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An efficient two-step synthesis of pyrazoline ligand 1 is 

described which is an effective “turn on” fluorescent sensor 

for Cd2+ in MeCN. Oxidation to the corresponding pyrazole 

ligand 2 creates a “turn on” fluorescent sensor now selective 

for Zn2+ and able to distinguish it from Cd2+. 10 

Cadmium is a toxic element widely distributed throughout the 

environment originating from natural sources and as a pollutant 

from industrial and agricultural use.1 Cadmium can accumulate in 

the body over a period of years and has been linked to various 

diseases including cancer, even at low-levels of exposure.1-2 15 

Therefore the facile detection and monitoring of cadmium in 

various media is of great importance.3 

 Zinc is chemically similar to cadmium due to its position in the 

periodic table, yet it has a vital role in many biological 

processes.4 The detection of zinc in biological systems has 20 

become a rapidly emerging field as excess free zinc is toxic.5 

Many Cd2+ and Zn2+ probes are based on fluorescent sensors 

which upon chelation to the cation result in a decrease ("turn off") 

or increase ("turn on") in fluorescence intensity. A large variety 

of complex and sophisticated Zn2+ fluorescent sensors have been 25 

reported.5-6 Various Cd2+ sensors have also been reported,3, 6l, 7 

some of which are able to distinguish cadmium from zinc ions.6l, 

7c-f We report herein a simple two-step synthesis of a "turn on" 

fluorescent sensor selective for Cd2+ which can be readily 

oxidised in high yield to afford a "turn on" fluorescent sensor 30 

selective for Zn2+ and able to differentiate it from Cd2+. 

 The ligands are based on the pyrazoline motif as it has been 

previously reported to possess favourable photophysical 

properties8 and chelate a variety of metals,6a-c, 9 including Zn2+.6a-

c, 9a, 9b It is an attractive and versatile scaffold due to the ease of 35 

synthesis from a large range of commercially available 

acetophenones and benzaldehydes. 

 Pyrazoline 1 and related pyrazole ligand 2 were synthesised as 

outlined in Scheme 1. Following previous literature precedent,10 

2-acetylpyridine underwent Claisen-Schmidt condensation with 40 

benzaldehyde in the presence of catalytic NaOH to afford the 

corresponding chalcone in 97% yield. Treatment of the chalcone 

with an excess of methylhydrazine gave the pyrazoline ligand 1 

as the sole product in 72% yield. Similar transformations suggest 

the reaction proceeds via 1,2-addition followed by cyclisation and 45 

not initial 1,4-addition, which could generate a different isomer.8c 

Following a procedure for the oxidation of a 1,2,3,4-tetrahydro--

carboline,11 pyrazoline 1 was readily oxidised with Pd/C to afford  

 
Scheme 1 Synthesis of pyrazoline 1 and pyrazole 2. i) PhCHO, 10% 50 

NaOH(aq), 24h, ii) H2NNHMe, EtOH, 3h, iii) 10 mol% Pd/C, 200 C, 4h 

pyrazole 2 in 80% yield. This simple synthesis is highly scalable 

as it uses common commercially available starting materials and 

all the products are highly crystalline. 

 The pyrazoline ligand 1 has been previously reported 55 

complexed with ruthenium, although no other metals were 

described.9f Similarly, the synthesis of pyrazole 2 was recently 

reported by an alternative route although no chelation properties 

were reported.12 We now describe the investigation of pyrazoline 

1 and pyrazole 2 with various cations‡ analysed by UV/Vis, NMR 60 

and fluorescence spectroscopy. 

 UV/Vis spectroscopy was performed in MeCN, as similar 

ligands were investigated in this solvent,6a and in the presence of 

Group 1 and 2 metals produced negligible results with both 

ligands. Upon the addition of various transition metals, however, 65 

both ligands 1 and 2 showed spectral changes consistent with 

chelation. The effect of Zn2+ and Cd2+ with pyrazoline 1 is given 

in Figure 1 and is representative of the various metals examined 

with ligands 1 and 2 (the complete list is available in the 

Electronic Supplementary Information). The absorbance at 320 70 

nm (ε = 14800 M−1cm−1) is due to the pyrazoline ligand 1 only 

and disappears upon the addition of Zn2+ or Cd2+. The formation 

of a new band at 360 nm with Zn2+ (ε = 8650 M−1cm−1, Figure 

1A) and 350 nm with Cd2+ (ε = 7650 M−1cm−1, Figure 1B) is 

evident, which increased proportionally up to 1.0 equivalent of 75 

the metal ion and levelled off thereafter, suggesting a 1:1 ratio of 

the metal to ligand. Job plot analysis also suggests the formation 

of a 1:1 complex with a 0.5 molar ratio of pyrazoline 1 and Zn2+ 

or Cd2+ (Figure 1). 

 This is consistent with a crystal structure of a similar 80 

pyrazoline ligand in a 2:2 complex with Zn2+, with chloride atoms 

acting as bridging ligands.9a Attempts to obtain a crystalline  
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Figure 1 Absorbance spectra of pyrazoline 1 (MeCN, 500 µM) with the 

addition of 0-1.5 equiv. (0.1 increments) of Zn2+ (A) and Cd2+ (B). Insets 

at λem = 370 nm. Lower inset Job plot 

complex of pyrazoline 1 with Zn2+ using the previously reported 5 

conditions (EtOH/H2O, reflux, 24 h),9a instead resulted in a Zn2+ 

complex with the pyrazole ligand 2 (Figure 2). This is 

presumably the result of aerobic and/or zinc mediated oxidation 

during the harsh recystalisation process. Interestingly, the 

asymmetric unit was seen to contain four independent 10 

Zn(pyrazole)Cl2 motifs. Three of these are 1:1 monomers but the 

fourth, located proximate to a crystallographic inversion centre, 

forms a 2:2 dimer, with bridging chloride atoms (ESI, Figure 2 

only shows one of the monomeric 1:1 structures for clarity).  

 15 

Figure 2 Ortep-3 representation of one of the three 1:1 monomers 

containing pyrazole ligand 2 and Zn2+ in the asymmetric unit of the 

crystal structure, with the ellipsoids represented at 30% probability13 

 The interaction of the pyrazoline 1 and pyrazole 2 ligands with 

Zn2+ and Cd2+ was also analysed by 1H NMR spectroscopy. The 20 

addition of Cd2+ to pyrazole 2 is representative of the results 

obtained and is shown in Figure 3 (complete study shown in ESI). 

Significant chemical shifts of the pyridine and pyrazole protons 

were observed upon the addition of the metal, broadening and 

moving downfield as previously reported for other sensors upon 25 

chelation to Zn2+ 6g-k, 7c and Cd2+ 6j, 6l, 7a-c (Figure 3). 

 Pyrazoline 1 and pyrazole 2 were examined by fluorescence  

 
Figure 3 Partial 1H NMR spectra of i) pyrazole 2 (DMSO-d6, 63 mM) 

with ii) 0.9, iii) 2.0 and iv) 3.0 equiv. Cd2+ 30 

spectroscopy in MeCN at 20 µM, as previously reported with 

similar ligands.6a No change in fluorescence was observed with 

various Group 1, 2 and transition metals, while exposure to Zn2+ 

or Cd2+ produced a large increase in fluorescence for both ligands 

1 and 2 (Figure 4 and ESI). This result is particularly pleasing as 35 

it demonstrates that although there is no selectivity in the 

absorbance spectroscopy of either ligand with various metals, 

they are however only fluorescent in the presence of either Zn2+ 

or Cd2+. Moreover, with pyrazole 2 they fluoresce at different 

wavelengths providing a “turn on” fluorescent sensor that can 40 

distinguish between Zn2+ and Cd2+ in MeCN. The effect of 

different solvents on fluorescence was investigated with ligand 1 

and 2 with Zn2+ and gave variable results, with complete 

fluorescence quenching observed in the presence of water (ESI). 

 The addition of 5 equivalents of Zn2+ to pyrazoline 1 resulted 45 

in an 8 fold increase in fluorescence at 460 nm, whereas 5 

equivalents of Cd2+ gave a 14 fold increase in fluorescence also at 

460 nm with a Stokes shift of 100 nm (Figure 4A and 5). As 

previously observed in the UV/Vis study, Job plot analysis is 

consistent with a 1:1 ratio of metal to ligand for both cations  50 

 

 
Figure 4 Fluorescence spectra of pyrazoline 1 (A, λex=320 nm) and 

pyrazole 2 (B, λex=285 nm, MeCN, 20 µM), upon addition of 5 equiv. of 

metal. Metal screen at λem=460 nm (A) and 380 nm (B). Inset shows 

fluorescence with Zn2+ and Cd2+ at 313 nm (A) and 254 nm (B) 55 
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Figure 5 Fluorescence spectra of pyrazoline 1 (MeCN, 20 µM, λex=320 

nm) upon addition of 0-20 equiv. Zn2+ (A) and Cd2+ (B). Insets at λem=460 

nm upon addition of cation. Lower inset Job plot 

(Figure 5 insets). Similar pyrazolines have been previously 5 

reported as ligands9a, 9b or sensors6a-c for Zn2+. The data presented 

here however shows that the pyrazoline ligand 1 is more sensitive 

towards Cd2+ than Zn2+ and could be a useful "turn on" 

fluorescent sensor for cadmium.  

 Conversely, the related pyrazole ligand 2 displays increased 10 

fluorescence in the presence of Zn2+ than Cd2+ (Figure 4B and 6). 

A 13 fold increase in fluorescence at 380 nm is observed with 

Zn2+ with a Stokes shift of 90 nm, whereas Cd2+ only exhibits a 5 

fold increase in fluorescence at 350 nm with a Stokes shift of 60 

nm. Titration with Zn2+ and Cd2+ is again consistent with the 1:1 15 

stoichiometry previously observed by the UV/Vis analysis and X-

ray crystallography of pyrazole 2 with Zn2+ (Figure 6 insets). 

Although it is challenging to selectively distinguish Zn2+ from 

Cd2+ ions due to similar physical properties, the 30 nm difference 

between the Zn2+ (380 nm) and Cd2+ (350 nm) emission maxima 20 

enables the pyrazole ligand 2 to distinguish these cations. In 

addition, the pyrazole ligand 2 exhibits increased sensitivity for 

Zn2+ providing an effective "turn on" fluorescent sensor for Zn2+. 

 Following previous reports,6c, 14 the detection limits of Zn2+ 

and Cd2+ by the ligands 1 and 2 were calculated and show that the 25 

pyrazoline 1 has a detection limit of Zn2+ 0.20 M and Cd2+ 0.12 

M (ESI). Pyrazole 2 has a detection limit of Zn2+ 0.24 M and 

Cd2+ 0.34 M, again highlighting that pyrazoline 1 is a more 

effective fluorescent sensor for Cd2+ and pyrazole 2 a more 

effective sensor for Zn2+. 30 

 Competition assays were performed with ligands 1 and 2 to 

investigate the effect of detecting Zn2+ or Cd2+ in the presence of 

other cations (Figure 7 and ESI). The addition of Mn2+, Pb2+, 

Ru3+, Mg2+, Ca2+ and Hg2+ to a mixture of pyrazoline 1 and Cd2+ 

results in only minor decreases in fluorescence (Figure 7). The 35 

ability to detect Cd2+ even in the presence of heavy metals such  

 
Figure 6 Fluorescence spectra of pyrazole 2 (MeCN, 20 µM, λex=285 nm) 

upon addition of 0-20 equiv. Zn2+ (A) and Cd2+ (B). Insets at λem=380 nm 

(A) and 350 nm (B) upon addition of cation. Lower inset Job plot 40 

 
Figure 7 Competition experiments. The white bar represents pyrazoline 1 

(MeCN, 20 µM, λex=350 nm, λem=460 nm) and 5 equiv. of the cation; the 

black bar is the same plus 5 equiv. Cd2+ after equilibrating for 3 min. 

as Pb2+ and Hg2+ is of particular interest. 45 

 Significant fluorescence quenching was observed upon the 

addition of the paramagnetic metals such as Fe3+, Co2+ and Ni2+ 

as previously reported with other sensors.6c-f, 7c A similar trend 

was observed for competition experiments with pyrazoline 1 with 

Zn2+, although fluorescence quenching was more pronounced 50 

(ESI). Combined with the increased sensitivity for Cd2+ over Zn2+ 

(Figure 3), these results suggest that the pyrazoline ligand 1 is 

more suitable as a Cd2+ fluorescent sensor. 

 Competition assays were also performed with pyrazole 2 in the 

presence of either Zn2+ or Cd2+ (ESI). In both cases large 55 

variations were observed, although heavy metals such as Hg2+ 

and Pb2+ had little or no effect on fluorescence in competition 

with Zn2+ in the presence of pyrazole 2. 

 In summary, pyrazoline 1 and pyrazole 2 were prepared in an 

efficient synthesis and are effective “turn on” fluorescent sensors 60 

in MeCN for Cd2+ and Zn2+ respectively. In addition, the pyrazole 
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ligand 2 can distinguish between these ions in MeCN and 

therefore complements other sensors which can differentiate 

these ions in aqueous media.6j-l, 7c-f The ligands are also able to 

detect Zn2+ or Cd2+ in the presence of other heavy metals, which 

is of great importance for industrial applications. Although these 5 

simple ligands do not operate in aqueous media and suffer from 

competition with some biological ions, the modular design and 

molecular framework of the ligands allows for further 

functionalisation to fine-tune desirable physicochemical 

properties, which will be investigated and reported in due course. 10 
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