

Citation for published version:
Davenport, JH & Trager, BM 1990, Scratchpad's view of algebra I: Basic commutative algebra. in Design and
Implementation of Symbolic Computation Systems: International Symposium DISCO '90 Capri, Italy, April
10–12, 1990 Proceedings. Lecture Notes in Computer Science, vol. 429/1990, Springer, Berlin, pp. 40-54,
Design and Implementation of Symbolic Computation Systems: International Symposium DISCO '90 , Capri,
Italy, 9/04/90. https://doi.org/10.1007/3-540-52531-9_122
DOI:
10.1007/3-540-52531-9_122

Publication date:
1990

Document Version
Peer reviewed version

Link to publication

The original publication is available at www.springerlink.com

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-52531-9_122
https://researchportal.bath.ac.uk/en/publications/scratchpads-view-of-algebra-i-basic-commutative-algebra(17dd428b-8a3c-4fac-a210-ed5c26a24404).html

Scratchpad’s View of Algebra I:
Basic Commutative Algebra

J.H. Davenport and B.M. Trager
School of Mathematical Sciences Department of Mathematical Sciences

University of Bath BA2 7AY IBM Thomas J. Watson Research Center
Claverton Down P.O. Box 218

Bath Yorktown Heights
England 10598 NY, U.S.A.

Abstract. While computer algebra systems have dealt with polynomials and rational functions
with integer coefficients for many years, dealing with more general constructs from commutative
algebra is a more recent problem. In this paper we explain how one system solves this problem,
what types and operators it is necessary to introduce and, in short, how one can construct a
computational theory of commutative algebra. Of necessity, such a theory is rather different from
the conventional, non-constructive, theory. It is also somewhat different from the theories of
Seidenberg [1974] and his school, who are not particularly concerned with practical questions of
efficiency.

Introduction
This paper describes the constructive theory of commutative algebra which underlies that part of
Scratchpad which deals with commutative algebra. We begin by explaining the background that
led the Scratchpad group to construct such a general theory. We contrast the general theory in
Scratchpad with Reduce–3’s theory of domains, which is in many ways more limited, but is the
closest approach to an implemented general theory to be found outside Scratchpad. This leads us to
describe the general Scratchpad view of data types and categories, and the possibilities it offers. We
then digress a little to ask what criteria should be adopted in choosing what types to define. Having
discussed the philosophical issues, we then discuss commutative algebra proper, breaking this up
into the sections “up to Ring”, “Integral Domain”, “Gcd Domain” and “Euclidean Domain”. It
should be noted that, while most of the decisions taken in Scratchpad have a sound mathematical
foundation, some, such as the decision not to define various devleopments of semi-groups, such as
quasi-groups, are not so soundly based, and reflect the authors’ prejudices as much as anything else.
We will endeavour to distinguish these decisions from those with a more mathematical foundation.
This brings us to the heart of the matter: the definitions used in Scratchpad. Since we are more
interested in the theory than in the practical details of Scratchpad, we will often simplify the details
of implementation. The full details can be found in Davenport & Trager [1990].

Do we need a new theory? Why can’t Scratchpad just use the conventional definitions of,
say, “ring”, “field”, “integral domain” or “unique factorisation domain” found in any text-book on
abstract algebra? The reason is that these definitions are fundamentally non-constructive. They
say that things exist, but do not give any algorithms for constructing them. Furthermore, such
algorithms may well not exist. For example, it is well-known in abstract algebra that, in the
presence of noetherianity, the existence of greatest common divisors is equivalent to the existence
of unique factorisation. However, as was first shown by Fröhlich & Shepherdson [1956], there exist
domains with algorithms for computing greatest common divisors, but for which there cannot
exist algorithms for computing unique factorisation. Their example made use of a recursively
enumerable, non-recursive sequence to generate a field K which might be Q or Q[i], but such
that one couldn’t tell which. K[x] is certainly noetherian, since K is a field. Then it is certainly
possible to compute greatest common divisors in K[x], since Euclid’s algorithm is purely rational

in its inputs. But, computing the factorisation of x2 + 1 is equivalent to deciding what K is, and
so is impossible. We will make use of several such constructions as we show why we need to make
certain distinctions which the non-constructive theory doesn’t make.

The Problem
The handling of polynomials with integer coefficients is one of the oldest problems of computer
algebra [Collins, 1966]. The difficulties encountered in the implementation of polynomials with
integer coefficients were largely ones of efficiency, especially for the computation of greatest common
divisors and the factorisation of polynomials. While improvements continue to be made in these
areas, it is fair to say that these problems are largely solved in principle, though the algorithms
are not as easy to implement as one would like:

We found that, although the Hensel construction is basically neat and simple in theory,
the fully optimised version we finally used was as nasty a piece of code to write and debug
as any we have come across [Moore & Norman, 1981].

Once Z[x1, . . . , xn] has been implemented, it is possible to implement Q(x1, . . . , xn) as the
quotient field of Z[x1, . . . , xn]. To ensure canonical forms, we need merely verify that there is
no common factor between the numerator and the denominator (hence one major use of the
computation of gcds) and that the leading coefficient of the denominator is positive. Q[x1, . . . , xn]
is generally treated as a special case of Q(x1, . . . , xn), in other words, a global denominator is used
rather than local denominators. This is generally justified by arguing that the cost of repeated gcd
calculations between the numerators and denominators of the rational numbers greatly outweighs
the cost of carrying the lcm of the individual denominators as a global denominator. Hence, in
principle, all questions of algebra with rational coefficients are solved.

In practice, things are not so simple. Let us consider Hermite’s algorithm [Hermite, 1872] for
the integration of a rational function f(x) in Q(x) (or, more precisely, for finding the rational part
of the integral of such a function). The algorithm (given fully in Davenport & Trager [1990]) is
fundamentally based on the algebra of Q[x]: the divisions, the partial fraction decomposition, the
solution of Bézout’s equality and the remainder calculations all take place in Q[x] rather that in
Z[x]. This is not to say that the algorithm cannot be implemented over Z[x]: many authors have
done that in many algebra systems. But the implementation becomes much more complicated:
every variable must be replaced by a pair consisting of a polynomial in Z[x] and a denominator in
Z, and a twelve-line algorithm becomes several pages of code.

Worse, consider what happens when we have a parametric integral, so that Q[x] is replaced by
Q(y)[x]. We have to embed Q(y)[x] in Q(y, x), the quotient field of Z[y, x]. If our system insists
on treating y as the main variable, rather than x, in some recursive polynomial representation,
or adopts a distributed representation, operations such as the initial synthetic division, which
are mathematically trivial in K[x] for any field K, become software nightmares, since the data
structure is not representing the underlying mathematics.

More generally, there are many rings between Z[x1, . . . , xn] and Q(x1, . . . , xn), and many
algorithms which are naturally set in one of these intermediate rings rather than in either of the
extremities. Furthermore, there are quotients of these intermediate fields, such as algebraic number
fields. Davenport [1981] describes the difficulty of trying to manipulate algebraic extensions in a
system (Reduce-2) which was essentially purely polynomial.

Before we proceed much further in this direction, we should sound a note of warning. It
is certainly true that the ability to talk about objects like Q(x1, . . . , xn)[y] is useful when it
comes to expressing algorithms. However, these algorithms may not be the most efficient possible.
For example, it is possible to use Euclid’s algorithm to compute greatest common divisors in
Q(x1)(x2) . . . (xn)[y], regarding each extension (xi) as the field of fractions of the polynomial
extension [xi], and using Euclid’s algorithm to calculate greatest common divisors every time
fractions have to be added or multiplied. But it is far more efficient to clear denominators, and to
use a modular or p-adic algorithm in Z[x1, . . . , xn][y].

System Requirements

The two major computer algebra systems in which this has been treated are Scratchpad [Jenks
& Trager, 1985] and Reduce–3 with its theory of domains [Bradford et al., 1986]. These systems
differ substantially in their approach to the problem: Scratchpad is a system designed ab initio
to handle this view as abstractly as possible, whereas the theory of domains in Reduce–3 (more
precisely Reduce–3.3) was intended as an extension to an existing successful system to enable it
to handle a wider range of ground objects: earlier versions of Reduce were limited to polynomials
(and rational functions) with integer or (machine-precision) floating-point coefficients, and the
theory of domains extends this to allow user-defined types, as well as system-defined types such
as “arbitrary-precision floating-point numbers”, rational numbers, Gaussian integers (or Gaussian
rationals, or Gaussian floating-point numbers or . . .) and algebraic numbers. In the Reduce model,
domains are either rings or fields, the sole difference being that division is always possible in fields,
but not in rings. The whole of the “polynomial arithmetic” part (and packages which are based
on it, such as the matrix manipulation package) of Reduce works with respect to any domain
(except that the g.c.d. algorithm, which is sub-resultant based [Hearn, 1979] has severe problems
with inexact domains, such as floating-point numbers), but packages such as factorisation and
integration work with only a subset of the domains, with special-case code for each domain — for
example, factorisation works directly with integers as the domain, converts rationals to integers
first, and reduces Gaussian problems to non-Gaussian ones by taking the norm [Trager, 1976].

Scratchpad, on the other hand, allows any set of operators (and corresponding axioms) to
form a definite class of types (the Scratchpad phrase is category), of which there are over 100
named ones currently defined in Scratchpad. Categories can in fact be parametrised by other
types — the first instance of this in this paper is the definition of LeftModule, where the concept
is explained. These are viewed as forming a multiple-inheritance hierarchy: a new category is
defined as being the union of the operators and axioms of certain previously-defined categories,
together with some new operators and axioms (of course, any of these components may be empty).
We say that this category is the direct descendant of these previously-defined categories, which are
the direct ancestors of the category just defined. The concepts descendant and ancestor are the
reflexive-transitive closure of direct descendant and direct ancestor respectively.

New types (or domains: the two words are used almost interchangably in Scratchpad, but we
will use “type” to avoid confusion with Reduce’s theory of domains) are constructed by means of
functors: functions which take some (possibly none) parameters, which may themselves be types,
and return a new type. The parameters of a functor are themselves typed, so that an object is
defined to come from some type, and a type from some category. For example, the type Z is
created by applying the functor Integer (a function with no parameters), the type Q is created
by applying the functor Fraction to the type Z (belonging to the category IntegralDomain), and
the type* Z[x] is created by applying the functor UnivariatePolynomial to two arguments: the
object x (belonging to the type Symbol) and the type Z (belonging to the category Ring).

A functor defines the implementation of the various operators that are defined on the resulting
type. In general, the resulting type is defined to belong to a nonce category, generally a named
one with some additional operations. For example, Integer could be defined to return an object
that belonged to the category EuclideanDomain with an additional operator positivep that said
whether or not the integer was positive (the actual definition is far more complicated). Hence the
body of Integer would have to define operations such as +, / and gcd as well as positivep.

With such a rich language available, how do we decide which categories to define, and what
functors should be available, and what categories should their arguments belong to? It is this
question that this paper addresses, for that part of Scratchpad which implements commutative
algebra. First, we must ask ourselves what criteria we should use to choose among the various

* More precisely, one of the many types in Scratchpad which is abstractly isomorphic to the ab-
stract mathematical type Z[x]. Other types can be created by using DenseUnivariatePolynomial,
or by creating multivariate polynomials in only one variable, or in many other ways.

possibilities.

A Little Philosophy
Why does “abstract algebra” insist so much on the definition and use of concepts (algebras in
the sense of the subject Universal Algebra: categories would be another word, and is the word
Scratchpad has borrowed) such as “ring”, “integral domain” and “field”? One answer, it seems
to us, is economy of effort: for example, rather than proving many different theorems, such as
“polynomials in one variable over the integers have a unique factorisation property”, “polynomials
in two variables over the integers have a unique factorisation property”, “polynomials in two
variables over the integers modulo 7 have a unique factorisation property” and so on, we need
only prove one theorem — “polynomials in one variable over a unique factorisation domain form
a unique factorisation domain”. We will ask later whether this particular piece of generality can
in fact be achieved constructively.

There are other reasons as well, which explain why a particular category is “successful”. The
first reason is one of interest: there must be some significant interest in various objects which
belong to this category. Furthermore, the interest must have something to do with the property:
for example, Z is interesting, as is Z/nZ for odd n, but one is unlikely to find much interest in a
theory of “rings which, when viewed as abelian groups, have an involution with precisely one fixed
point”.

Another reason is what we will call functoriality: there should be operations (functors) which
construct new objects of the category from old objects of this category, or maybe from old objects
of another category. For example, the functor [x] (construct polynomials in one indeterminate
over) takes integral domains into integral domains, and takes fields into Euclidean domains.

How does this translate into the computational setting? We certainly want economy of effort,
by which we mean now that one implementation of an algorithm will work over several different
types: for example one sorting algorithm working over all types belonging to the category Or-
deredSet. This is provided to some extent by the Reduce model, since the whole of polynomial
arithmetic is provided over all domains by one piece of code (with the occasional dependence on
whether the domain in question at the moment is a field or not). This would be easy to provide
in Scratchpad, if all that was wanted were polynomial and rational function calculations over con-
stant domains. But, as was pointed out in the introduction, we would like to see polynomials and
rational functions defined over other domains, in particular over domains which are themselves
polynomial or rational function domains.

We also want interest: it should be possible to implement difficult algorithms over many
different types. For example, we would like to implement polynomial factorisation as few times as
possible, and then have it operate over as wide a range of different types as possible. Hence we
need to define a category such that:

a) It is possible to implement polynomial factorisation over this category;
b) As many types as possible belong to this category.

Such a goal may not be easy, but it is surely worth aiming for.

The types up to Ring

Scratchpad implements a fundamental category SetCategory, of which almost all other categories
are descendants. Two operations are defined on types $ (the standard Scratchpad notation for the
type one is defining at the moment) belonging to this category

= : $× $ 7→ Boolean

coerce : $ 7→ OutputForm

where Boolean is a built-in type of truth values, and OutputForm is a built-in type which is used
in printing and other general-purpose expression-manipulation tasks. The assumption that almost
all types contain an equality operator is extremely convenient for most purposes, though it could
be argued that it is too restrictive. Note that we do not require that mathematical equality be

represented by Lisp equality, though it will generally be more efficient if this is the case. Domains
in which Lisp equality is the same as mathematical equality are said to be canonically represented,
and are declared to have the attribute canonical. This attribute is useful when it comes to
considering the use of hashing, to quote but one example, since the hashing functions built into a
Lisp system will not give the correct results unless the domain is canonically represented. Another
way of viewing this attribute is to say that it asserts that objects that print (in terms of the coercion
to OutputForm) differently really are different. We discuss the propagation of this attribute further
in the section “What does it mean to be an Integral Domain?”.

From this we can develop a straight-forward sequence which covers elementary commutative
algebra:

SetCategory
↓ ↘

AbelianSemiGroup OrderedSet
↓ ↘ ↓

AbelianMonoid OrderedAbelianSemiGroup
↓ ↘ ↓

CancellationAbelianMonoid OrderedAbelianMonoid
↓ ↘ ↓

AbelianGroup OrderedCancellationAbelianMonoid
↘ ↓

OrderedAbelianGroup

where the arrows indicate a “direct descendant” relationship.
AbelianSemiGroup is defined to have one new operator:

+ : $× $ 7→ $

satisfying the associative and commutative axioms:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a.

AbelianMonoid introduces a new nullary operator

0 :7→ $

satisfying the obvious axiom
0 + a = a.

CancellationAbelianMonoid is the category of abelian monoids with the cancellation axiom:

a+ b = a+ c⇒ b = c.

Constructively, this is represented by a partial subtraction operator, whose signature is defined as:

− : $× $ 7→ Union($, ”failed”).

The right-hand side of 7→ is Scratchpad’s notation for what other languages sometimes call a
“disjoint union”. "failed" is a distinguished symbol, which can be tested for by seeing which
branch of the union is returned. While such an operation could be defined for any AbelianMonoid,
or even any AbelianSemiGroup (as was indeed done in some earlier versions of Scratchpad), it
is the cancellation axiom that ensures that − has a unique value. This operator is subsumed in
the − operation defined on AbelianGroups, so is not of immediate interest in the development of
commutative algebra. When we come to define polynomial data types, we will rely on the existence
of this operation in the exponent domain.

AbelianGroup adds one further unary operator:

− : $ 7→ $.

This operator satisfies the axiom
a+ (−a) = 0.

The first ↘ introduces an operator
< : $× $ 7→ Boolean

satisfying the usual axioms:
a < b ∧ b < c⇒ a < c

¬(a < b) ∧ ¬(b < a)⇒ a = b

a < b⇒ ¬(b < a).
Subsequent ↘ in this diagram introduce no new operators, but one more axiom is introduced,
when OrderedAbelianSemiGroup is defined:

a < b⇒ a+ c < b+ c.

This is typical of what happens when two categories are merged to form a new named category:
we keep the same operators, but are interested in the interaction between them, which requires
the introduction of new axioms to define this interaction. Subsequent ↘ in the chain represent
the straight-forward merging of ancestors.

In Scratchpad, we have also defined types SemiGroup and Monoid, with the obvious multi-
plicative operations. We can now start defining ring-like objects properly. There is substantial
disagreement (at the notational level) amongst mathematicians as to whether a ring need or need
not contain a unity: we have chosen to require that a Ring needs to. Hence our first definition
is of a Rng, which is defined to be both an AbelianGroup and a SemiGroup, with two additional
axioms:

a ∗ (b+ c) = a ∗ b+ a ∗ c
(b+ c) ∗ a = b ∗ a+ c ∗ a.

If this domain has the property that the product of two non-zero elements is always non-zero, then
we assert the additional attribute noZeroDivisors.

It would be pleasant to proceed now to the definition of a Ring, but we are caught here by
a conflict between the Scratchpad requirement that a category be defined in terms of previously-
defined categories, and the mathematical statement that a ring is a (left-)module over itself. We
break the dilemma by defining a NaiveRing to be both a Rng and a Monoid, with operations

characteristic : 7→ NonNegativeInteger

recip : $ 7→ Union($, ”failed”).
The right-hand side of the last 7→ again includes a “disjoint union” and the distinguished symbol
"failed".

For an arbitrary NaiveRing, characteristic is defined as being the least positive integer n,
if one exists, such that 1 added to itself n times is 0, otherwise 0. recip satisfies the axiom

recip(x) 6= "failed"⇒ x ∗ recip(x) = recip(x) ∗ x = 1.
Clearly recip cannot be defined any earlier than this, since we need to have a definition of 1. It
could be argued that the definition should be later, but it seems in practice to be convenient to
define it here.

If R is any NaiveRing, we can define the category LeftModule(R) of all left-R-modules* to
be sets $ which are members of the category AbelianGroup equipped with an extra operation

∗ : R× $ 7→ $
and the corresponding axioms:

(a ∗ b) ∗ x = a ∗ (b ∗ x)
(a+ b) ∗ x = a ∗ x+ b ∗ x
a ∗ (x+ y) = a ∗ x+ a ∗ y.

* We could equally well have chosen to work in terms of right-R-modules.

The category Ring is then both a NaiveRing and a LeftModule over itself. A Module over a
Ring R is then both a LeftModule and a RightModule.

A CommutativeRing is both a Ring and a BiModule over itself, with the additional axiom
that multiplication is commutative.

What does it mean to be an Integral Domain?
The usual definition of an Integral Domain is rather non-constructive:

6 ∃a, b 6= 0 : ab = 0.

Another way of saying this is to regard it as a property of multiplication: a, b 6= 0⇒ ab 6= 0. A third
way is to see that it is much the same as “cancellation” in the type CancellationAbelianMonoid,
since if pq = pr, then p(q − r) = 0, and if p 6= 0, then q = r. Knowing this property may well help
in implementing an operation: for example the definition of multiplication of a sparse polynomial
by an element of the underlying ring is defined as

if R has noZeroDivisors then
r * x ==

r = 0 => 0
r = 1 => x
[[u.k,r*u.c] for u in x]

else
r * x ==

r = 0 => 0
r = 1 => x
[[u.k,a] for u in x | (a:=r*u.c) ^= 0$R]

where the knowledge of the noZeroDivisors property obviates the test to see whether any product
has become zero. A Ring with this property is an EntireRing.

However, this is far from realising the full power of integral domains. For example, we would
like to be able to implement Bareiss’ [1968] fraction-free matrix algorithms, which are only valid
over integral domain, not over general rings, and we would like to be able to implement quotient
fields of integral domains. None of the definitions given above is very helpful from this point of
view, though we can be inspired by the algorithmic rendering we gave “cancellation”. We choose
to give “integral domain” an algorithmic flavour by using the following corollary to the usual
definitions: if R is an integral domain, then a/b, if it exists at all, is unique. Hence we choose to
define an IntegralDomain to be a CommutativeRing, an EntireRing and an Algebra over itself,
with an (infix) operator exquo:

exquo : $× $ 7→ Union($, ”failed”).

In this context, a exquo b = "failed" should be interpreted as meaning “there is no element c of
the current domain such that bc = a, but there’s no reason why one shouldn’t enlarge the domain
to add one”. For many domains, in particular euclidean domains, exquo could be defined in terms
of a “quotient and remainder” operation, but it is often not very efficient to calculate an enormous
remainder and then discover that it is non-zero*. exquo gives a hard error if the second argument
is zero, since then there is no legal enlargement of the IntegralDomain to permit the division.
There are various axioms associated with this aspect of being an integral domain:

a ∗ b = b ∗ a
a, b 6= 0⇒ a ∗ b 6= 0

b 6= 0 ∧ a exquo b 6= "failed"⇒ b ∗ (a exquo b) = b

a = b ∗ c⇒ a exquo b 6= "failed".

* This is discussed by Davenport & Padget [1985a,b] and by Abbott et al. [1985]. The latter
introduced the concept of “early abort” trial division.

As we remarked earlier, there is no very good reason why we have forced all integral domains to be
commutative: it is just that we haven’t seen any need for a category of non-commutative integral
domains with exquo. It would certainly not be difficult to add such a category, but one would
have to be careful as to whether one meant left-division or right-division. Whether or not this is
done, the exquo operator is quite powerful.

Proposition. In any IntegralDomain, it is possible to determine if two elements are associates
or not.

The proof is obvious.
But, from a computational point of view, there’s more to being an integral domain than the

existence of the exquo operator. We have already discussed the importance of functoriality in
the abstract and here we have a good concrete example: there ought to be a functor Fraction,
taking any IntegralDomain into its field of fractions (we describe this functor later). The obvious
representation for such a functor is to represent a fraction by its numerator and denominator.
What would it mean for this field of fractions to be canonically represented?
(1) The IntegralDomain itself must clearly be canonically represented.
(2) We must be able to suppress common divisors from the numerator and denominator of a

fraction. This question is discussed in the next section: “Greatest Common Divisors”.
(3) We must be able to choose which associate of the denominator to use, since a fraction is the

same whatever unit we multiply the numerator and denominator by.
It is this last point that concerns us for the moment. We will require some form of operator
which returns a distinguished associate of any element. Such operators are sometimes easy to find,
and sometimes very difficult. For example, the normal choice for the integers would be “absolute
value”, and the normal choice for a polynomial domain is to ensure that the leading coefficient
is, recursively, canonical. For the Gaussian integers we could choose one quadrant of the Argand
diagram, say x > 0, y ≥ 0.

Theorem. There exist integral domains such that there cannot exist an algorithm for computing
a canonical associate of every element.

Proof. As Fröhlich & Shepherdson [1956] did, we construct a domain D which may be either Z or
Z[
√

2, 1/
√

2]. If it is Z, then 1 and 2 are not associates, and the canonical form for 2 must be ±2.
If, however, it is Z[

√
2, 1/
√

2], then 1 and 2 are associates, and so must have the same canonical
form. Asking the question “do 1 and 2 have the same canonical form” is equivalent to deciding on
the nature of D, which is impossible.

We note that D is not an IntegralDomain in the Scratchpad sense, since it doesn’t possess
an exquo algorithm either, since knowing the value of 1 exquo 2 would determine D. In fact,
using Brown’s trick [Brown, 1969], we can equip any IntegralDomain with a canonical associate
operator: we keep a list of every canonical element encountered, and, every time the “canonical
associate” question is asked of x, we return the first element of this list which is an associate of
x. If there is no such element, x is deemed to be canonical, and is added to the list of canonical
elements. Algorithms such as this, while in some sense they work, are not to be regarded favourably:
partly because of their expense, but also because of their fundamentally non-canonical nature —
organising a calculation in a different way, or a different choice of random numbers, can change
the definition of “canonical”, which is not particularly helpful.

Hence, from the point of view of efficient algorithms, we can see that some IntegralDomains
will have efficient algorithms for finding canonical associates, and some will not. It turns out to be
more practical in Scratchpad to say that all IntegralDomains should have an operator canonical,
which always satisfies the axiom

x, canonical(x) are associates,

but that the truly canonical nature of this, viz. that

x and y are associates⇒ canonical(x) = canonical(y)

should be optional — if we know that this holds in a particular domain, we declare the attribute
canonicalUnitNormal in that domain.

There is an additional question that has to be considered here: are the canonical elements
closed under multiplication? This can be expressed axiomatically in the following way:

canonical(canonical(x) ∗ canonical(y)) = canonical(x) ∗ canonical(y).

Some domains have this property, e.g. the integers with the usual definition of canonical as
“absolute value”. The Gaussian integers don’t have this property with the choice of a quadrant
of the Argand diagram, but it is possible to find definitions of canonical which do have this
property — choose, once and for all, a canonical associate for each prime of the Gaussian integers
(for example, this could be in a particular quadrant), and then define the canonical associate of
an arbitrary element to be the product of the canonical associates of its prime factors. This set
of canonical associates is then closed under multiplication, but the algorithm for finding them
is hardly efficient. Hence the axiom mentioned above is given a name — canonicalsClosed,
and some domains assert its validity, while others don’t. It is only asserted in the presence of
canonicalUnitNormal. It is a consequence of this axiom that

x exquo y 6= "failed"⇒ canonical(x) exquo canonical(y) is canonical.

Proof. Let z = canonical(x) exquo canonical(y). Since z ∗canonical(y) = canonical(x), z ∗ y
is an associate of x. Hence

canonical(x) = canonical(z ∗ y) = canonical(canonical(z) ∗ canonical(y))
= canonical(z) ∗ canonical(y),

so canonical(x) exquo canonical(y) = canonical(z). Since the result of the exquo operator is
unique, z = canonical(z).

Greatest Common Divisors
As was explained in the introduction, we have to distinguish between the existence of algorithms for
the computation of greatest common divisors and the existence of algorithms for the computation
of unique factorisation. A GcdDomain is defined to be an IntegralDomain with an additional
operator

gcd : $× $ 7→ $
satisfying the following axioms:

x exquo gcd(x, y) 6= "failed"

y exquo gcd(x, y) 6= "failed"

x exquo z 6= "failed" ∧ y exquo z 6= "failed"⇒ gcd(x, y) exquo z 6= "failed"

canonicalUnitNormal⇒ gcd(x, y) = canonical(gcd(x, y)).

It is a consequence of these axioms that gcd(x, y) and gcd(y, x) are associates, and hence that

canonicalUnitNormal⇒ gcd(x, y) = gcd(y, x)

but this condition is not imposed more generally, since without canonicalUnitNormal, it is hard
to ensure that the correct associate of the gcd has been found. This question can be seen as another
illustration of the importance of associates in the constructive multiplicative theory.

It follows from the classical theory that, in a GcdDomain, factorisations into irreducible ele-
ments are unique (up to order and up to choice of associates). Such factorisations will exist if the
domain is Noetherian, but we have not found any useful algorithmic categorisation* of “Noethe-
rian”. There is an attribute Noetherian, which is asserted by some domains, and propagated by
some functors (e.g. SparseUnivariatePolynomial).

* One could imagine an operator increase which, given an ideal, either returned a larger ideal,
or the word "failed", indicating that the ideal was maximal. The axiom of Noetherianity would

The Functor Fraction

We are now able to describe the structure of the functor Fraction. The declaration of Fraction
requires an IntegralDomain D as input, and essentially returns a Field. The representation
chosen is that of an ordered pair: numerator and denominator. If x belongs to the quotient field
then these are referred to within the functor as x.num and x.den: conversely, if n and d are two
elements of D, then the fraction n/d in $ is denoted [n,d]. In fact, operations for accessing these
components, known as numer and denom are exported. This is in fact the triumph of pragmatism
over purism, since these are not necessarily algebraic operations (in the sense of $ being canonical).
By this we mean that a = b does not necessarily imply that numer(a) = numer(b), as can be seen
from the Scratchpad example quoted in Davenport & Trager [1990].

If D is a GcdDomain, then one defines auxiliary functions cancelGcd and normalize, both
with signature $ 7→ $. The first makes use of the gcd operation, while the second ensures that the
denominator is canonical (of course, if the attribute canonicalUnitNormal is not present, this
doesn’t mean very much). Both operators update their argument, and return it as result. The
propagation of canonical is dealt with by a clause:
if D has canonical and D has GcdDomain and D has canonicalUnitNormal

then $ has canonical
in the declaration of the functor.

The basic arithmetic operators come in two varieties: for domains which aren’t GcdDomains,
and for those which are. The definitions of the second variety cancel common divisors and use the
normalize function. These are stated as separate operations, since it is generally more efficient
to cancel greatest common divisors during an operation, rather than at the end, while this is not
true for normalisation. Thus multiplication for GcdDomains is defined as

x * y ==
xx := [x.num,y.den]
yy := [y.num,x.den]
cancelGcd xx
cancelGcd yy
normalize [xx.num*yy.num,xx.den*yy.den]

making two small gcd calculations rather than one large one. The canonicalsClosed attribute
would render the call to normalize unnecessary, but the extra complexity of a further set of
conditional definitions seems too high for the small gain in run-time efficiency. Of course, this
decision could be changed at any time just by changing the code of the functor Fraction.

The rest of the arithmetic operations are not worth considering in detail, but there are a
couple of operations whose definitions are worth looking at. The first is =, defined as

x = y == x.num = y.num & x.den = y.den

if D is a GcdDomain with canonicalUnitNormal, otherwise* as

x = y == x.num * y.den = y.num * x.den

then translate into the assertion that the loop
while I 6= "failed" do

I := increase(I)

always terminates (at least if I isn’t the whole domain). However, this requires the introduction
of “ideal” as a type (one might restrict oneself to finite-generated ideals from the point of view of
representation, though the axiom should certainly apply to infinitely-generated ideals), and it’s not
clear how to turn this and the GcdDomain properties into an efficient algorithm for the factorisation
of elements, rather than ideals. Of course, there is no problem in principal ideal domains.

* It could be argued that we should find a better default definition, since doing two large multi-
plications may well be unnecessary. For example, we could verify things like degree compatibility
if the underlying domain were a polynomial domain.

The second is the operator retractIfCan with signature $ 7→ Union(D, "failed"), satisfying
the axiom

x =
n

1
, n ∈ D ⇔ retractIfCan(x) = n.

If D is a GcdDomain with canonicalUnitNormal, the definition is

retractIfCan x == if x.den = 1 then x.num
else "failed"

If D is a GcdDomain, but without canonicalUnitNormal, the definition is

retractIfCan x == (z:=recip x.den) case "failed"=> "failed"
z * x.num

If D is not a GcdDomain, then the definition is

retractIfCan x == x.num exquo x.den

Unique Factorisation Domains

If R is any IntegralDomain, we define the functor Factored to map R onto another structure,
which can be viewed as “partially-factored elements of R”. We then define a UniqueFactorisa-
tionDomain to be a GcdDomain with the following additional operators:

prime : $ 7→ Boolean

squareFree : $ 7→ Factored($)
factor : $ 7→ Factored($),

satisfying the obvious axioms, viz. that prime is true only if the element is prime (in the sense
that it is not a unit, but any factorisation of it must contain a unit), squareFree and factor
return elements with the same value, containing relatively prime square-free factors in the first
case, and non-associate prime factors in the second, with the additional proviso that, if $ has the
canonicalUnitNormal attribute, then the factors are canonical.

Mathematically speaking, the operator factor would suffice, since prime could test whether
the result of factoring its argument had length 1 or not, and squareFree could call factor and
then regroup all factors having the same multiplicity. But this would be over-kill. It might also
seem surprising that squareFree is not defined earlier: surely for polynomial domains (though not
for the integers) this is equivalent to the computation of greatest common divisors. Regrettably,
this is not true for two reasons: the first is that, for polynomials over a ring, we should compute the
square-free decomposition of the content as well as of the primitive part, and this is not necessarily
equivalent to greatest common divisor calculations. The second is that, even for polynomials over a
ring, the problem of computing square-free decomposition may be insoluble, even though greatest
common divisors can be computed.
Proof. Let K be (Z/pZ)[y]. As Fröhlich and Shepherdson [1956] did, we construct a domain L
which might be K, or might be K[y1/p], and the consider the factorisation of xp − y in L[x]. If
L is K, this is irreducible, and a fortiori square-free. The other possibility is that this factors as(
x− y1/p

)p
, in which case it is not square-free.

Euclidean Domains
In the normal development of commutative algebra, the sequence of refinement goes

Unique Factorisation Domain −→ Principal Ideal Domain −→ Euclidean Domain.

In practice, there are few examples of principal ideal domains which are not Euclidean domains,
and in fact there are no such domains in Scratchpad.

The example of Fröhlich & Shepherdson shows that it is possible to have constructive Euclidean
domains which are not constructive unique factorisation domains, so that our hierarchy will look
like

GcdDomain
↙ ↘

UniqueFactorisationDomain PrincipalIdealDomain
↓

EuclideanDomain
PrincipalIdealDomain is defined to be a GcdDomain with an operator principalIdeal

which, given a list of elements, finds a generator of the ideal they define This only ensures that
finitely generated ideals are principal, but there are (non-constructive) axioms asserting that all
ideals are principal.

The conventional definition of a Euclidean domain involves a function φ from the domain to
some ordered (abelian) monoid, with the property that

x, y 6= 0⇒ φ(xy) ≥ φ(x), φ(y).

If one declares that φ(0) is not defined, one can regard the non-negative integers as the range of
φ. EuclideanDomains are defined to be extensions of GcdDomain with two additional fundamental
operators:

euclideanSize : $ 7→ NonNegativeInteger

div : $× $ 7→ $× $,
where div is infix, and the two components of the return type are called quotient and remainder.
These satisfy the axioms:

y 6= 0⇒ x = y ∗ (x div y).quotient + (x div y).remainder
y 6= 0⇒ (x div y).remainder = 0 ∨ euclideanSize((x div y).remainder) < euclideanSize(y)

x, y 6= 0⇒ euclideanSize(xy) ≥ euclideanSize(y),

In such a domain, there are obvious default definitions for the functions exquo* and gcd:
x exquo y ==

qr:=x div y
qr.remainder = 0 => qr.quotient
"failed"

and
gcd(x,y) ==

x:=canonical(x)
y:=canonical(y)
while y ^= 0 repeat

(x,y) = (y,(x div y).remainder)
y:=canonical(y)

x

Proposition. This algorithm does in fact compute the greatest common divisor of its inputs.

Proof. The partial correctness (i.e. the fact that, if the algorithm terminates, then it computes
the correct result) of the algorithm follows exactly as in the classical case. If z is a common

* As was remarked earlier, this may well not be the most efficient definition for exquo.

divisor, then it divides x and y initially, and hence it divides x and y throughout the running of
the algorithm, and in particular it divides the final value of x, which is the result. On the other
hand, the result divides the last pair (x, y) (since y = 0). But each pair is a linear combination of
the elements of the next pair, so by induction, the result divides the elements of every pair.

Hence we need merely show that the algorithm terminates, which is obvious since φ(y) is
strictly decreasing. Furthermore, the guard y 6= 0 ensures that the division always succeeds.

Inside EuclideanDomain, we can give principalIdeal a default definition in terms of the
extended Euclidean algorithm.

The Functor SparseUnivariatePolynomial

We are now able to describe the structure of the functor SparseUnivariatePolynomial. This is
defined to take as parameter a ring R, and the return the ring of polynomials in one “anonymous”
variable over this ring. In fact, the return type is not simply a ring, rather it is at least a Ring
and an Module over R, with various other properties:
(1) If R is an IntegralDomain, then so is $;
(2) If R is a GcdDomain, then so is $;
(3) If R is a Field, then $ is a EuclideanDomain;
(4) If R has the canonicalUnitNormal attribute, then so does $;
(5) If R has the canonicalsClosed attribute, then so does $;
(6) If R is a CommutativeRing, the so is $, which is also an Algebra over R.
(7) If R has the canonical attribute, then so does $;
(8) If R has the Noetherian attribute, then so does $;

The representation chosen is that of a List of objects called Terms, each of which is a record
with a component from R (known as c) and a non-negative integer (known as k). In the terminology
of Stoutemyer [1984], the representation is sparse, and implicit in variables. Of course, R could
itself be the result of calling SparseUnivariatePolynomial, so the representation is also capable
of being recursive. Given this representation, most of the algorithms are fairly obvious (though a
little care has to be taken, since it is not assumed that R is always commutative): the important
point for this paper is to note how the correct properties of R let us define the correct operations
for $.

For example, the function canonical for $ is defined to return 0 if the input is 0, otherwise
(canonical(lc(x)) exquo lc(x)) ∗ x, where lc is the “leading coefficient” operator. Of course,
this is not the only choice possible, but it is both natural and fairly efficient. It certainly does
ensure the correctness of the propagation of the attribute canonicalUnitNormal, and indeed that
of canonicalsClosed.

Conclusions
We see that, up to the category IntegralDomain, the conventional theory and the constructive
theory are pretty much in step. When it comes to IntegralDomain, we have to convert a non-
effective axiom into an operation, the uniqueness of whose result is guaranteed by the non-effective
axiom. Every IntegralDomain can be extended to a quotient field, and the functor Fraction does
precisely this. In order to get an efficient extension, and in particular to ensure that domains with
the canonical attribute extend to fields with the canonical attribute, we require that the domain
should be a GcdDomain, and that it should have the canonicalUnitNormal attribute. The first of
these is fairly obvious, the second is a feature of the constructive theory. With these definitions,
we have a general functor which has all the efficiency of the special cases “rational number” and
“rational function” of traditional computer algebra systems, where this is possible.

From the constructive point of view, the categories GcdDomain and UniqueFactorisationDo-
main are very different. This is partly due to the fundamental difference between the operations:
gcd depends only on its inputs (at least up to the choice of associates), whereas factor depends
also on the ambient domain, and, as the example of Fröhlich and Shepherdson shows, this differ-
ence is crucial when it comes to questions of effectivity. The difference is also partly due to the fact

that we do not have an effective formulation of “Noetherian”. We can formulate this as a question
for future research:
• Does “Noetherian” have a useful constructive definition?

The major difference from the classical theory follows from the previous paragraph: a Euclide-
anDomain is not necessarily a UniqueFactorisationDomain. With this, we can build a successful
abstract functor SparseUnivariatePolynomial, which models the classical theory, with one sig-
nificant exception.

The classical theorem polynomials over a unique factorisation domain form a unique factori-
sation domain has no part in the constructive theory we have elaborated. There are two obvious
reasons for this. The first is that it is false: in the Fröhlich–Shepherdson example, K is a field,
hence a UniqueFactorisationDomain, but K[x] cannot be a UniqueFactorisationDomain. The
second is that it is unreasonable: the efficient algorithms that we know for factoring polynomials
over the integers don’t rely on the factorisation of integers (unless one insists that the content be
completely factored), but do rely on other properties of polynomials over the integers (reduction
modulo p; Hensel’s Lemma) which our formulation does not capture at all. We can set this as a
future research topic:
• Find a formulation of “unique factorisation” such that polynomials over a unique factorisation

domain become a unique factorisation domain. It may be useful to consider condition (F) of
Seidenberg [1974] in this context.

Acknowledgements.

Both authors are grateful to many past and present members of the Scratchpad group for their input
to the theory described in this paper. Many of the orignial ideas were worked out in conjunction
with D.R. Barton. The stimulus for writing the first version of this paper was provided by the
Computer Algebra Group of Nice/Antipolis. Much discussion of this material took place while the
authors enjoyed the hospitality of Mrs. Barbara Gatje.

References

[Abbott et al., 1985] Abbott, J.A., Bradford, R.J. & Davenport, J.H., A Remark on Factorisation.
SIGSAM Bulletin 19 (1985) 2, pp. 31–33, 37.

[Bareiss, 1968] Bareiss, E.H., Sylvester’s Identity and Multistep Integer-preserving Gaussian
Elimination. Math. Comp. 22 (1968) pp. 565–578.

[Bradford et al., 1986] Bradford, R.J., Hearn, A.C., Padget, J.A. & Schrüfer, E., Enlarging the
REDUCE Domain of Computation. Proc. SYMSAC 86 (ACM, New York, 1986) pp. 100–106.

[Brown, 1969] Brown, W.S., Rational Exponential Expressions, and a conjecture concerning π
and e. Amer. Math. Monthly 76 (1969) pp. 28–34.

[Collins, 1966] Collins, G.E., PM, a system for polynomial multiplication. Comm. ACM 9 (1969)
pp. 578–589.

[Davenport, 1981a] Davenport, J.H., On the Integration of Algebraic Functions. Springer Lecture
Notes in Computer Science 102, Springer-Verlag, Berlin-Heidelberg-New York, 1981 [Russian
ed. MIR, Moscow, 1985].

[Davenport, 1981b] Davenport, J.H., Effective Mathematics — the Computer Algebra viewpoint.
Proc. Constructive Mathematics Conference 1980 (ed. F. Richman) [Springer Lecture Notes
in Mathematics 873, Springer-Verlag, Berlin-Heidelberg-New York, 1981], pp. 31–43.

[Davenport & Padget, 1985a] Davenport, J.H. & Padget, J.A., HEUGCD: How Elementary
Upperbounds Generate Cheaper Data. Proc. EUROCAL 85, Vol. 2 (Springer Lecture Notes
in Computer Science 204, Springer-Verlag, Berlin-Heidelberg-New York, 1985) pp. 18–28

[Davenport & Padget, 1985b] Davenport, J.H. & Padget, J.A., On Numbers & Polynomials.
Computers and Computing (ed. P. Chenin, C. Dicrescenzo, F. Robert), Masson and Wiley,
1985, pp. 49–53.

[Davenport & Trager, 1990] Davenport, J.H. & Trager, B.M., Scratchpad’s View of Algebra I:
Commutative Algebra. IBM Research Report RC 14897 and University of Bath Computer
Science Technical Report 90-31, January 1990.

[Fröhlich & Shepherdson, 1956] Fröhlich, A. & Shepherdson, J.C., Effective Procedures in Field
Theory. Phil. Trans. Roy. Soc. Ser. A 248 (1955–6) pp. 407–432.

[Gianni et al., 1988] Gianni, P., Trager, B.M. & Zacharias,G., Gröbner Bases and Primary
Decomposition of Polynomial Ideals. J. Symbolic Comp. 6 (1988) pp. 149–167.

[Hearn, 1979] Hearn,A.C., Non-Modular Computation of Polynomial Gcd Using Trial Division.
Proc. EUROSAM 79 (Springer Lecture Notes in Computer Science 72, Springer-Verlag, Berlin-
Heidelberg-New York) pp. 227–239.

[Hermite, 1872] Hermite, E., Sur l’intégration des fractions rationelles. Nouvelles Annales de
Mathématiques, 2 Sér., 11 (1872) pp. 145–148. Ann. Scientifiques de l’École Normale Supé-
rieure, 2 Sér., 1 (1872) pp. 215–218.

[Jenks & Trager, 1981] Jenks, R.D. & Trager, B.M., A Language for Computational Algebra.
Proc. SYMSAC 81 (ACM, New York, 1981) pp. 6–13. Reprinted in SIGPLAN Notices 16
(1981) No. 11, pp. 22–29.

[Moore & Norman, 1981] Moore, P.M.A. & Norman, A.C., Implementing a Polynomial Factor-
ization and GCD Package. Proc. SYMSAC 81 (ACM, New York, 1981) pp. 109–116.

[Seidenberg, 1974] Seidenberg, A., Constructions in Algebra. Trans. AMS 197 (1974) pp. 273–
313.

[Stoutemyer, 1984] Stoutemyer, D.R., Which Polynomial Representation is Best: Surprises
Abound. Proc. 1984 MACSYMA Users’ Conference (ed. V.E. Golden), G.E., Schenectady,
pp. 221–243.

[Trager, 1976] Trager,B.M., Algebraic Factoring and Rational Function Integration. Proc.
SYMSAC 76 (ACM, New York, 1976) pp. 219–226.

