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Abstract

We propose a new class of sharing rules for the distribution of the gains from
cooperation for partition function games with externalities. We show that these
sharing rules are characterized by three axioms: coalitional efficiency, additiv-
ity and anonymity. Moreover, they stabilize, in the sense of d’Aspremont et al.
(1983), the coalition which generates the highest global welfare among the set
of potentially stable coalitions. Our sharing rules are particularly powerful for
economic problems that are characterized by positive externalities from coali-
tion formation (outsiders benefit from the enlargement of coalitions) and which
therefore typically suffer from free-riding. Our results also carry over to negative
externality games in which cooperation is believed to be easier.
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1 Introduction

It is well-known that the presence of externalities warrants some form of coordination
and cooperation between economic agents to prevent welfare losses. By coordinating
their strategies, agents can improve, both collectively and individually, upon non-
cooperative outcomes provided the gains from cooperation are shared in accordance
with the individual interests of all participants. Examples of economic problems with
externalities are plentiful in the literature: they range from output and price setting of
firms in imperfectly competitive markets (e.g. Deneckere and Davidson 1985 and Yi
1997), R&D investments of firms (e.g. Poyago-Theotokay 1995 and Yi and Shin 2000),
the provision of public goods, like greenhouse gas emission reduction, the eradication
of contagious diseases, like Malaria and AIDS, and the fight against terrorism (e.g.
Sandler 2004 for an overview), to coordination of tariffs and monetary policies (e.g. Yi
1996 and Kohler 2002) among nations.

The classical approach of studying the formation of coalitions assumes a transferable
utility (TU)-framework and is based on the characteristic function. This function
assigns to every coalition a worth, which is the aggregate payoff a coalition can secure
for its members, irrespective of the behavior of players outside this coalition. The focus
of this approach is on the coalition’s worth in the grand coalition and how it might
be shared among all players. However, smaller coalitions and the payoff to outsiders
are typically neglected. Hence, by construction, the characteristic function approach
appears to be ill-suited for the analysis of externality problems in which outsiders’
actions affect the worth of coalitions and vice versa (Bloch 2003). An alternative
approach is the partition function introduced by Thrall and Lucas (1963). This function
assigns a worth to every coalition and singleton in the game. The worth depends on
the entire coalition structure, i.e. the partition of players. The main focus of this
literature is on the prediction of equilibrium coalition structures emerging from some
coalition formation process. Since in our analysis externalities are a central feature,
this paper is based on the partition function.

Beyond the particularities of the underlying economic models, it appears that games
in partition function form share some common features in terms of the incentives to
form coalitions. As extensively discussed for instance by Yi (1997), Bloch (2003) and
Maskin (2003), a crucial feature that determines the success of coalition formation is the
sign of the externality. In positive (negative) externality games, players not involved
in the enlargement of coalitions are better (worse) off through such a move. Hence,
in positive externalities games, typically, only small coalitions are stable, as players
have an incentive to stay outside coalitions. Typical examples of positive externalities
include output and price cartels and the provision of public goods. Firms not involved
in an output cartel benefit from lower output by the cartel via higher market prices.
This is also the driving force in price cartels where the cartel raises prices above non-
cooperative levels. Similarly, agents not involved in a public good agreement benefit
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from higher provision levels of participants. Given the fact that cooperation proves usu-
ally difficult in positive externality games, we will mainly focus on this class of games.
In contrast in negative externality games, outsiders have an incentive to join coalitions
and therefore most coalition models predict the grand coalition as a stable outcome.
Examples include for instance trade agreements which impose tariffs on imports from
outsiders or R&D-collaboration among firms in imperfect markets where members gain
a comparative advantage over outsiders if the benefits from R&D accrue exclusively
to coalition members. However, even in negative externality games cooperation is no
longer trivial, once we depart from the assumption of symmetric players and hence the
distribution of the gains from cooperation becomes crucial. It will become apparent
that almost all our results carry directly over to negative externality games.

As just mentioned, regardless of the sign of the externality, it is intuitively clear
that the success of cooperation depends crucially on the division of the gains from
cooperation. This may explain why there is a substantial body of literature on the
axiomatic underpinning of surplus sharing rules in the context of the partition function
approach; see for instance Myerson (1977), Bolger (1989), de Clippel and Serrano
(2008), Macho-Stadler, Pérez-Castrillo and Wettstein (2007) and Grabisch and Funaki
(2008). However, this literature often assumes cooperation among all agents (i.e. grand
coalition) to be stable per se, despite there are plenty of economic problems where it
seems reasonable to expect that the grand coalition will not emerge because of strong
free-rider incentives (e.g. Ray and Vohra 1999, Maskin 2003 and Hafalir 2007). In
contrast, we consider stability as a necessary condition for sustainable cooperation.
That is, coalitional stability is an equilibrium outcome of our sharing scheme, not an
a priori assumption.

Another body of literature using the partition function focuses on stability as we do
but has paid little attention to the division of the gains from cooperation. Due to the
complexity of partition functions, most papers assume a fixed sharing rule. One set of
papers, which comprises the bulk of the literature, assumes ex-ante symmetric players
with equal sharing (e.g. Bloch 2003, Yi and Shin 2000 and Ray and Vohra 2001). This
is mainly done for analytical tractability. However, symmetry is a strong assumption
that is difficult to justify in most economic environments.
Another set of papers — mainly related to the analysis of public good agreements —
allows for asymmetric players but makes kind of ad hoc assumptions about particular
sharing rules, most of which are classical solution concepts or modifications of them
(e.g. Nash Bargaining Solution or Shapley Value; Barrett 1997, Botteon and Carraro
1997 and Weikard, Finus and Altamirano-Cabrera 2006). Clearly, this approach is
also not satisfactory for at least three reasons. First, for none of these sharing rules it
is known whether an equilibrium coalition structure exists. Second, the prediction of
equilibrium coalition structures is sensitive to the particular specification of the sharing
rule. Third, it remains an open question whether there are other sharing rules that
could perform better in terms of the aggregate worth, letting alone whether there is a
sharing rule that is “optimal”. With optimal we mean that a sharing scheme achieves
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the maximum aggregate worth, subject to the condition that the underlying coalition
structure is stable.

In order to close the research gap identified above, at least partially, we propose
a new class of sharing rules, the Proportional Surplus Sharing Scheme, abbreviated
PSSS, and have a closer look at one of its members, the Equal Surplus Sharing Scheme
(ESSS). Our analysis is based on the well-known concept of internal and external
stability introduced by d’Aspremont et al. (1983) in the context of cartel formation.
Players are assumed to have the choice between remaining at the fringe (i.e. forming
a singleton coalition) or joining the cartel (i.e. forming a non-trivial coalition). The
cartel is called stable if no cartel member has an incentive to leave (internal stability)
and no outsider has an incentive to join (external stability) the cartel. Admittedly, the
focus on a single non-trivial coalition is a restriction. However, this comes with large
benefits. First, the concept of internal and external stability allows us to interpret
the set of stable coalitions as the set of Nash equilibria in a simple 0-1-announcement
game of coalition formation. Second, and most important, we are able to derive all
results under minimal structural assumptions. For instance, no assumption about the
heterogeneity of players is required. Moreover, for many results we do not have to
impose any assumption at all on the properties of the partition function and for few
results only some very general and mild properties are required. Consequently, our
results apply to a vast number of economic problems.

A central concept and starting point in our analysis is the notion of Potentially
Internally Stable (PIS) coalition structures. Loosely speaking, PIS coalition structures
generate sufficient surplus for coalition members in order to satisfy their free-rider
claims. In the presence of externalities, this may only be possible for a subset of all
possible coalition structures. Hence, in positive externality games, our sharing scheme
does not necessarily lead to efficiency in the sense that the grand coalition forms.

It will become apparent that the structure of our sharing scheme resembles the Nash
Bargaining solution but with threat points that depend on the coalition structure.1

Every coalition members receives his threat point payoff plus a share of the surplus
from cooperation which is the difference between the aggregate coalitional worth and
the sum of members’ free-rider payoffs. Shares are represented by weights with the
PSSS allowing for any positive set of weights and ESSS assumes equal weights.

For the PSSS we show that an internally and externally stable coalition always
exists. Even more importantly, among the set of PIS coalition structures, the coalition
structure that generates the highest aggregate worth is stable in positive externality
games. In negative externality games, a similar result holds, though slightly more
restrictive assumptions are required.

1A similar idea in the specific context of international environmental agreements has recently been
advanced by Fuentes-Albero and Rubio (2010), McGuinty (2007) and Weikard (2009).
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Finally, and regardless of the type of externality (and any other structural assump-
tions), we demonstrate that the ESSS is characterized by three axioms, coalitional
efficiency, additivity and anonymity, usually associated with cooperative solution con-
cepts, e.g. the Shapley Value, adapted to the context of partition function games.

Therefore, the ESSS which we propose is close to the axiomatic surplus sharing
literature, though without assuming that the grand coalition will always form. In
other words, the ESSS bridges two strands of literature: the cooperative and axiomatic
surplus sharing literature (e.g. Myerson 1977, Bolger 1989, de Clippel and Serrano
2008, Macho-Stadler, Pérez-Castrillo and Wettstein 2007, van den Brink and Funaki
2009) and the non-cooperative coalition formation literature (e.g. Bloch 2003, Ray and
Vohra 2001, Maskin 2003 and Faigle and Grabish 2011).

In the following, we first introduce notations and definitions in section 2. Section 3
introduces our new sharing scheme and proves its properties. The axiomatization of
this sharing scheme for equal weights is the subject of section 4. Finally, section 5
summarizes the main findings and points to some issues of future research.

2 Ingredients

2.1 Partition Function

We denote by N = {1, ..., n}, n ≥ 2, the set of players in the game. We consider
coalition structures, i.e. partitions of the set of players N , comprising one non-empty
coalition S ⊆ N with #S = s > 0 (the cartel or coalition) while all other players
j ∈ N \S are singletons (the fringe). Let B be the set of all possible coalition structures
of this type, B = {βS = (S, {j1}, ..., {jn−s}), S ⊆ N, j1, ..., jn−s ∈ N \ S}. We define
a partition function π that assigns a single real number πS(βS) to coalition S and real
numbers π{j}(βS) to every singleton j ∈ N \ S of the fringe as follows:

π : βS ∈ B 7→ π(βS) = (πS(βS), π{j1}(βS), ..., π{jn−s}(βS)).

For notational simplicity, for any j ∈ N , we denote π{j}(βS) by πj(βS) in the sequel.
The image of this mapping is a vector of variable size 1 + (n − s), depending on the
cardinality of coalition S and on the total number of players. On the one hand, our
partition function is simpler than general partition functions (see, e.g., Bloch 2003
and Yi 2003) since we disregard all partitions that consist of two or more non-trivial
coalitions. On the other hand, and in contrast to the classic characteristic function,
our partition function assigns not only a worth to coalition S but also to the non-
members of S. This is important because information on the payoffs to players outside
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the coalition is indispensable for analyzing the incentives to leave or join a coalition in
games with externalities.

We define a transferable utility partition function game Γ = (N,B, π), with the set
of players N = {1, ..., n} (with n ≥ 2), a set of partitions or coalition structures B
and a partition function π mapping to each coalition structure βS ∈ B a real valued
vector, representing the worth of all the coalitions in βS. Following, among others, Yi
and Shin (2000), Maskin (2003) and Hafalir (2007), we introduce a general property of
partition functions that proves useful in grouping externalities in two broad classes.

Definition 1 : Positive and Negative Externalities

A game in partition function form Γ(N,B, π) exhibits positive (negative) externalities
if and only if its partition function π satisfies: ∀S ⊆ N, ∀j ∈ N \ S, j 6= i : πj(βS) ≥
(≤)πj(βS\{i}) and ∃k ∈ N \ S, k 6= i : πk(βS) > (<)πk(βS\{i}).

Positive externalities imply that no outsider, i.e. a player that is not involved in
the enlargement of a coalition, is worse off and at least one outsider is strictly better off
whenever a a singleton joins coalition S. The opposite holds for a negative externalities.
Note that a game is called a positive (negative) externality game if this property holds
for all possible coalition structures in βS ∈ B.

Apart from this broad classification, it will turn out to be useful to refer sometimes
to two additional properties.

Definition 2 : Superadditivity

A game in partition function form Γ(N,B, π) is superadditive if and only if its partition
function π satisfies: πS(βS) ≥ πS\{i}(βS\{i})+πi(βS\{i}) for all βS ∈ B and for all i ∈ S.

Superadditivity means that the worth of those players involved in a merger will not
decrease. In positive externalities games, superadditivity is a sufficient condition that
global welfare (i.e. the sum of worth over all players) increases when coalitions become
gradually larger, a property also called full cohesiveness (see e.g. Montero 2006). It is
worthwhile to recall that despite superadditivity the grand coalition may not be stable if
the positive externality effect is stronger than the superadtivity effect (see for instance
the example in the Appendix which we introduce below). For negative externality
games, superadditivity does not necessarily imply that global welfare increases with the
enlargement of coalitions, though one should expect that the grand coalition generates
the highest global welfare as argued below.
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Superadditivity is often motivated by arguing that ”if two coalitions merge, they
always have the option of behaving as they did when they were separate, and so their
total payoff should not fall” (Maskin 2003, p. 9). However, this argument is not in-
nocuous in partition function games if the economic strategies of players not involved
in a merger do not remain fixed (Bloch 2003). In fact, in the presence of externalities,
economic strategies may be strategic substitutes, like in price and output cartels, and
hence superadditivity may either fail completely or may not hold for all coalition struc-
tures. This is well-know from the industrial economics literature (e.g. Salant, Switzer
and Reynolds 1983) where not even a two-player cartel may be profitable and hence
not stable. Despite the critical remark about the assumption of superadditivity, one
may argue that in the context of negative externality games the analysis of coalition
formation looses its normative appeal if superadditivity fails.

In contrast, a less innocuous and almost natural property in externality games is
the property of cohesiveness, see Montero (2006) and Cornet (1998). Cohesiveness
implies that the grand coalition generates the highest global welfare among all possible
coalition structures.

Definition 3 : Cohesiveness

A game in partition function form Γ(N,B, π) is cohesive if and only if its partition
function π satisfies: πN(βN) ≥ πS(βS) +

∑
j /∈S πj(βS) for all βS ∈ B.

By the definition of an externality (regardless whether they are positive or negative),
economic strategies (e.g. output, prices, tariffs and R&D investment) of at least one
player have an impact on at least one other player. Consequently, the grand coalition
can always internalize externalities across all players, and hence the total worth should
not be lower than in any other coalition structure.

Note finally that we will make use of the above properties only in a few instances
and then this will be mentioned explicitly. By default, we make no assumptions at all.

2.2 Valuation Function

For the analysis of the incentives of individual players to form coalitions, we have to
take one more step: it is not the aggregate payoff to a coalition but the individual
payoffs to coalition members that matter. This type of information is part of the
valuation function, i.e. a function mapping coalition structures into a vector of indi-
vidual payoffs, called valuations. We define a valuation function that assigns to every
coalition structure βS ∈ B a real-valued vector fπ(βS) ∈ Rn as follows:

{∑
i∈S fπ

i (βS) = πS(βS)

fπ
j (βS) = πj(βS) if j 6∈ S.
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That is, for every coalition S, the valuation function fπ specifies how the worth of
coalition S is distributed among its members. By construction, valuations are group
rational, i.e. the entire worth πS(βS) of coalition S is distributed among its members.
For every outsider to coalition S, the valuation coincides with the worth πj(βS) that is
assigned to him by the partition function.

Obviously, there are many possibilities to construct valuation functions starting
from a particular partition function. In the sequel, we will propose a particular class
of valuation functions with some desirable properties for games with externalities.

Note the difference between the concept of a valuation and an imputation known
from the characteristic function. An imputation is usually only one vector of length
n, listing the payoff of each player in the grand coalition (S = N) whereas a valua-
tion function assigns vectors of length n to every possible coalition structure, listing
individual payoffs not only of coalition members but also of outsiders.2 This more
comprehensive view is necessary to capture externalities across coalitions and players.

Equipped with the definition of a valuation function, we can now introduce the
notion of stable coalitions following d’Aspremont et al. (1983).

Definition 4 : Internal and External Stability

Let fπ be a valuation function for the game in partition function form Γ(N,B, π) and
f(βS) the vector of valuations of the players in N when coalition structure βS forms.
Coalition structure βS ∈ B is stable with respect to the valuation function fπ if and
only if:

internal stability: ∀i ∈ S : fπ
i (βS) ≥ fπ

i (βS\{i}),

external stability: ∀j ∈ N \ S : fπ
j (βS) ≥ fπ

j (βS∪{j}).

That is, coalition structure βS is stable if it is internally (IS) and externally (ES)
stable, i.e. no insider wants to leave and no outsider wants to join coalition S.

As there are many ways to share the coalitional worth in a coalition game Γ, there
are as many possible valuation functions that can be derived from its partition function.
Consequently, a partition βS may be stable with respect to a particular valuation
function fπ but may not be stable with respect to another valuation function gπ.
Therefore, we denote the set of coalition structures that are internally stable with
respect to valuation function fπ by ΣIS(fπ) , the set of coalition structures that are
externally stable by ΣES(fπ) and the set of stable coalition structures by ΣS(fπ) =
ΣIS(fπ) ∩ ΣES(fπ).

2An exception is Aumann and Drèze (1974) who consider various solution concepts not only for
the grand coalition but also for any partition of players. We will apply one of their concepts to the
example we introduce below.
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In the following, we start our analysis by considering first the incentive of coalition
members to leave coalition S,i.e.internal stability, and subsequently adding the dimen-
sion of external stability. This is because our new sharing scheme is mainly developed
to remedy free-riding in the context of positive externality games, though we will show
later that it is also useful in negative externality games. In positive externality games,
it appears that one is more concerned about players leaving the coalition than about
players joining it. Hence, the most immediate notion of free-riding seems to be related
to the violation of internal stability, although we have to be aware that stability also
comprises external stability. For this purpose, it will prove useful to classify coalition
structures according to the following criterion.

Definition 5 : Potential Internal Stability

Consider a game in partition function form Γ = (N,B, π). A coalition structure βS ∈ B
is called Potentially Internally Stable for game Γ if and only if:

πS(βS) ≥
∑
i∈S

πi(βS\{i}).

That is, a coalition structure is Potentially Internally Stable (PIS) if the aggregate
payoff to the coalition is not smaller than the sum of the free-rider payoffs of its
members. The free-riding payoff is the payoff that a player can achieve if he leaves
coalition S and the remaining members continue cooperating in S \ {i}. Note that
the property of PIS refers to the partition function, as only aggregate payoffs matter,
whereas internal stability and external stability are (and have to be) properties of a
valuation function, as individual payoffs matter. For later reference, we will denote the
set of coalitions that are PIS for a particular partition function by π by ΣPIS(π).

3 Proportional Surplus Sharing Scheme

3.1 Motivation

In this section, we introduce our new surplus sharing scheme for partition function
games with externalities, the Proportional Surplus Sharing Scheme (PSSS). Since it
is our objective to study the impact of surplus sharing rules on the stability of coali-
tions in a general framework, the use of a specific sharing rule would be too restrictive.
Therefore, we introduce a class of sharing rules and study the properties of its mem-
bers. Recall that there corresponds to every surplus sharing rule a particular valuation
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function. Hence, speaking about a sharing rule is equivalent to speaking about a valu-
ation function and it is the latter terminology that we will use in the remainder of this
paper.

In order to illustrate some of our results in the course of the following discussion,
we provide a numerical example in the Appendix. The example assumes four players
and a partition function that exhibits positive externalities, see Table A.1 in the Ap-
pendix. As can be seen from column (10), all coalition structures comprising two-player
coalitions, and two out of four coalition structures comprising a three-player coalition
are PIS. The other two three-player coalitions and the grand coalition do not generate
enough surplus to compensate for the free-riding claims of their members, despite the
partition function in this example is superadditive. Consequently, the challenge for a
surplus sharing rule is to achieve maximal global welfare and to ensure stability of the
coalition structure at the same time.

Meeting this challenge is far from obvious as this is illustrated in Table A.2. In this
table valuations of the Shapley Value are reported as defined in Aumann and Drèze
(1974), i.e. these values are computed not only for the grand coalition but for every
non-empty coalition. Two interesting points can be observed in this example. First,
a stable coalition may not exist. Second, there is no indication as to whether there
are other sharing rules leading to stable coalitions and in particular which sharing rule
would imply the highest aggregate worth. In the following, we claim that there is such
a sharing rule: the PSSS.

3.2 Definitions

The construction of the PSSS starts from the observation that a necessary and sufficient
condition for internal stability of coalition structure βS is that each player in S receives
his outside payoff. In the cartel formation game, the free-rider payoffs are associated
with the scenario in which an individual coalition member leaves coalition S in order to
become a singleton while the remaining members of coalition S continue to cooperate.
These payoffs constitute lower bounds on the claims of individual coalition members
with respect to the coalitional surplus in order to refrain from leaving the coalition.

Definition 6 : Proportional Surplus Sharing Valuation Function

A Proportional Surplus Valuation Function for a game in partition function form Γ =
(N,B, π) is a valuation function vπ that satisfies ∀S ⊆ N :

{
vπ

i (βS) = πi(βS\{i}) + λi(βS)σ(βS) ∀i ∈ S

vπ
j (βS) = πj(βS) ∀j ∈ N \ S

10



with λ(βS) ∈ ∆s−1 = {λ ∈ Rs
+ | ∑

i∈S λi = 1} and σ(βS) = πS(βS) −∑
i∈S πi(βS\{i})

where ∆s−1 denotes the set of all possible positive sharing weights of a coalition with s
players and σ(βS) denotes the surplus or deficit of coalition S over the sum of free-rider
payoffs πi(βS\{i}) of its members.

Intuitively, the Proportional Surplus Sharing Valuation Function (PSSVF) allocates
to each coalition member his free-rider payoff, plus a non-negative share of the remain-
ing surplus (or deficit) in proportion to weights λ(βS). Differences in valuations of
players can be the result of (i) different free-rider payoffs, and/or (ii) different weights
according to which the surplus or deficit is shared.3

One obvious interpretation of our definition is that the free-rider payoff πi(βS\{i})
is the threat point of player i in coalition S and weight λi(βS) is his bargaining power.
Hence, the PSSVF can be seen as an extension of a Nash bargaining solution in TU-
games in the context of games in partition function form. However, different from the
Nash bargaining solution, the threat point is not fixed but depends on the coalition
structure. For instance, if S gradually increases through the accession of players, the
threat point will also gradually increase (decrease) as a result of positive (negative)
externalities.

It is important to point out that there are as many PSSVFs for a game in partition
function form as there are ways to share — in every possible coalition S of N —
the coalitional surplus among its members. The set of all PSSVFs for game Γ will
be denoted by V(Γ) and constitutes the PSSS. Despite that every PSSVF is defined
for specific weights λ, the class of PSSVFs, constituting the PSSS, does not require
assumptions about weights as long as they are non-negative and sum up to one for
each coalition S of N . This stresses that — different from most cooperative solution
concepts, e.g., Shapley Value and Nucleolus — the PSSS does not require to assign a
unique value to each player in some coalition S. Instead, we find it more appealing
that weights do not matter for many of our subsequent results, i.e. several results hold
for the entire class of PSSVFs.

3Note the following link to characteristic function form games. For a given partition function form
game Γ = (N,B, π), we can define a characteristic form game (N, u) with u(S) = πS(βS) for any
S ⊆ N . Assume that in the game Γ for any S ⊆ N and any j 6∈ S the value πj(βS) does not depend
on S. Then we can write the PSSVF for S = N and equal weights as follows. For each i ∈ N , we
have

vπ
i (βN ) = πi(βN\{i}) +

1
n

[
πN (βN )−

∑

i∈N

πi(βN\{i})
]

=

u({i}) +
1
n

[
u(N)−

∑

i∈N

u({i})] = CISi(N,u)

with CISi(N, u) being the CIS-value for a characteristic form game as defined by Driessen and Funaki
(1991). See also van den Brink and Funaki (2009) on this point.
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Table A.3 displays results in the numerical example for our PSSVF. The PSSVF
achieves internal stability of all nine PIS coalitions (i.e. compare Table A.1, column 10
with Table A.3, column 7). This observation will be generalized in Lemma 1 below. In
contrast, the Shapley Value can only ensure internal stability of the singleton coalition
structure and of all two-player coalitions (Table A.2, column 7) and hence misses to
internally stabilize two potentially internally stable coalitions with three members.

3.3 Preliminary Properties

The following Lemma formalizes and generalizes the observations from above.

Lemma 1 : Potential Internal Stability of PSSVFs

Consider a partition function form game Γ(N,B, π). Partition βS ∈ B is potentially
internally stable if and only if it is internally stable for any vπ ∈ V(Γ).

Proof :
=⇒ Suppose that coalition structure βS ∈ B is PIS, implying σ(βS) ≥ 0, but assume to
the contrary that there exists a valuation vπ ∈ V(Γ) such that partition βS ∈ B would
not be internally stable with respect to this valuation function. Thus, πi(βS\{i}) +
λi(βS)σ(βS) = vπ

i (βS) < vπ
i (βS\{i}) = πi(βS\{i}) which would imply σ(βS) < 0 and

therefore contradicts the initial assumption.

⇐= If βS is internally stable for any valuation vπ ∈ V(Γ), then it follows that
vπ

i (βS) ≥ vπ
i (βS\{i}) = πi(βS\{i}). Taking sums over all members in S and using the

definition of PSSVF yields
∑

j∈S

[
πj(βS\{j}) + λj(βS)σ(βS)

] ≥ ∑
j∈S πj(βS\{j}) and

hence σ(βS) ≥ 0. From Definition 6, it therefore follows that βS is PIS. 2

The importance of Lemma 1 derives from three facts. First, internal stability is a
necessary condition for stable coalitions, but is often violated for larger coalitions, in
particular in positive externality games, as our example illustrates and as it appears
from the literature (e.g. Maskin 2003 and Hafalir 2007). Second, every PSSVF ensures
that every coalition structure that is PIS will actually be internally stable. Other
solution concepts may miss this potential substantially as was observed in the numerical
example. Third, there is a high degree of freedom in the choice of the sharing rule
(through the choice of weights λ) when aiming at stabilizing coalitions internally.

The next Lemma 2 will turn out to be very useful in the sequel because it establishes
an important link between internal and external stability for every member of the PSSS.

12



Lemma 2 : External and Potential Internal Stability of PSSVFs

Consider a game in partition function form Γ(N,B, π) and a valuation function vπ ∈
V(Γ). If coalition structure βS is not externally stable with respect to vπ, then there
exists a player j ∈ N \ S such that coalition structure βS∪{j} is potentially internally
stable.

Proof :
If coalition structure βS is not externally stable with respect to vπ, then it follows from
Definition 4 that: ∃j ∈ N \ S : vπ

j (βS∪{j}) > vπ
j (βS). Using Definition 6 of PSSVF this

is equivalent to πj(βS) + λj(βS∪{j})σ(βS∪{j}) > πj(βS) or σ(βS∪{j}) > 0, implying that
S ∪ {j} is PIS. 2

It is important to note that Lemma 2 is a distinctive property of the class of PSSVFs.
It may not hold for other valuation functions, for instance valuation functions based
on traditional cooperative solutions, like the Shapley value, as this is evident from the
numerical example in the appendix (see Table A.2).

Using Lemma 1 and 2, we now establish our first main result, the existence of a
stable coalition structure for every PSSVF.

Proposition 1 : Existence of a Stable Coalition Structure

Consider a game in partition function form Γ(N,B, π) and the corresponding class of
PSSVFs V(Γ). For any vπ ∈ V(Γ) there exists at least one stable coalition structure
βS ∈ B.

Proof :
By definition, the trivial coalition structure ({1}, ..., {n}) is internally stable. If it is
also externally stable, we are done. Suppose, however, that this is not the case. Then
there exists at least one two-player coalition that is PIS by Lemma 2 and which is
internally stable for any vπ ∈ V(Γ) by Lemma 1. Again, if one of these two-player
coalitions is also externally stable, we are done. Continuing with this reasoning, it is
evident that some coalition S ⊆ N will be eventually internally and externally stable,
noting that S = N is externally stable by definition. 2

It should be noted that the line of reasoning in the proof above follows closely
the arguments developed in d’Aspremont et al. (1983). However, there is an impor-
tant difference: we neither have to assume symmetric valuations for all players in S,
i.e. vπ

i (βS) = vπ
j (βS) ∀i, j ∈ S, nor symmetric valuations for all non-member, i.e.
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vπ
k (S) = vπ

l (S) ∀k, l ∈ N \ S, as this is done in d’Aspremont et al. (1983) and in much
of the literature (see, e.g. Bloch 2003 and Yi 1997). Note also that no structural as-
sumption about the underlying economic model is required and hence also not about
the properties of the partition function game.

From the proof of Proposition 1 it is evident that it would be sufficient if there
exists at least one non-trivial (i.e. a two-player or possibly larger) PIS coalition to
ensure existence of a non-trivial stable coalition structure. In this case, we would
have a starting point for applying the “algorithmic existence proof” above. In many
economic examples such non-trivial PIS coalitions do exist. At a more general level,
superadditivity would be a sufficient though not a necessary condition for the existence
of a non-trivial stable coalition under the PSSS, as shown in the following corollary.

Corollary 1 : Existence of a Unique Stable Coalition Structure

Consider a game in partition function form Γ(N,B, π) and the corresponding class of
PSSVFs V(Γ). For any vπ ∈ V(Γ) there exists at least one stable non-trivial coalition
structure βS ∈ B if partition function π is superadditive.

Proof :
As result of superadditivity, π{i,j}(β{i,j}) ≥ πi(β{i}) + πj(β{j}) holds for all coalitions
with two members which implies that they are PIS. Hence, a proof in the spirit of the
proof of Proposition 1 can be constructed, except that the starting point is not the
trivial coalition but a coalition with two players. 2

3.4 Maximal Welfare Stable Coalition Structure

We now turn to one of our central results, which is related to welfare optimality. It
states that adopting the PSSS guarantees that the coalition structure which generates
the highest aggregate worth (i.e. the total payoff over all players) among all PIS
coalition structures will not only be internally stable but also externally stable and
therefore stable. The remarkable aspect of this result is that a sharing scheme that, at
first sight, is designed to foster internal stability, is also capable of ensuring external
stability for those coalitions that are most desirable in terms of aggregate welfare.

Proposition 2 : Maximal Welfare Stable Coalition Structure in Positive
Externality Games

Let ΣPIS(π) be the set of coalition structures that are potentially internally stable in par-
tition function form game Γ(N,B, π) with positive externalities and let βS∗ be the coali-
tion structure with the highest aggregate worth in ΣPIS(π): πS∗(βS∗)+

∑
j∈N\S∗πj(βS∗)≥
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πS(βS) +
∑

j∈N\S πj(βS) for all βS ∈ B. Then, every valuation function vπ ∈ V(Γ) will

make coalition structure βS∗ both (i) internally and (ii) externally stable and, hence,
(iii) stable.

Proof :
(i) Follows from Lemma 1.

(ii) Assume to the contrary that βS∗ ∈ ΣPIS(π) would not be externally stable for
some valuation function vπ ∈ V(π). Hence, it follows from Definition 4 that there is an
outsider j ∈ N \ S∗ who would strictly gain from joining coalition S∗: vπ

j (βS∗∪{j}) >
vπ

j (βS∗). Using Definition 6, it follows that πj(βS∗) + λj(βS∗∪{j})σ(βS∗∪{j}) > πj(βS∗)
and therefore we have that σ(βS∗∪{j}) > 0 which is equivalent to

∑
k∈S∗∪{j}πk(βS∗∪{j})>∑

k∈S∗∪{j} πk(βS∗). Hence, members of coalition S∗ ∪ {j} are strictly better off un-

der S∗ ∪ {j} than under S∗ and S∗ ∪ {j} is PIS. At the same time, we know from
the positive externalities property that outsiders to S∗ ∪ {j} are not worse off under
S∗ ∪ {j} than under S∗:

∑
k∈N\(S∗∪{j}) πk(βS∗∪{j}) ≥

∑
k∈N\(S∗∪{j}) πk(βS∗). Combin-

ing the inequalities of members and non-members of coalition S it would hold that∑
k∈N πk(βS∗∪{j}) >

∑
k∈N πk(βS∗), contradicting the initial assumption that S∗ gener-

ates the highest worth among all coalition structures that are PIS. (iii) Follows from
Definition 4. 2

Proposition 2 can be interpreted as saying that we cannot do any better in terms of
global welfare than adopting the PSSS if the agreement is required to satisfy stability
in the sense of d’Aspremont et al. (1983). Note first that this result is very general
since it only requires that the underlying game exhibits positive externalities. There
is no need for further assumptions like superadditivity and hence this result applies
to many economic problems. Second, since the PSSS is a collection of parametric
valuation function, related to a specific set of sharing weights λ(βS),∀βS ∈ B, there
remains considerable flexibility how to allocate the surplus of the coalition without
jeopardizing optimality.

In the numerical example in the Appendix, the PSSVF stabilizes the three-player
coalition ({a, b, c}, {d}) with the highest aggregate payoff among all potentially inter-
nally stable coalitions (i.e. 131

3
), achieving 75.5% of the maximal aggregate payoff

which would be obtained in the grand coalition (i.e. 172
3
), see Table A.3. In contrast,

in this example, the Shapley value (see Table A.2) leads to seven internally stable
coalition structures of which none is externally stable and hence stable.

Finally, one might wonder whether the maximal welfare result in Proposition 2 car-
ries over to negative externality games. The answer is affirmative, provided we impose
additional conditions on the partition function. Apart from cohesiveness, which we
argued above is a quite natural assumption in externality games, we need superaddi-
tivity to make coalition formation attractive at all. (See the discussion in section 2.1.)

15



Under these two conditions, it can be easily shown that the PSSS stipulates the grand
coalition to be the unique stable and welfare maximizing coalition structure.

Proposition 3 : Maximal Welfare Stable Coalition Structure in Negative
Externality Games

Consider a partition function form game Γ(N,B, π) of which the partition function π
exhibits negative externalities, superadditivity and cohesiveness. Then, every valuation
function vπ ∈ V(Γ) will make the grand coalition N (i) the unique stable and (ii) welfare
maximizing coalition structure.

Proof :
It is shown in Weikard (2009), Theorem 3 p. 583, that the grand coalition is the unique
stable coalition in superadditive negative externality games. In addition, it follows
trivially from cohesiveness that the grand coalition generates the highest global wel-
fare. 2

Recall that cohesiveness is a rather weak and natural condition in externality games,
and certainly much weaker than full cohesivenss as discussed Cornet (2003) and Mon-
tero (2006).

4 Characterization

In this section, we show how our new sharing scheme, the PSSS, relates to existing
cooperative solutions. In order to facilitate this comparison, we provide a characteri-
zation of the PSSS in the spirit of the Shapley value, referring to axioms like efficiency,
anonymity and additivity. However, as these axioms are defined for cooperative games,
we have to adapt them to the context of partition function games.

4.1 Coalitional Efficiency

Coalitional Efficiency (CE) requires that, for every possible coalition structure βS ∈ B,
the value of the coalition S in coalition structure βS is fully distributed among its
members and that outsiders get their individual payoff.

16



Axiom 1 : Coalitional Efficiency

Consider a game in partition function form Γ(N,B, π). A valuation function fπ is
called coalitionally efficient if and only if for all βS ∈ B it holds that

{∑
i∈S fπ

i (βS) = πS(βS)

fπ
j (βS) = πj(βS) for any j ∈ N \ S.

This axiom is important as it ensures that no surplus is wasted by the sharing
scheme. By construction, see Definition 6, the PSSS satisfies this axiom.

Proposition 4 : Coalitional Efficiency of the PSSS

Consider a game in partition function form Γ(N,B, π). The PSSS satisfies the axiom
of coalitional efficiency for any coalition structure βS ∈ B.

4.2 Additivity

A second frequently considered axiom for a value or solution is Additivity (AD). Con-
sider two games with partition functions π1 and π2. Loosely speaking, additivity
requires that the outcome of the combined game, characterized by the sum of the par-
tition functions, π1 + π2, is the same as the sum of the separate outcomes of both
games.

Axiom 2 : Additivity

Consider two games in partition function form Γ(N,B, π1) and Γ(N,B, π2). A valua-
tion function fπ is called additive if and only if for any coalition structure βS ∈ B and
for every i ∈ N , it holds that

fπ1+π2

i (βS) = fπ1

i (βS) + fπ2

i (βS).

Additivity may be motivated in several ways. For example, we may interpret the
partition function as an expected payoff. Then additivity is desirable because one can
sum over the values in different states of the world. Moreover, in cost-sharing games
in which agents share the cost of several services, additivity is desirable because the
cost of a joint service should be the sum of the cost of separate services.4

4Cases where additivity does not hold are discussed for instance in Kolpin (1996).
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Proposition 5 : Additivity of the PSSS

The PSSS satisfies the axiom of additivity for any pair π1 and π2 of partition functions.

Proof :
Consider two partition functions π1 and π2. We define the sum of the partition functions
by π̄ = π1 + π2 such that for all βS ∈ B it holds that (i) π̄S(βS) = π1

S(βS) + π2
S(βS)

and (ii) for all j /∈ S π̄j(βS) = π1
j (βS) + π2

j (βS). For any i ∈ S, we have:

vπ̄
i (βS) = π̄i(βS\{i}) + λi(βS)

[
π̄S(βS)−

∑
j∈S

π̄j(βS\{j})

]

=
[
π1

i (βS\{i}) + π2
i (βS\{i})

]
+

λi(βS)

[
[
π1

S(βS) + π2
S(βS)

]−
∑
j∈S

[
π1

j (βS\{j}) + π2
j (βS\{j})

]
]

=

[
π1

i (βS\{i}) + λi(βS)

[
π̄1

S(βS)−
∑
j∈S

π̄1
j (βS\{j})

]]
+

[
π2

i (βS\{i}) + λi(βS)

[
π̄2

S(βS)−
∑
j∈S

π̄2
j (βS\{j})

]]

= vπ1

i (βS) + vπ2

i (βS).

2

Note that this proof hinges on the assumption that the weights λi(βS) do not depend
on the partition function π. However, they may depend on other parameters, like for
instance the number of players in the game.

4.3 Anonymity

Anonymity (AN) requires that the outcome of the sharing scheme does not depend on
the identity of players.

First note that this axiom requires a stronger adaptation to our context than the
previous two axioms, coalitional efficiency and additivity, compared to their traditional
definition in cooperative game theory. In particular, we cannot allow for any possible
permutation of agents because this would upset the coalition structure. Therefore, we
follow Aumann and Drez̀e (1974) and restrict permutations to respect to some extent
the initial coalition structure. In particular, we allow only for permutations of players
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such that the coalition S ∈ βS remains intact. Second, we will turn to a specific
member of the class of PSSS, in particular the Equal Surplus Sharing Scheme ESSS
characterized by λi = λj, ∀i, j ∈ N .

Let ρ be a permutation of the set N , i.e. a one-to-one function from N to N .
For any partition function π and any coalition structure βS, consider a permutation
ρ under which coalition S is invariant (i.e. for each j ∈ S, ρ(j) = i ∈ S). In this
case, for each βS ∈ B the corresponding coalition structure is ρ(βS) ∈ B, in particular
ρ(S) = S. Also, define the composition ρπ as follows:

ρπ[ρ(βS)] = π(βS).

Axiom 3 : Anonymity

Consider a game in partition function form Γ = (N,B, π). A valuation function fπ

satisfies anonymity if for any i, j ∈ N such that ρ(j) = i we have:

fρπ
i [ρ(βS)] = fπ

j (βS).

Anonymity implies that changing the order of players, while leaving the coalition
structure intact, does not change the valuation of players. In fact, the outcome does
depend on whether a player is an insider or outsider, but it does not depend on the
exact position which a player takes among his group (i.e. group of coalition members
or group of singletons).

Proposition 6 : Anonymity of the ESSS

The ESSS (for any non empty coalition S with cardinality s, λi(βS) = 1/s) satisfies
anonymity.

Proof :
1) i ∈ S, ρ(j) = i ⇒ j ∈ S. So ρ(S) = S.

vρπ
i [ρ(βS)] = ρπi(βS\{i}) +

1

s


ρπS(βS)−

∑

i∈ρ(S)

ρπi(βS\{i})


 =

πj(βS\{j}) +
1

s

[
πS(βS)−

∑
j∈S

πj(βS\{j})

]
= vπ

j (βS).

2) i 6∈ S. We consider ρ(j) = i, so j 6∈ S.

vρπ
i [ρ(βS)] = ρπi(ρ(βS)) = πj(βS) = vπ

j (βS)

2
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4.4 Axiomatization

Proposition 7 : The ESSS is the unique solution satisfying CE, AD and
AN

Let Γ(N,B, π) be a game in partition function form. For any coalition structure βS ∈ B,
the ESSS is the unique solution satisfying axioms coalitional efficiency, additivity and
anonymity.

Proof :
Propositions 4-6 imply that for any coalition, the ESSS satisfies axioms coalitional
efficiency, anonymity and additivity.5

We now prove that if another sharing scheme or solution concept for a game in
partition function form Γ(N,B, π), say fπ, satisfies axioms CE, AD and AN, then it
coincides with the ESSVF, i.e. the PSSVF with equal weights. The result is proved
in the same spirit of Shapley’s characterization theorem, i.e. by using the linearity
of the characteristic form games space. For this, we introduce a technical definition,
the so-called c-characteristic function. This allows us to specify the linear structure
of the c-cooperative game space, i.e. the partition function form game space we are
considering in this paper.

If P∗(N) = {S ⊆ N, S 6= ∅}, given the partition function π, we will denote by πc

the c-characteristic function πc : P∗(N)×N → R defined for any (S, i) ∈ P∗(N)×N
as follows:

πc(S, i) =

{
πS(S, i) = πS(βS) if i ∈ S,

πi(S, i) = πi(βS) if i 6∈ S.

Let us note that the c-characteristic function is constant on the set S. We call the pair
(N, πc) a c-cooperative game (which by definition coincides with the partition function
form game Γ = (N,B, π)) and denote by Πn

c the space of all c-cooperative games with
n players, i.e. the set of all possible πc defined on P∗(N)×N . Let π1

c and π2
c be in Πn

c

and α ∈ R. Since for any (S, i) ∈ P∗(N)×N , (π1
c + π2

c )(S, i) = π1
c (S, i) + π2

c (S, i) and
(απ1

c )(S, i) = απ1
c (S, i), Πn

c turns out to be a linear space.

The dimension of Πn
c is 2n − 1 + n2n−1 − n2.

We have one coalition structure of singletons ({1}, ..., {n}) and for every coalition
S with s ≥ 2 the number of possible coalition structures with a coalition of cardinality
s is (

n
s

)
(n− s + 1)

5Note that the assumption of equal weights is only necessary for anonymity. The other properties,
coalitional efficiency and addivity, hold for the more general class of the PSSS with arbitrary weights.
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and hence the dimension is given by

n +
n∑

s=2

(
n
s

)
(n− s + 1) = n +

n∑
s=2

(
n
s

)
+ n

n−1∑
s=2

(
n− 1

s

)
=

2n − 1 + n(2n−1 − n).

A basis is given by {δT , T ⊆ N, T 6= ∅} ∪ {δT,j, T ⊂ N, j 6∈ T} where

δT (S, i) =

{
1 if T = S and i ∈ T ,

0 otherwise.

δT,j(S, i) =

{
1 if T = S and i = j 6∈ T ,

0 otherwise.
.

Let π ∈ Πn
c be a c-characteristic function. Then for any (S, i) ∈ P∗(N) × N we

have
πc(S, i) =

∑
T⊂N

{cT δT (S, i) +
∑

j 6∈T

cT,jδT,j(S, i)}+ cNδN(S, i)

with cT , cT,j ∈ R.

Let Γ = (N,B, π) and π be a partition function. For any coalition structure βS ∈ B
define πc as the c-characteristic function associated with the partition function π for
the game Γ. In the following, we will omit the subscript c, the argument will make
it clear which function we consider. Let fπ be a solution concept for the partition
function π, i.e.

fπ : βS = (S, {j1}, ..., {jn−s}) ∈ B 7→ (fπ
1 (βS), ..., fπ

n (βS)) ∈ Rn.

For any βS ∈ B, we can also consider the solution fπ defined on the set P∗(N)×N as
follows

fπ(S, i) =

{
fπ

i (βS) if i ∈ S,

fπ
j (βS) = πj(βS) if j 6∈ S.

Let us suppose that the solution concept fπ satisfies the axioms CE, AD and AN. By
using AD, we have:

fπ = f cN δN +
∑
T⊂N

f cT δT +
∑

j 6∈T cT,jδT,j

and since also the ESSS νπ satisfies additivity,

νπ = νcN δN +
∑
T⊂N

νcT δT +
∑

j 6∈T cT,jδT,j .
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It is sufficient to prove that for any (S, i) ∈ P∗(N)×N , we have

(1) f cN δN (S, i) = νcN δN (S, i)

and for any coalition T ⊂ N , for any (S, i) ∈ P∗(N)×N and j 6∈ T , we have

(2) f cT δT +
∑

j 6∈T cT,jδT,j(S, i) = νcT δT +
∑

j 6∈T cT,jδT,j(S, i).

Since for any (S, i) ∈ P∗(N) × N the function δN(S−{i}, i) = 0 by definition of
ESSS, we have

νcN δN (S, i) = cNδN(S−{i}, i) + 1/s[cNδN(S, i)−
∑
i∈S

cNδN(S−{i}, i)] = cN1/n

if S = N and zero otherwise.

By CE, we have
∑

i∈S f cN δN (S, i) = cNδN(S, i) = cN if S = N and zero otherwise.
Let us consider a permutation ρ : N → N such that ρ(S) = S and ρ(j) = i; define
ρcNδN(ρ(S), i) = cNδN(S, j). By AN, we have fρcN δN (ρ(N), i) = f cN δN (N, j) so that
for any i, j ∈ N the values coincide f cN δN (N, i) = f cN δN (N, j). This implies that∑

i∈N f cN δN (N, i) = nf cN δN (N, i) = cN . Equality (1) is therefore proven.

Fix now a coalition T ⊂ N . We have to prove equality (2) by distinguishing four
cases.

2a) S = T, i = j 6∈ S = T :

By definition of the ESSS, with i 6∈ S, we have νcSδS+
∑

i6∈S cS,iδS,i(S, i) = cS,i. But
then, by CE, with i 6∈ S, we have

f cT δT (S, i) +
∑

j 6∈T

f cT,jδT,j(S, i) = cT δT (S, i) +
∑

j 6∈T

cT,jδT,j(S, i) =

0 +
∑

j 6∈S

cS,jδS,j(S, i) = cS,i.

2b) S = T, i ∈ S, j 6∈ S = T :

Since i ∈ S, δT,j(S, i) = 0 and since j 6∈ T by definition of the ESSS, we have that
νcT δT +

∑
j 6∈T cT,jδT,j(S, i) = νcT δT (S, i) = cS1/s. Analogously, f cT δT +

∑
j 6∈T cT,jδT,j(S, i) =

f cSδS(S, i), and by CE we have
∑

i∈S f cSδS(S, i) = cSδS(S, i) = cS. By using AN, we
have f cSδS(S, i) = f cSδS(S, j). This implies that

∑
i∈S f cSδS(S, i) = sf cSδS(S, i) = cS.

2c) T = S−{i}, i = j ∈ S, j 6∈ T :

We prove that

f cS−{i}δS−{i}+
∑

i6∈S−{i} cS−{i},iδS−{i},i(C, h) = νcS−{i}δS−{i}+
∑

i6∈S−{i} cS−{i},iδS−{i},i(C, h)
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for any C ⊆ N and h ∈ N .

If h 6∈ C, by CE equality (2) is satisfied because both members are equal to

γ(C, h) = [cS−{i}δS−{i} +
∑

i6∈S−{i}
cS−{i},iδS−{i},i](C, h).

For h ∈ C, the function γ(C, h) is zero if C 6= S−{i} and equality (2) holds because
both members are 0. Let us suppose C = S−{i} and h ∈ S−{i}. So

νγ(S−{i}, h) = γh(S−{i}−{h}, h) + 1/(s− 1)[γS−{i}(S−{i}, h)−
∑

h∈S−{i}
γh(S−{i}−{h}, h)] = cS−{i}1/(s− 1).

But then fγ(S−{i}, h) = f cS−{i}δS−{i}(S−{i}, h). By (CE),

∑

h∈S−{i}
f cS−{i}δS−{i}(S−{i}, h) = cS−{i}δS−{i}(S−{i}, h) = cS−{i}

and by AN
f cS−{i}δS−{i}(S−{i}, h) = cS−{i}1/(s− 1).

2d) T 6= S, T 6= S−{i}, i ∈ S ∩ T, j 6∈ T :

In this case, the function γ(S, i) = [cT δT +
∑

j 6∈T cT,jδT,j](S, i) = 0, hence equal-
ity (2) holds because both members are 0. 2

In order to appreciate Proposition 7, it is worthwhile to recall (see Aumann and
Drez̀e 1974) that the Shapley value in games in partition function form is characterized
by relative efficiency, symmetry (anonymity), additivity and the null-player condition.
The solution concept introduced in this paper requires only the first three axioms.

5 Conclusion

In this paper, we have introduced a new sharing scheme, the Proportional Surplus Shar-
ing Scheme (PSSS) for the distribution of the gains from cooperation in games with
externalities. In these games, the formation of the grand coalition cannot be taken for
granted, which is particular true in the presence of positive externalities. Our analysis
was based on games in partition function form in which coalition structures consist of
one genuine coalition plus singletons. Particular attention was given to games which
exhibit positive externalities from coalition formation, i.e. games in which outsiders to
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a coalition benefit from the enlargement of the coalition. However, most of our results
hold irrespective of the type of externality and those derived for positive externalities
carry over to negative externalities with minor modification. Prominent examples of
positive externality games include the provision of public goods, like international co-
operation between countries on issues of security, environment, customs or monetary
unions, and cooperations between private companies on matters like R&D, procure-
ment, output or price coordination. Examples of negative externality games are various
forms of trade agreements which impose tariffs on imports from outsiders.

We showed that the PSSS achieves the maximum aggregate welfare subject to the
constraint that coalitions have to be stable in the sense of d’Aspremont et al. (1983).
More precisely, the PSSS attains the highest possible aggregate welfare among the set
of coalitions that can potentially be internally stabilized. Potential internal stability
(PIS) means that coalitions generate sufficient surplus to compensate for the free-riding
claims of their members. The grand coalition may or may not be a member of this set of
PIS coalitions, though in negative externality games it is the most likely outcome. Our
sharing scheme is flexible because, irrespective of the weights attached to individual
coalition members, the maximum welfare result holds.

An other important contribution of this paper was the complete characterization
of a particular member of the PSSS. For the Equal Surplus Sharing Scheme (ESSS),
which is a PSSS with equal sharing weights, it turns out that, much in the spirit of char-
acterizations of the Shapley value in cooperative game theory, the axioms coalitional
efficiency, additivity and anonymity hold.

Hence, we improved upon the existing literature on coalition formation in the con-
text of externalities in several respects. We departed from the assumption of symmetric
agents, established the existence of stable coalitions, characterized the solution concept
in terms of well established axioms and showed optimality subject to stability.

For future research, two possible extensions seem obvious though difficult. First,
our approach could be generalized to allow for the co-existence of several non-trivial
coalitions. However, there is doubt, multiple coalitions would complicate the analysis
tremendously because outside or threat point payoffs are not straightforwardly defined
any longer as threat points are mutually depended and linked. Second, for many of our
results, the PSSS leaves the choice of surplus sharing weights open. Endogenizing the
value of these weights, which may be interpreted as bargaining power, in games with
heterogeneous players and externalities seems an interesting topic for further research.
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Appendix

Table A.1 displays a four-player example with a partition function that exhibits pos-
itive externalities. The table displays the coalition structure (column 1), the worth
to coalition S (column 2) and to non-members of S (column 3-6) and the aggregate
worth to all players (column 7), the sum of free-rider payoffs (column 8; see Definition
5), the surplus to the coalition (column 9; see Definition 6) which is the difference
between column 8 and 2 and indicates coalitions that are (not) potentially internally
stable coalitions with 1 (0) (column 10).

We display valuations for the Shapley value in Table A.2. We use the extended
version of the Shapley value as defined in Aumann and Drèze (1974), implying that
these values are computed for every non-empty coalition and not only for the grand
coalition. The values of the Shapley value are computed according to the following
formula:

∀βS ∈ B, ∀i ∈ S : vShp
i (βS) =

∑
T⊆S

(t− 1)!(s− t)!

t!

[
πT (βT )− πT\{i}(βT\{i})

]
.
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Table A.1: Partition Function

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

βS πS πa πb πc πd πN πS(βS\{j}) σ(βS) ΣPIS

({a}, {b}, {c}, {d}) - 0 0 0 0 0 - - 1

({a, b}, {c}, {d}) 1 - - 1 1 3 0 1 1

({a, c}, {b}, {d}) 1 - 21
3

- 31
3

62
3

0 1 1

({a, d}, {b}, {c}) 21
3

- 1 2 - 51
3

0 21
3

1

({b, c}, {a}, {d}) 3 31
3

- - 1 71
3

0 3 1

({b, d}, {a}, {c}) 1 31
3

- 2 - 61
3

0 1 1

({c, d}, {a}, {b}) 1 1 6 - - 8 0 1 1

({a, b, c}, {d}) 9 - - - 41
3

131
3

62
3

21
3

1

({a, b, d}, {c}) 51
3

- - 3 - 81
3

51
3

0 1

({a, c, d}, {b}) 51
3

- 7 - - 121
3

61
3

-1 0

({b, c, d}, {a}) 8 41
3

- - - 121
3

9 -1 0

({a, b, c, d}) 172
3

- - - - 172
3

182
3

-1 0
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Table A.2: Valuation Function for the Shapley Value

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βS vShp
a vShp

b vShp
c vShp

d vShp
N ΣIS ΣES ΣS

({a}, {b}, {c}, {d}) 0 0 0 0 0 1 0 0

({a, b}, {c}, {d}) 1
2

1
2

1 1 3 1 0 0

({a, c}, {b}, {d}) 1
2

21
3

1
2

31
3

62
3

1 0 0

({a, d}, {b}, {c}) 11
6

1 2 11
6

51
3

1 0 0

({b, c}, {a}, {d}) 31
3

11
2

11
2

1 71
3

1 0 0

({b, d}, {a}, {c}) 31
3

1
2

2 1
2

61
3

1 0 0

({c, d}, {a}, {b}) 1 6 1
2

1
2

8 1 0 0

({a, b, c}, {d}) 21
3

31
3

31
3

41
3

131
3

0 1 0

({a, b, d}, {c}) 2 11
3

3 2 81
3

0 0 0

({a, c, d}, {b}) 2 7 11
3

2 121
3

0 1 0

({b, c, d}, {a}) 41
3

3 3 2 121
3

0 1 0

({a, b, c, d}) 4 5 5 32
3

172
3

0 1 0

Valuations are computed applying the formula above to the partition function in
Table A.1.
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Table A.3: Valuation Function for the Proportional Surplus Sharing Scheme

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βS vPSSS
a vPSSS

b vPSSS
c vPSSS

d vPSSS
N ΣIS ΣES ΣS

({a}, {b}, {c}, {d}) 0 0 0 0 0 1 0 0

({a, b}, {c}, {d}) 1
2

1
2

1 1 3 1 0 0

({a, c}, {b}, {d}) 1
2

21
3

1
2

31
3

62
3

1 0 0

({a, d}, {b}, {c}) 11
6

1 2 11
6

51
3

1 1 1

({b, c}, {a}, {d}) 31
3

11
2

11
2

1 71
3

1 0 0

({b, d}, {a}, {c}) 31
3

1
2

2 1
2

61
3

1 1 1

({c, d}, {a}, {b}) 1 6 1
2

1
2

8 1 1 1

({a, b, c}, {d}) 41
9

31
9

17
9

41
3

131
3

1 1 1

({a, b, d}, {c}) 31
3

1 3 1 81
3

1 1 1

({a, c, d}, {b}) 2
3

7 12
3

3 121
3

0 1 0

({b, c, d}, {a}) 41
3

52
3

12
3

2
3

121
3

0 1 0

({a, b, c, d}) 4 1
12

63
4

23
4

4 1
12

172
3

0 1 0

Valuations are computed applying Definition 6 to the partition function in
Table A.1 and assuming equal weights, λi(βS) = 1

s
∀i ∈ S and ∀βS.
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