static networks; 50 repeats for 

dynamic networks) and the variation in fit normalised RMSE is presented in figure 6. It is 

obvious from these graphs that the static neural network is most stable giving a tight range of fit 

qualities. The inclusion of dynamic terms can improve the model fit quality, but at the expense of 

more variation and larger risk of a lower quality model. 

5-Conclusions 

The major conclusions from this work are listed as follows: 

 Dynamic model structures are required for accurate representation of transient data sets. For 

NOx emissions the dynamics do not seem significantly dependent on the historical states of 

input actuators however this is not the case for CO2 emissions. 

 Fit statistics for neural networks and Volterra series suggested higher performance of the 

neural network models in predicting NEDC performance. However, visualisation of the 
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model fits suggests that the Volterra series can provide high fidelity, but statistics are skewed 

by a small number of larger deviations causing large errors. The neural networks appeared 

more flexible in fitting, but appeared to suffer from lower predictive accuracy suggesting a 

higher degree of over fitting. 

 The variation of model fit quality of neural networks was worse for dynamic models than 

static models although a higher quality of fit could be achieved. This results in a more time 

consuming model parameterisation procedure as a larger number of repeated training 

routines are required to ensure a high quality model is achieved. Volterra series models are 

based on least squares and do not suffer from this issue. 

 

  

(a) (b) 

Figure 6: Variation in Normalised RMSE for static and dynamic neural networks  

for (a) NOx and (b) CO2 emissions 
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Notation: 

Abbreviations 

CO2 Carbon Dioxide  NOx Oxides of nitrogen 

DoE Design of Experiments  nRMSE Normalised RMSE 

ECU Engine Control Unit  R
2
 Coefficient of Determination 

EGR Exhaust gas Recirculation  RMSE Residual Mean Square Error 

NEDC New European Drive Cycle  SNR Signal to Noise Ratio 

 

Variables 

a Output Vector  x Model input 

b Neuron bias  y Measured output 

p Input Vector   ̅ Mean measured output 

t Time   ̂ Model Output  

u Modelling variable  θ Polynomial coefficient 

w Neuron weight    

 


