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ABSTRACT

Concurrent use of cocaine and heroin is a major public health issue, with no effective relapse
prevention treatment currently available. To this purpose, a combination of buprenorphine and
naltrexone, a mixed very-low efficacy mu-opioid receptor agonist / kappa-opioid receptor
antagonist / NOP receptor agonist, was investigated. The tail withdrawal and the conditioned
place preference assays in adult Sprague Dawley rats were used to show that naltrexone dose-
dependently blocked the mu-opioid receptor agonism of buprenorphine. Furthermore, in the
conditioned place preference assay, a combination of 0.3 mg/kg buprenorphine and 3.0 mg/kg
naltrexone was aversive. A combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone
was neither rewarding nor aversive, but still possessed mu-opioid receptor antagonist properties.
In the conditioned place preference extinction and reinstatement method, a combination of 0.3
mg/kg buprenorphine and 1.0 mg/kg naltrexone completely blocked drug-primed reinstatement in
cocaine-conditioned rats (conditioned with 3 mg/kg cocaine, drug prime was 3 mg/kg cocaine),
and attenuated drug-primed reinstatement in morphine-conditioned rats (conditioned with 5 mg/kg
morphine, drug prime was 1.25 mg/kg morphine). These data add to the growing evidence that a
buprenorphine/naltrexone combination may be protective against relapse in a polydrug abuse

situation.
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INTRODUCTION

There is currently no medication licensed in Europe or the US for treatment of cocaine
dependence, and whilst there are treatments available for opioid dependence, no single treatment
is effective for everyone. As many users of crack cocaine are also dependent on heroin, a relapse
prevention medication that is effective in the polydrug user population would be a notable step

forward.

In this paper, the ability of a combination of buprenorphine and naltrexone to inhibit reinstatement
of morphine and cocaine conditioned place preference was investigated. Buprenorphine is a partial
agonist at the mu-opioid receptor, an antagonist at the kappa-opioid receptor and a partial agonist
at the nociceptin (NOP) receptor (Huang et al. 2001). Buprenorphine, like methadone, is widely
used as a substitution therapy for treatment of opioid addicts (Maremmani and Gerra 2010), but
clinical studies have shown that buprenorphine, but not methadone, is also effective in reducing
cocaine use (Kosten, Kleber & Morgan 1989). Naltrexone is an antagonist at both mu- and kappa-
opioid receptors (Giordano, Nock & Cicero 1990) and has been shown to reduce both opioid

(Comer et al. 2006) and cocaine use (Schmitz et al. 2001).

Encouraging results have been observed in two clinical trials using a buprenorphine/naltrexone
combination therapy (Rothman et al. 2000; Gerra, Fantoma & Zaimovic 2006); significant
reduction of both heroin and cocaine use was demonstrated. Currently, buprenorphine is licensed
as an opioid substitution therapy, but is in itself rewarding via activation of the mu-opioid receptor
(Greenwald et al. 2007). Combination of buprenorphine with sufficient naltrexone can block
buprenorphine’s mu-opioid receptor agonism (Dum and Herz 1981; McAleer et al. 2003) thus
increasing regulatory acceptability, and feasibility of its use in cocaine addicts. Naltrexone is itself
licensed as an abstinence-promoter but treatment success is hindered by low compliance.
Naltrexone provides no reinforcement or pleasure, but, as a mu-opioid receptor antagonist, is

likely to block rewards caused by release of endogenous opioid peptides (Kirchmayer et al. 2002;



Mucha, Millan & Herz 1985). Indeed, in laboratory animals, naltrexone alone has been shown to

be aversive at high doses (Parker and Rennie 1992, Suzuki et al. 1992).

Thus, the combination of buprenorphine and naltrexone may be neither rewarding nor aversive,
but still an effective anti-addiction therapy. In addition to effects on mu-opioid receptors, the
buprenorphine/naltrexone combination acts as an antagonist at the kappa-opioid receptor.
Comorbid affective disorders can emerge on cessation of use of drugs of abuse (Gerra et al.
2006), and antagonism of the kappa-opioid receptor appears to counter depression in rodents
(Mague et al. 2003; Beardsley et al. 2005). Further, the kappa-opioid system and its endogenous
agonist dynorphin have been shown to mediate many stress responses; in preclinical studies,
inhibition or genetic ablation of kappa-opioid receptors has been shown to inhibit stress-induced,
but not drug-prime-induced, reinstatement to cocaine-seeking behavior (reviewed by Bruchas,

Land & Chavkin 2010).

Another component of the pharmacology of a buprenorphine/naltrexone combination is to act as a
partial agonist at the NOP receptor. Selective NOP agonists are neither rewarding nor aversive
(Le Pen et al. 2002) and, although the mechanism is poorly understood, they have been shown in
rodents to oppose the effects of cocaine and morphine (Kotlinska et al. 2002; Sakoori and Murphy
2004), inhibiting drug-primed reinstatement of morphine conditioned place preference (CPP)
(Shoblock, Wichmann & Maidment 2005). The effect of NOP agonists on reinstatement of cocaine

CPP has not been studied to date.

Overall, a mixed very-low efficacy mu-opioid receptor agonist / kappa-opioid receptor antagonist /
NOP receptor agonist is a desirable target as a novel anti-addiction therapy (McCann 2008). The
reduction in cocaine use observed in the studies carried out by Rothman and Gerra could be via
antagonism of mu-opioid receptors attenuating the positive reinforcing effects of cocaine (Bilsky et
al. 1992), via antagonism of kappa-opioid receptors conferring stress resilience (Redila and

Chavkin 2008), or via more generalized anti-addictive effects of agonism of the NOP receptor



(Shoblock et al. 2005; Kuzmin et al. 2007). Alternatively, it could simply be a consequence of
reduction in heroin use (these two drugs of abuse are often used by addicts to ‘complement’ each
other). Therefore, the effect of buprenorphine/naltrexone on the effects of cocaine in a controlled
experiment has been assessed here. The aims of this study were to determine the ratio of
buprenorphine/naltrexone that is neither rewarding nor aversive, and then to evaluate how this
drug combination can inhibit drug-primed reinstatement of both morphine- and cocaine-induced

conditioned place preference.



MATERIALS AND METHODS

Subjects

All experiments were performed in accordance with the U.K. Animals (Scientific Procedures) Act of
1986 and the University of Bath’s ethical review documents. Male Sprague Dawley rats (Charles
River, UK) were used; 260-420g (7-11 weeks old) for tail withdrawal and rat vas deferens
experiments, 250-320g (7-9 weeks old) for conditioned place preference experiments. All rats were
housed four per cage with ad libitum access to food and water and maintained on a 12:12 h light-

dark cycle (lights on 07:00, lights off 19:00).

Tail withdrawal assay

A water bath (Grant Instruments, UK) was maintained at 52°C. The rats were held firmly in a
vertical position, and lowered until the distal third of the tail was in the water. The time taken for
the rat to withdraw the tail was recorded. A 20 second cut-off was imposed to avoid tissue

damage. All rats were opioid naive, and were not reused.

Measurement of receptor affinity —rat vas deferens

Rats were killed using CO, and vasa deferentia were excised and suspended in a siliconized
tissue bath (3 ml volume) under 0.5 g tension in Krebs-bicarbonate solution (composition (mM):
NaCl 118, KCI 4.74, CaCl, 2.50, KH»PO4 1.19, MgS0O4 1.20, NaHCO3; 25, glucose 11, bubbled
with 95% O, / 5% CO-, maintained at 37°C). Nerve-evoked muscle contractions were induced with
single square pulses (0.1 ms duration, 0.1 Hz, supramaximal voltage) and measured isometrically
with ‘LabChart’ software (AD Instruments). Cumulative concentration response curves to the
selective  mu-opioid receptor agonist, [D-Ala?,NMe-Phe? Gly-ol°]-enkephalin  (DAMGO;
concentration increased at 5-minute intervals) were constructed in the absence then presence of

buprenorphine or naltrexone.



In individual tissues, ECso values for DAMGO in the absence and presence of buprenorphine or
naltrexone were derived by fitting data to a non-linear regression curve-fit (GraphPad Prism) using
the equation:

Effect = baseline + (Emax-baseline)/(1+10"((LogEC50 - X)*HillSlope))

where X is the agonist concentration.

For naltrexone, a Schild plot was constructed, deriving a pA. value (equivalent to the log Ks
value). As buprenorphine has been shown to be pseudo-irreversible, Kz values were obtained

using a single concentration of buprenorphine (1 nM) and the Schild equation.

Calculations of relative receptor occupancy were derived using the following equation:

% occupancy of drug A = 100 * (JA]/Ka) / ((JA]/Ka) + ([B)/Kg) + 1)

Blood and brain tissue concentrations

Plasma sample preparation - Blood samples (30-minute post-injection) were centrifuged (3300 rpm, 10
minutes), and plasma recovered. Plasma samples were basified using ammonium hydroxide solution
(pH 10) and loaded onto a solid phase extraction (SPE) cartridge (Waters Oasis HLB) previously
conditioned with 1 ml methanol and 1 ml water. The cartridge was washed with 1 ml 2% methanol in
ammonium hydroxide solution (pH 10), rinsed with water, then the analyte was eluted with 440 pl 60%
methanol containing 2% acetic acid. The sample was filtered (nylon 0.45 um syringe filter) before
injection into the LC-MS. Samples were injected undiluted to analyse buprenorphine, then diluted 1:1

with water to analyse naltrexone.

Brain tissue sample preparation - The brain tissue (30-minute post-injection) was prepared using the
same SPE process as the plasma samples. Prior to the SPE process water was added (1.8 ml/gram of
brain tissue) to facilitate homogenisation (Tissue Master 240, OMNI International, US), the sample was

centrifuged, and the supernatant fluid was collected.



Buprenorphine and norbuprenorphine LC-MS method - Separation was performed using a GeminiNX
column (3um C18 110A 50 x 2mm) from Phenomenex, maintained at 25°C, on a Shimadzu LC-
2010AHT HPLC. The mobile phase was 18:82 acetonitrile: 0.1% acetic acid at a flow rate of

0.2 ml/min. 30pl of sample was injected.

The retention times for buprenorphine and norbuprenorphine were 9 and 3 minutes; masses per
charge were 468 and 414. Standards were prepared in SPE eluent. Limit of quantitation was 0.18

ng/ml for buprenorphine and 0.8 ng/ml for norbuprenorphine.

Naltrexone and 63-naltrexol LC-MS method - The method for analysis of naltrexone and 6M3-naltrexol
was adapted from Valiveti (2004). Separation was performed using a Symmetry column (5um C18
110A 150 x 2.1 mm) from Waters, maintained at 23°C, on a Shimadzu LC-2010AHT HPLC. The
mobile phase was 12:88 acetonitrile: 0.1 % ammonium acetate at a flow rate of 0.25 ml/min. 30ul of

sample was injected.

The retention times for naltrexone and 6[3-naltrexol were 4 and 3 minutes; masses per charge were
342 and 344. Standards were prepared in SPE eluent. Limit of quantitation was 3.8 ng/ml for

naltrexone and 0.28 ng/ml for 6R3-naltrexol.

Conditioned place preference apparatus

CPP boxes (Tracksys, UK) were three-chambered shuttle boxes comprising a small central
compartment (10 x 10 cm) where rats were placed at the start of a test session, and two larger
compartments (40 x 40 cm), one with horizontal black and white stripes, and one with vertical
black and white stripes. Floors were made of stainless steel sheeting with punched-out shapes
(circles, 12 mm hole, and squares, 10 mm hole) resulting in distinct textures (Novametals, UK).
Removable partitions allowed the boxes to be used either to restrict the rats to a particular
compartment for conditioning, or to allow the rats to be ‘free-to-explore’ during a test session.

Experiments were performed between 8 am and 5 pm under dim white light (light intensity approx.



15 lux). During all test sessions, the time each rat spent in each compartment was recorded using
EthoVision XT (Tracksys, UK) tracking software.

Rats were assigned to treatment groups randomly, and the pairing was counterbalanced (i.e.,
within each cohort, equal numbers of rats were always drug-paired to each compartment type).
Groups were organised such that mean baseline % preferences were close to zero.

CPP. Data throughout are presented after multiplying by a correction factor. The correction factor
was calculated by dividing duration of test (seconds) by total time spent (seconds) in the two large
compartments. This factor is used to proportionally divide the time spent in the neutral central

compartment between the two conditioning compartments.

% preference was calculated using the corrected data such that if a rat spent equal time in the
drug-paired compartment and the saline-paired compartment, the preference score would be zero

%. If a rat spent no time in the saline-paired compartment, the preference score would be 100 %.

Individual rats whose baseline preference was >16.7 or <-16.7 were excluded.

Drugs and chemicals

Naltrexone hydrochloride dihydrate was from Fluka (UK). Saline (sodium chloride 0.9%) was from
Dechra (UK). Buprenorphine hydrochloride was prepared in-house. Cocaine hydrochloride and
morphine sulphate were from MacFarlan Smith (UK). All in vivo injections were intraperitoneal (1
mi/kg).

DAMGO was from Bachem (UK). Sigmacote®, buffer components and mobile phase components

were from Sigma (UK).

PROCEDURES

Using naltrexone to block the rewarding effects of buprenorphine



Two separate assays, tail withdrawal and CPP, were used to establish the dose of naltrexone

required to block the mu-opioid receptor agonism of buprenorphine.

Tail withdrawal assay. Five baseline measurements were taken, one immediately after another,
for each rat. 0.3 mg/kg buprenorphine was then administered in combination with either 0, 0.3 or
1.0 mg/kg naltrexone (n =5, 4, 7). Following injection of the drug, measurements were taken once
every 7.5 minutes, up to 60 minutes. Data collected at the 60 minute time-point was used in
subsequent analyses. Baseline tail-withdrawal time was taken as the mean of the last 2 baseline
measurements. For each rat, analgesia was quantified as tail-withdrawal time post-drug treatment
minus baseline measurement. Data were analysed using one-way ANOVA with the Bonferroni

post-test.

CPP assay. Rats were conditioned with buprenorphine (0.3 mg/kg) administered in combination
with either 0, 0.3, 1 or 3 mg/kg naltrexone (n = 16, 8, 8, 16). On day 1, rats had a 15 minute
exploratory session; on day 4, they had a 15 minute baseline preference test. A % preference was
obtained. On days 5-8 and 11-14, the rats received drug or saline on alternate days, thus, each rat
had 4 drug injections and 4 saline injections. Injections were administered at least 24 hours apart
to ensure that the effects of buprenorphine had dissipated before subsequent saline injections.
Following injections, the rats were immediately confined to a compartment for 40 minutes. On day
15, % preference was obtained exactly as for baseline preference; i.e., the preference for each
drug treatment was measured by recording the time spent in the drug-paired chamber in a free-to-
explore test lasting 15 minutes. To assess conditioning, a 1-tailed Wilcoxon matched pairs signed-

rank test was used (each group’s % preference after drug treatment compared to its baseline).

Measuring mu-opioid receptor antagonism of a buprenorphine/naltrexone combination
Five baseline measurements were taken. Latency to withdrawal was measured following
administration of 10 mg/kg morphine only (n = 4), and when both 0.3 mg/kg buprenorphine and

1.0 mg/kg naltrexone (n = 5) or 1.0 mg/kg naltrexone alone (n = 7) were administered 30 minutes

10



prior to the morphine. Following injection of the morphine, measurements were taken once every
5 minutes, up to 30 minutes. Data collected at the 30 minute time point was used in subsequent

analyses.

Effects of buprenorphine/naltrexone on reinstatement of cocaine and morphine
conditioned place preference
To test the ability of a buprenorphine/naltrexone combination to block drug-primed reinstatement,

a conditioned place preference extinction and reinstatement method was established (Figure 1).

Rats had one 15 minute exploratory session and one 15 minute baseline preference test. Animals
were conditioned using either 3 mg/kg cocaine or 5 mg/kg morphine, receiving drug and saline on
the same day (at least 4 hours apart) for 3 consecutive days. Immediately after injection, rats were
confined to a particular compartment (drug-paired or saline-paired) in the CPP box (for 20 minutes
or 40 minutes, cocaine and morphine respectively). Following conditioning, % preference was
obtained exactly as for baseline preference. Individual rats which showed less than a 30-second
increase for drug-paired side over their baseline preference during the post-conditioning test were
excluded from extinction and reinstatement. To assess conditioning before exclusions, a 1-tailed
Wilcoxon matched pairs signed-rank test was used (each group’s % preference after drug

treatment compared to its baseline).

Four cohorts of rats were used: cocaine-conditioned control (n = 20), morphine-conditioned
control (n = 24), cocaine-conditioned buprenorphine/naltrexone treatment (n = 16), and morphine-

conditioned buprenorphine/naltrexone treatment (n = 16).

For all cocaine-conditioned rats, extinction was achieved by reconditioning. This involved injection

of saline followed by confinement to a compartment for 20 minutes, twice a day for 4 days (4

hours apart). The rats were alternated daily as to whether they were placed in the previously drug-

11



paired compartment or the previously saline-paired compartment morning or afternoon. Extinction

was confirmed by a 15 minute free-to-explore test (day 15, see Figure 1).

For the morphine-conditioned rats, two styles of extinction were used: a reconditioning style of
extinction (saline injection with 15 minutes confinement in each compartment, as above), and a
retesting style of extinction (daily retesting, 15 minutes per test). Of the animals subsequently
tested for reinstatement, 5 rats in the control group underwent extinction training using the
reconditioning style, and 9 underwent extinction using the retesting style. All rats in the
buprenorphine/naltrexone treatment group underwent extinction training using the reconditioning

style.

Extinction training was deemed complete if group mean preference was <5%. For the retesting
style of extinction, this was taken from the average of 2 consecutive days. Following extinction,
rats were administered a priming dose of 3 mg/kg cocaine or 1.25 mg/kg morphine. The control
groups received a saline injection 10 minutes prior to drug priming and the treatment groups
received a buprenorphine/naltrexone injection (0.3 and 1 mg/kg respectively) 10 minutes prior to
drug priming. Following administration of the priming dose, rats were placed immediately into the

CPP boxes and were free-to-explore during a 30-minute test.

Conditioning and reinstatement were assessed using the Friedman test followed by Dunn's
multiple comparison test (each group’s % preference compared to its baseline). A Mann-Whitney
U test was used to compare the % preference during the reinstatement test for rats that had
undergone a retesting style of extinction and for rats that had undergone a reconditioning style of

extinction.

It was observed that in the control groups, conditioned place preference behavior emerged at 13-
15 minutes of the reinstatement test period in cocaine-conditioned rats; however, in the morphine-

conditioned rats, drug-seeking was evident from the start of the reinstatement test period and then

12



diminished somewhat after 15 minutes (data not shown). The data from 0-30 minutes of the
reinstatement test were used for the cocaine-conditioned rats, whereas, the data from 0-15
minutes of the test were used for the morphine-conditioned rats. It is interesting that these findings
are in contrast to Mueller and Stewart (2000) and Mueller, Perdikaris & Stewart (2002) who
observed gradual emergence of drug-seeking over the course of the reinstatement test in both

cocaine- and morphine-conditioned rats.
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RESULTS

Using naltrexone to block the rewarding effects of buprenorphine

Tail withdrawal assay. Tail withdrawal is a commonly used assay of analgesia, and was used here
as an indirect measure of mu-opioid receptor agonism. A dose of 0.3 mg/kg buprenorphine was
selected because previous studies in rats have indicated that this dose is rewarding in the CPP
assay (Suzuki et al. 1992; Rowlett, Gibson & Bardo 1994; Tzschentke 2004), and can elicit
measureable mu opioid receptor-mediated analgesia (Lutfy et al. 2003). Figure 2 (panel A) shows
that 0.3 mg/kg buprenorphine elicited marked analgesia in this experimental set-up. This can be
seen by the increase in time taken to withdraw the tail compared to baseline. A clear dose-

dependent effect of naltrexone countering buprenorphine-induced analgesia was observed.

CPP assay of rewarding effects of buprenorphine. Group mean baseline preferences were 0 + 2,
2+5,2+2and0*2 % (mean £ SEM). One rat in the 0.3 mg/kg buprenorphine group and one
rat in the 0.3 mg/kg buprenorphine and 0.3 mg/kg naltrexone group were excluded for having a

preference at baseline.

0.3 mg/kg buprenorphine elicited drug-seeking behavior in this set-up (Figure 2, panel B). This
can be seen as a significant increase in time spent in the drug-paired compartment compared to
baseline. As observed in the tail withdrawal assay, a clear dose-dependent effect of naltrexone
was observed; naltrexone countered the rewarding effects of buprenorphine to the extent that co-
administration of 3.0 mg/kg naltrexone actually elicited aversion (rats spent significantly more time

in the saline—paired compartment compared to baseline test).

There was good agreement between the results of the tail withdrawal and the CPP assays; taken
together, it was clear that, in these rats, 1.0 mg/kg naltrexone blocked the mu-opioid receptor
agonism of 0.3 mg/kg buprenorphine. This finding fits with earlier data (Walker et al. 1994) which
showed that 1.0 mg/kg naltrexone blocked the subjective effects of 0.3 mg/kg buprenorphine in a

discrimination assay in rats. A combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone

14



was therefore selected for use in subsequent behavioral experiments.

Measuring mu-opioid receptor antagonism of a buprenorphine/naltrexone combination
After establishing that 1.0 mg/kg naltrexone was sufficient to block the mu-opioid receptor
agonism of 0.3 mg/kg buprenorphine, we tested whether this combination would show mu-opioid

receptor antagonism. 10 mg/kg morphine elicited a measurable analgesia (Figure 3).

Clear mu-opioid receptor antagonism was observed following administration of
buprenorphine/naltrexone (morphine-induced analgesia decreased from 16 + 0 to 3 + 1 seconds,
mean * SEM). Administration of naltrexone alone blocked morphine-induced analgesia to a

greater extent than did the combination.

CPP extinction and reinstatement model

The CPP extinction and reinstatement method is frequently used to study the effects of potential
relapse prevention treatments (reviewed by Aguilar, Rodriguez-Arias & Minarro 2009). This
method was therefore used to observe drug-primed reinstatement in cocaine- and morphine-
conditioned rats, and the effects thereon of pre-treatment with a buprenorphine/naltrexone
combination. Table 1 shows the number of rats used in the experiments, the number of rats
excluded, and the time taken to reach extinction. Conditioning was statistically significant in each

cohort before individual rats were excluded for insufficient conditioning.

Control groups. Figure 4 shows the data for the control groups (panels A and B). The %
preference post-conditioning and following a drug prime was significantly different from baseline
for both drugs. In other words, reinstatement of drug-seeking was successfully attained in both
control groups. As there was no significant difference in % preference during the reinstatement

test between the morphine-conditioned rats, which underwent the two styles of extinction training

15



used (reconditioning 11 + 7 % n = 5, retesting 19 + 9 % n = 9, mean + SEM), pooled data are

shown.

Buprenorphine/naltrexone treatment groups. Figure 4 shows the data for the buprenorphine
/naltrexone treated groups (panels C and D); the effect of the combination on drug-primed
reinstatement in cocaine- and morphine-conditioned rats is clear. Preference during reinstatement
test was not significantly different from baseline for either drug. In the cocaine-conditioned rats,
the buprenorphine/naltrexone treatment completely blocked reinstatement (preference score of -9
+ 5 % mean + SEM compared to 11 £ 5 in the control group). In the morphine-conditioned rats,
the buprenorphine/naltrexone treatment attenuated the preference observed following
administration of a drug prime (preference score of 6 £ 10 %, mean + SEM compared to 16 = 6 in

the control group).

Receptor occupancy of buprenorphine and naltrexone
Having demonstrated that a combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone is
neither rewarding nor aversive, and is capable of blocking drug-primed reinstatement to cocaine-

and morphine-seeking, we next estimated the relative receptor occupancies of both drugs.

Receptor affinity values were determined in isolated tissue (rat vas deferens) and logKg values
were -9.38+0.12 for buprenorphine (ie. Kg = 0.41 nM) and -8.90+0.12 for naltrexone (ie. Kg = 1.26
nM) (Figure 5). Plasma and brain concentrations were measured 30 minutes after administration
of buprenorphine (0.3 mg/kg) and naltrexone (1.0 mg/kg) (Table 2). From these data, receptor

occupancy levels of each could be estimated.

These data suggest that >95% of all available mu-opioid receptors are occupied either by
buprenorphine or naltrexone when administered at these doses, which, as Figure 3 shows, is
sufficient to block morphine-induced analgesia. Furthermore, when buprenorphine (0.3 mg/kg) is

co-applied with naltrexone (1.0 mg/kg), buprenorphine only occupies ~40% of available receptors,

16



and at this receptor occupancy level there is not sufficient mu-opioid receptor activation to
produce either analgesic or rewarding effects (see Figure 2). In addition, similar experiments (data
not shown) were performed to determine the affinity of buprenorphine at kappa-opioid receptors.
The Kg value of buprenorphine at kappa-opioid receptors (0.6 nM) means that at the observed
brain concentrations, >95% of all available kappa-opioid receptors would be occupied by

buprenorphine or naltrexone.
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DISCUSSION

Data from both the tail withdrawal and the conditioned place preference assays showed that 0.3
mg/kg buprenorphine alone displayed marked mu-opioid receptor agonism and that naltrexone
dose-dependently blocked the mu-opioid receptor agonism in both assays. A critical feature for a
potential anti-addiction therapy is that the therapy itself is neither rewarding (and therefore would
itself have an abuse liability) nor aversive (and could reduce compliance or effectiveness
(Greenwald et al. 2007; Manlandro 2007; Nutt 2010)). In our study, although 0.3 mg/kg
buprenorphine alone was rewarding, as seen by conditioned place preference, when
buprenorphine was administered in combination with 1.0 mg/kg naltrexone the combination was
neither rewarding nor aversive. If a higher dose of naltrexone (3.0 mg/kg) was used, the
combination became aversive. Previous studies have shown that mu-opioid receptor antagonism
can induce conditioned place aversion, an effect attributed to blockade of endogenous opioid

activity (Mucha et al. 1985).

We generated estimates of relative receptor occupancies following buprenorphine/naltrexone
combination (0.3 / 1 mg/kg). >95% of available mu-opioid receptors were estimated to be
occupied, 40% of these by buprenorphine. One caveat is that we could only measure absolute
brain levels rather than free concentrations of each drug. A high proportion of the compounds may
be in the lipid compartment and unavailable for receptor binding (buprenorphine being particularly
lipophilic). In vivo autoradiography studies have found in vivo Kp values for buprenorphine and
naltrexone at mu-opioid receptors to be approximately 23 and 30 ug/kg respectively (Richards and
Sadée 1985; HOllt et al. 1975). Although brain and plasma concentrations were not measured in
those studies, if we extrapolate from our empirical brain concentrations, this suggests brain
concentrations for both drugs in those studies would be approximately 10x higher than in vitro Kg
values. Hence, approximately 10% of both buprenorphine and naltrexone in the brain would be
‘free’. If this were the case, this would have a negligible impact on both relative and total receptor

occupancy by buprenorphine and naltrexone at the doses used in this study, based on the fact that
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the doses used here resulted in brain levels of both drugs far in excess (>100-fold higher) of their

Kg values.

The clinical trials carried out by Rothman et al. (2000) and Gerra et al. (2006) administered
naltrexone orally (50mg daily) and buprenorphine sublingually (4mg daily). Although plasma drug
concentrations were not performed in those studies, they would likely have been of the order of
4nM buprenorphine and 60nM naltrexone (peak levels) declining to 0.4nM buprenorphine and 3nM
naltrexone (at 24 hours) (Everhart et al. 1997; Verebey et al. 1976), compared to 56nM
buprenorphine and 285nM naltrexone in this study. While there are limits to the extent to which our
studies in rat can be compared to clinical studies, our data suggest two things for future clinical
studies. Firstly, that the ideal buprenorphine:naltrexone plasma concentration ratio is around 1:5,
theoretically meaning that relatively higher buprenorphine doses would be more clinically effective.
Secondly, higher doses of both buprenorphine and naltrexone than those used by Rothman et al.
(2000) and Gerra et al. (2006) may be even more effective clinically, as the combination would

result in greater mu and kappa-opioid receptor occupancies.

The ratio of naltrexone to buprenorphine dose in the current study (3:1) is very different to that
used in a recent study examining cocaine self-administration in rats (Wee et al. 2012) where 0.3
mg/kg naltrexone and 3 mg/kg buprenorphine was predominantly used (1:10). Although different
routes of administration were used (subcutaneous in Wee et al. 2012; intraperitoneal in the current
study), our data would suggest that if more buprenorphine than naltrexone is administered, there
would still be a significant mu-opioid receptor agonist response. Indeed, Wee et al. (2012) showed
that although 0.3 mg/kg naltrexone reduced somatic withdrawal signs and analgesia following 3
mg/kg buprenorphine, there were still significant signs of residual mu-opioid receptor activation.
Our study shows that when plasma and brain levels of buprenorphine are around 4-5-fold less than

that of naltrexone there is no measurable mu-opioid receptor agonist response.

The reduction in morphine-induced analgesia in the tail withdrawal test following administration of
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the combination indicates that the combination has significant mu-opioid receptor antagonist
properties. Indeed, when buprenorphine and naltrexone were administered in combination, >95%
of available mu-opioid receptors were estimated to be occupied. However, the combination did not
counter morphine to the same extent as naltrexone alone. This may be because of very low levels
of mu-opioid receptor activation by the buprenorphine/naltrexone combination which, although

below the level of functional effect, may be added to with a morphine challenge.

Data generated using the CPP extinction and reinstatement method showed clearly that
buprenorphine/naltrexone reduced reinstatement to drug-seeking following a drug prime, in both
cocaine- and morphine-conditioned rats. Unexpectedly, the effect was more dramatic in the
cocaine-conditioned rats. Whilst there is preclinical data showing that buprenorphine (Kosten,
Marby & Nestler 1991; Suzuki et al. 1992; Comer et al. 1993) and naltrexone (Bilsky et al. 1992;
Suzuki et al. 1992) can reduce the ability to acquire a conditioned place preference to cocaine, the
research here goes further. Firstly, the ability of buprenorphine and naltrexone to block
reinstatement to cocaine-seeking following extinction was demonstrated, and secondly, the two
compounds were administered as a combination that by itself induces neither conditioned place
preference nor aversion. Importantly, the observed reduction in cocaine-seeking implies that the
decrease in cocaine use reported in clinical trials (Rothman et al. 2000; Gerra et al. 2006) was

probably not a simple consequence of reduced heroin use.

As well as blocking mu-opioid receptors, the combination of buprenorphine and naltrexone used
here also acts as a functional kappa-opioid receptor antagonist (>95% estimated occupancy of
available kappa-opioid receptors). However, kappa-opioid receptor antagonism is not thought to
be effective in blocking drug-primed reinstatement to cocaine (Beardsley et al. 2005), only in
blocking that which is stress-induced (Beardsley et al. 2005; Carey et al. 2007; Land et al. 2009).
Therefore, it may be postulated that the successful blocking of reinstatement to cocaine-seeking
observed here was due, at least in part, to some ‘non-kappa’ effects, such as mu-opioid receptor

antagonism. Certainly, the opioid system is heavily involved in the hedonic response and the
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subsequent reinforcement process of all drugs of abuse, including cocaine (Kalivas and Tang,
2005; Soderman & Unterwald 2008; Le Merrer et al. 2009). Whilst NOP activation in mice has
been shown to counteract cocaine reward (Bebawy et al. 2010) and morphine reward and
antinociception (Lutfy et al. 2003; Marquez et al. 2008; Rutten et al. 2011), it is not yet known what
dose of buprenorphine would be required for NOP agonism to become relevant to drug-seeking

behaviour in rats.

In summary, it has been shown that a combination of 1.0 mg/kg naltrexone and 0.3 mg/kg
buprenorphine, administered i.p. in Sprague Dawley rats, is non-rewarding and non-aversive, but
results in high occupancy levels of both mu- and kappa-opioid receptors, and so acts as a
functional mu/kappa-opioid receptor antagonist. It was then demonstrated that 0.3 mg/kg
buprenorphine and 1.0 mg/kg naltrexone blocked drug-primed reinstatement to cocaine-seeking,
and attenuated drug-primed morphine-seeking. These data add to the growing evidence that a

buprenorphine/naltrexone combination may be effective in a polydrug abuse situation.
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FIGURE LEGENDS
Figure 1 Schematic of the time course of the conditioned place preference extinction and
reinstatement method. Filled-in circles represent cocaine or morphine injections and empty circles
represent saline injections (it can be seen that during conditioning the order of injections
alternated daily). This schematic shows the reconditioning style of extinction, where each rat
received 2 saline injections per day. The arrow indicates that buprenorphine/naltrexone treatment

(or saline, in the control groups) was administered 10 minutes prior to the priming dose.

Figure 2 The tail withdrawal assay and the CPP assay show how naltrexone blocks the mu-opioid
receptor agonism of buprenorphine in a dose-dependent fashion. A Increase from baseline
(seconds) in tail withdrawal assay at 60 minute time point (n = 5, 4, 7), mean + SEM. Baseline
values were in the range 4 - 6 seconds; * indicates that first and third columns are significantly
different from one another p<0.05. B % preference in CPP assay (n = 15, 7, 8, 16), mean + SEM,;
* indicates significantly different from baseline p<0.05. From left to right: 0.3 mg/kg buprenorphine,
0.3 mg/kg buprenorphine and 0.3 mg/kg naltrexone, 0.3 mg/kg buprenorphine and 1.0 mg/kg
naltrexone, and (conditioned place preference only) 0.3 mg/kg buprenorphine and 3.0 mg/kg

naltrexone.

Figure 3 The tail withdrawal assay shows antagonism of morphine by naltrexone, with and without
buprenorphine. Data shows measurements taken 30 minutes after administration of 10 mg/kg
morphine, and 60 minutes after administration of buprenorphine and/or naltrexone. From left to
right, rats received 0 mg/kg buprenorphine (n = 5), 0.3 mg/kg buprenorphine and 1.0 mg/kg
naltrexone (n = 4), and 1.0 mg/kg naltrexone (n = 7). Baseline values were in the range 4 - 5
seconds. Mean + SEM; * indicates significantly different (p<0.05) vs. morphine alone group; **
indicates significantly different (p<0.05) vs. morphine alone group and vs. 0.3 mg/kg

buprenorphine and 1.0 mg/kg naltrexone group.
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Table 1 Number of rats used in the experiments, and excluded at each stage, and time taken to

reach extinction.

Figure 4 The CPP assay shows the effect of buprenorphine/naltrexone treatment on
reinstatement to drug-seeking. % preference of rats (left to right in each panel: baseline, post-
conditioning, post-extinction and drug-primed reinstatement). Drug prime was 3 mg/kg cocaine or
1.25 mg/kg morphine. A cocaine-conditioned control group (n = 12); B morphine-conditioned
control group (n = 14). C cocaine-conditioned buprenorphine/naltrexone treated group (n = 9); D
morphine-conditioned buprenorphine/naltrexone treated group (n = 8). Mean + SEM; * indicates
significantly different from baseline p<0.05. Arrows indicate that buprenorphine/naltrexone

treatment (0.3 mg/kg/1.0 mg/kg) was administered 10 minutes prior to the priming dose.

Figure 5 Inhibition of electrically-evoked twitch in rat vas deferens by DAMGO. Effects of DAMGO are
inhibited by buprenorphine (bup), A data from a single tissue; B pooled data from 4 tissues. Effects of
DAMGO are inhibited by naltrexone (naltrex), C data from a single tissue; D pooled data from 5
tissues; E Schild plot from data shown in D. Solid line: line of best-fit when slope constrained to 1,

dashed line: 95% confidence limits.

Table 2. Plasma and brain concentrations of buprenorphine and naltrexone and estimated receptor
occupancies. Buprenorphine and naltrexone were administered simultaneously intraperitoneally.
Plasma and brain samples were taken 30 minutes later and buprenorphine and naltrexone levels
measured. The primary metabolites of buprenorphine and naltrexone (norbuprenorphine and 6-
naltrexol) were also assayed but were below the limit of quantitation in plasma and brain samples.
Using the plasma and brain concentrations, and empirically-determined Kg values of both
buprenorphine and naltrexone, receptor occupancy levels were determined. All data shows as mean *

S.E.M.
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Cocaine Morphine Cocaine Morphine
control cohort control cohort treated cohort treated cohort
At start 20 24 16 16
Excluded for preference 0 2 2 1
Excluded f(_)( m_sufflc:lent 8 8 5 7
conditioning
Time tak_en Fo reach 1 week 1 week or 12 1 week 1 week
extinction days
TABLE 1
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Buprenorphine 0.3 mg/kg Naltrexone 1.0 mg/kg

Observed Predicted Observed Predicted
occupancy of mu

: occupancy of mu :
concentration (M) ™ot ior (g concentration (M) 5 ior (96)

Plasma 56 +4 38 285+ 19 62
Brain 83+14 45 313+ 19 55
TABLE 2
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