

Citation for published version:
Davenport, JH, Gianni, P & Trager, BM 1991, Scratchpad's view of algebra II: A categorical view of factorization.
in ISSAC '91 Proceedings of the 1991 international symposium on Symbolic and algebraic computation.
Association for Computing Machinery, New York, pp. 32-38, ISSAC '91 The 1991 International Symposium on
Symbolic and Algebraic Computation , Bonn, Germany, 14/07/91. https://doi.org/10.1145/120694.120699

DOI:
10.1145/120694.120699

Publication date:
1991

Document Version
Peer reviewed version

Link to publication

© ACM, 1991. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in ISSAC '91 Proceedings of the 1991
international symposium on Symbolic and algebraic computation, http://doi.acm.org/10.1145/120694.120699

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/120694.120699
https://researchportal.bath.ac.uk/en/publications/scratchpads-view-of-algebra-ii(7ff80025-e1e5-49a8-9ee7-af80f29101c8).html

Scratchpad’s View of Algebra II:
A Categorical View of Factorization

J.H. Davenport P.Gianni B.M. Trager
School of Mathematics Dipartimento di Matematica Mathematical Sciences Dept.

University of Bath Università di Pisa IBM T.J. Watson Research Center
Claverton Down Via Buonarroti 2 P.O. Box 218
Bath BA2 7AY 56100 Pisa Yorktown Heights

England Italy 10598 NY, U.S.A.

Abstract
This paper explains how Scratchpad solves the prob-
lem of presenting a categorical view of factorization
in unique factorization domains, i.e. a view which can
be propagated by functors such as SparseUnivari-
atePolynomial or Fraction. This is not easy, as the
constructive version of the classical concept of Unique-
FactorizationDomain cannot be so propagated. The
solution adopted is based largely on Seidenberg’s condi-
tions (F) and (P), but there are several additional points
that have to be borne in mind to produce reasonably ef-
ficient algorithms in the required generality.

The consequence of the algorithms and interfaces
presented in this paper is that Scratchpad can factorize
in any extension of the integers or finite fields by any
combination of polynomial, fraction and algebraic ex-
tensions: a capability far more general than any other
computer algebra system possesses. The solution is not
perfect: for example we cannot use these general con-
structions to factorize polynomials in Z[

√−5][x] since
the domain Z[

√−5] is not a unique factorization do-
main, even though Z[

√−5] is, since it is a field. Of
course, we can factor polynomials in Z[

√−5][x].

1. Introduction
Scratchpad [Jenks et al., 1988] is a computer algebra
system based on the “abstract data type” view of com-
puting, where the various data types are constructed
from elementary ones, such as Integer, by means of
functors (functions which return types) such as Sparse-
UnivariatePolynomial or Fraction. The types con-
sist of a data representation and operations, so that a
type such as List(Integer) provides the operations
length etc. as well as the data structure of a list. The
types are themselves typed, with second-order types
being called categories. These categories are defined
to supply certain operations, so that every Ring will

provide operations such as addition and multiplication.
The functors define how each operation is implemented
for the data types they return. The choice of definition
can depend on the properties of the parameters, so that
an exponentiation for polynomials over R which was im-
plemented via the binomial theorem for commutative
coefficients, but by repeated multiplication otherwise,
can be easily defined, as in the actual Scratchpad code
if R has CommutativeRing then
p ** nn ==

null p => 0
nn = 0 => 1
p.rest = [] =>

[[nn * p.first.k, p.first.c ** nn]]
binomThmExpt([p.first], p.rest, nn)

else
p ** nn == repeatMultExpt(p,nn)

where the definitions of binomThmExpt and repeatMul-
tExpt have been omitted for brevity.

A previous paper [Davenport & Trager, 1990] ex-
plained the basis of Scratchpad’s view of commutative
algebra. In that paper we explained why a constructive
view of factorization is inherently different from a non-
constructive one, as originally pointed out by Fröhlich
& Shepherdson [1956]. Hence Scratchpad has to dis-
tinguish between the categories of GcdDomain, viz. an
integral domain in which greatest common divisors can
be computed, and UniqueFactorizationDomain, viz.
an integral domain in which, additionally, factoriza-
tions into irreducible elements can be computed (and
therefore are unique up to order and choice of asso-
ciates). Every UniqueFactorizationDomain is a Gcd-
Domain, but the converse does not hold.

Most of the categories of Scratchpad are functo-
rial , in the sense that functors such as SparseUnivari-
atePolynomial preserve the property of belonging to
this category when appropriate. For example, the the-
orem “if R is an integral domain, so is R[x]” is trans-
lated into the constructive formulation of Scratchpad by
saying that the functor SparseUnivariatePolynomial
preserves the category IntegralDomain, or that Inte-

gralDomain is functorial for SparseUnivariatePoly-
nomial, and by writing

if R has IntegralDomain then IntegralDomain

in the definition of SparseUnivariatePolynomial.
Fröhlich & Shepherdson [1956] pointed out that Uniq-
ueFactorizationDomain cannot be functorial for Sparse-
UnivariatePolynomial, i.e. there can be no way for
Scratchpad to implement the theorem “if R is a unique
factorization domain, so is R[x]”, and Davenport &
Trager [1990] concluded by posing the problem of find-
ing an appropriate formulation of factorization which
would be functorial.

It is the aim of this paper to explain how this prob-
lem has been resolved in the latest versions of Scratch-
pad. We consider in the next section the problem of
domains of characteristic zero (i.e. belonging to the
category CharacteristicZero), and then go on to the
more difficult problem of domains of non-zero charac-
teristic (i.e. belonging to the category Characteris-
ticNonZero).

2. Characteristic Zero

The categorical structure is largely inspired by the treat-
ment in Seidenberg [1974] of “condition (F)”, which he
defined as the ability to construct the complete fac-
torization of polynomials on one variable over a field
k. We say that a domain R (which must already be
an UniqueFactorizationDomain) belongs to the cat-
egory PolynomialFactorizationExplicit (in charac-
teristic zero — see section 4 for additional properties
in finite characteristic) if it also has the following ad-
ditional operations, where signatures are represented in
the usual Scratchpad notation, and P represents the do-
main of polynomials in an (anonymous) variable over R
— Scratchpad’s SparseUnivariatePolynomial(R).

squareFreePolynomial: P -> Factored(P)
factorPolynomial: P -> Factored(P)
factorSquareFreePolynomial: P -> Factored(P)
gcdPolynomial: (P, P) -> P
solveLinearPolynomialEquation:

(List P, P) -> Union(List P,"failed")

We will consistently use x as the denotation for this
anonymous variable — this is purely an expository con-
venience, and the reader must remember that Scratch-
pad has no difficulty in handling domains contain-
ing several instantiations of SparseUnivariatePoly-
nomial, since the type structure makes it clear at any
moment which instantiation is being talked about.

The operation factorPolynomial corresponds ex-
plicitly to Seidenberg’s condition (F). The operations
squareFreePolynomial, which returns a square-free
factorization (with respect to the anonymous variable)
of a given polynomial, and factorSquareFreePolyno-
mial, which produces the complete factorization of a
polynomial already known to be non-trivial and both

square-free and primitive with respect to the anonymous
variable, are included for efficiency (in the case of Char-
acteristicZero — see later for the treatment of in-
separability in finite characteristic). In fact, factor-
Polynomial can be defined in terms of these other two,
though a little care has be taken with the content with
respect to the anonymous variable.

The operation gcdPolynomial, which computes
the greatest common divisor of two polynomials in the
anonymous variable, is logically redundant, in fact for
two different reasons. The first is that, since R is a
UniqueFactorizationDomain, it is a fortiori a GcdDo-
main, and therefore P is also a GcdDomain. The second
reason is that greatest common divisors can be com-
puted by collecting the common terms in the factoriza-
tions of the two polynomials. Nevertheless, this opera-
tion is of substantial practical importance — it will be
shown that this formulation of the problem allows us
to use efficient modular or p-adic methods for the com-
putation of greatest common divisors, rather than the
subresultant method which is all that the functoriality
of GcdDomain allows us. There is a default definition
provided via the subresultant algorithm [Loos, 1982],
but most constructors which yield PolynomialFactor-
izationExplicit types actually provide their own.

The operation solveLinearPolynomialEquation
is less obvious, though we will see that it is crucial
to our formulation of Hensel’s Lemma. Given a set
of polynomials (in the anonymous variable) f1, . . . , fn

which have no common factor, and a polynomial g, it
returns either a list of polynomials a1, . . . , an such that∑

ai

∏
j 6=i fj = g and ai has degree strictly less than

fi, or the token failed if no such set exists. This de-
gree constraint ensures that the answer is unique, and
that the answer is useful in Hensel lifting. We note that
there is a possibility for failure: we have ensured that
g is divisible by the common divisor of the fi, but it is
possible for no solutions to exist in R[x] even though
they do exist in k[x] where k is the field of fractions of
R. For example, consider
solveLinearPolynomialEquation([x-1,x+1],1)

(x being the anonymous variable) which would return
failed over Z, but

[−1
2 , 1

2

]
over Q. If R is a Field, then

R[x] is a EuclideanDomain, and the operation solve-
LinearPolynomialEquation over R is identical to the
operation multiEuclidean over R[x], and indeed this
is expressed via a conditional default. Otherwise, we
can always extend R to its field of fractions, solve the
problem there, and endeavour to retract, and this is also
provided as a default operation. It is an implicit part of
the characterization of solveLinearPolynomialEqua-
tion that the operation may often be called with the
same first argument, as happens in linear Hensel lifting,
and implementations are expected to do the appropriate
caching.

Let us now examine the algorithms actually used
for the various functors in Scratchpad which define or

propagate the category PolynomialFactorizationEx-
plicit, restricting our attention for the moment to the
case of characteristic zero, and discussing non-zero char-
acteristic in later sections.

Integer — Z

The algorithmic requirements to make this ring be
PolynomialFactorizationExplicitare quite straight-
forward: the factorSquareFreePolynomial operation
is provided by the classical scheme of reduction to
a prime p, “distinct degree” factorization [Cantor &
Zassenhaus, 1981], lifting to pn and re-combination.
The reduction to square-free polynomials is simple
[Yun, 1976; 1977]. Although the default gcdPoly-
nomial and solveLinearPolynomialEquation imple-
mentations would be perfectly satisfactory, better ones
are available. For gcdPolynomial we use the “eval-
uate at a large integer” method [Char et al., 1984]
[Davenport & Padget, 1985a; 1985b], and for solve-
LinearPolynomialEquationwe reduce modulo a word-
sized prime (such that the system stays non-singular),
and use Hensel’s Lemma if necessary to obtain a large
enough modulus, based on a Hadamard-style bound for
the size of a possible solution. We need such a bound
since solutions may not exist over Z.

Fraction — field of fractions

To fix notation, let D be the argument to Fraction,
which has to be an IntegralDomain in general, and
which needs to be PolynomialFactorizationExplicit
in order for factorization to be propagated, k be the
result of Fraction, which is a Field, and R be k[x],
using x to stand for the anonymous variable.

The algorithm for factorPolynomial is concep-
tually straight-forward — clear fractions, factorize the
polynomial over D[x] (using a call to factorPolyno-
mial from the domain D), and re-write the results to
lie in k[x]. The algorithm for factorSquareFreePoly-
nomial is identical except that it recurses through fac-
torSquareFreePolynomial from D. This explains why
we stipulated that the arguments for factorSquare-
FreePolynomial should be square-free and primitive
with respect to the anonymous variable only. For ex-
ample, let D be Z[y], then the polynomial f = (y −
1)2(x2 − 1) is square-free in k[x], since (y − 1)2 is a unit
in k, but f is not square-free or primitive in Z[y][x].
However, it is legitimate to call factorSquareFreeP-
olynomial on f in D[x].

The operation gcdPolynomial works similarly —
denominators are cleared from both inputs, and the op-
eration gcdPolynomial from D is called. The result
has to be made monic as a polynomial in k[x], since
this is the unit normalization for greatest common divi-
sors assumed by SparseUnivariatePolynomial. The
operation solveLinearPolynomialEquation takes its
default value, viz. the multiEuclidean operation from
R. It might be possible to write a better algorithm, but

the point is that the system may well have solutions
in k[x] without having solutions in D[x], so a simple
reduction from k to D would be incorrect.

SparseUnivariatePolynomial — [y]

To fix notation, let R be the first argument to Sparse-
UnivariatePolynomial, viz. a PolynomialFactoriza-
tionExplicit ring, and let y be the name of the vari-
able in which we are making polynomials, reserving x for
the anonymous variable over which the operations defin-
ing PolynomialFactorizationExplicit are stated.

The algorithms for factorization work by reducing
the problem from R[y][x] to R[x], solving the problem
there since R is PolynomialFactorizationExplicit,
and lifting the results.

Let us look first at applying factorSquareFreeP-
olynomial to a polynomial f . The general strategy is
simple. Write l for lcx(f).
[1] Choose a value a in R for y such that f(a, x)

is square-free and has the same degree as f
(i.e. any value such that y − a does not divide
lcx(f)discx(f)).

[2] Remove the content from f(a, x) — call the result
g(x) ∈ R[x].

[3] Call factorSquareFreePolynomial from R on g,
which is justified since a was chosen to make g
square-free and non-trivial, and g is primitive.

[4] If g is irreducible, then f is irreducible, and we
terminate by returning a one-element factorization.
Otherwise, let n be the number of factors found.

[5] Multiply one of the factors found by f(a, x)/g and
impose l as the leading coefficient of each factor.
Call these factors g1, . . . , gn. Write F = f(x, y)ln−1

so that F ≡ ∏
gi (mod y − a).

[6.1] Write

E =
F − ∏

gi

y − a

∣
∣
∣
∣
y=a

,

and call solveLinearPolynomialEquation (from
the domain R) on the gi and E. If this returns
failed, then the gi are not images of a factoriza-
tion of F and we go to [7], otherwise it returns a list
of polynomials ai, and we replace gi by gi+(y−a)ai.

[6.2] Write

E =
F − ∏

gi

(y − a)2

∣
∣
∣
∣
y=a

.

If E = 0, we have a factorization of F , and we
convert this to a factorization of f by making the
gi primitive (and taking care over units!). Oth-
erwise we call solveLinearPolynomialEquation
(from the domain R) on the gi (which is the same
argument as last time, and solveLinearPolyno-
mialEquation implementations are expected to be
efficient in such circumstances) and E. If this re-
turns failed, then the gi are not images of a fac-
torization of F and we go to [7], otherwise it re-
turns a list of polynomials ai, and we replace gi by
gi + (y − a)2ai.

[. . .]
[6.m] Write

E =
F − ∏

gi

(y − a)m

∣
∣
∣
∣
y=a

.

If E = 0, we have a factorization of F , and we
convert this to a factorization of f by making the
gi primitive (and taking care over units!). Oth-
erwise we call solveLinearPolynomialEquation
(from the domain R) on the gi and E. If this
returns failed, then the gi are not images of a
factorization of F and we go to [7], otherwise it re-
turns a list of polynomials ai, and we replace gi by
gi + (y − a)mai.
Repeat these steps until the factorization is found,
or until the total degree (in y) of

∏
gi exceeds the

degree of F , in which case we have a failure (caused
by a false split).

[7] [This step is reached by fall-through from the pre-
vious loop, or by a failure of the calls to solve-
LinearPolynomialEquation.] Choose a different
value a according to the criteria in [1], and restart.

The algorithm for gcdPolynomial works by reducing
the problem from R[y][x] to R[x], solving the problem
there since R is PolynomialFactorizationExplicit,
and lifting the results as a two-element factorization,
using solveLinearPolynomialEquation as in the lift-
ing of factorizations. Since R is infinite, almost all re-
ductions from R[y][x] to R[x] will be lucky, in the sense
that the gcd in R[x] is the image of the gcd in R[y][x].

The algorithm for solveLinearPolynomialEqua-
tion works by reducing the problem from R[y][x] to
R[x], (ensuring that the polynomials preserve their de-
gree and that the list of polynomials stays relatively
prime) solving the problem there since R is Polynomi-
alFactorizationExplicit, and lifting the results.

SimpleAlgebraicExtension — [θ]

Here the algorithm for factorSquareFreePolynomial
is essentially that of Trager [1976]: we take norms from
R[θ][x] to R[x], ensuring that the result stays square-
free (which can only fail at a finite number of linear
substitutions of the form θ 7→ θ − a), factor the norm
over R[x], which is possible since R is PolynomialFac-
torizationExplicit, and use greatest common divi-
sors to find the factor of the original polynomial. We
currently rely on the default implementations for gcd-
Polynomial and solveLinearPolynomialEquation.

3. Finite Characteristic — Condition F
The two major problems in extending the algorithms
given above to the case of finite characteristic are that
such fields may be too small and there exist non–
constant polynomials with zero derivative. The first
problem, that finite fields may not contain enough val-
ues, implies that a polynomial f(y, x) may be square-
free, but discy(f) may vanish at every element of the
given finite field. To deal with this problem we may

need to grow the field to contain sufficiently many good
values. The other problem is equivalent to the problem
of inseparability, and shows up as added complexity in
the squareFreePolynomial operation and is dealt with
in the next section. Throughout this and the next sec-
tion, p will denote the characteristic of the fields being
discussed.

Finite Field Category — Finite Fields

Finite fields can be constructed by the functor Prime-
Field, whose single argument is a prime number giving
the size of the field to be constructed, or by Finite-
FieldExtension, which, given a finite field and n, con-
structs the extension of that field of relative degree n.
These are combined by the functor FiniteField — a
call with arguments p and n generates the field with pn

elements.
The algorithmic requirements to make these fields

belong to the PolynomialFactorizationExplicit cat-
egory are quite straight-forward: the factorSquare-
FreePolynomial operation is provided by the “distinct
degree” algorithm [Cantor & Zassenhaus, 1981], reduc-
tion to square-free is simple and the default gcdPoly-
nomial and solveLinearPolynomialEquation imple-
mentations are perfectly satisfactory.

SparseUnivariatePolynomial — [y]

Let k be a member of FiniteFieldCategory. Factor-
ization in k[x] is possible, i.e. k satisfies Seidenberg’s
condition (F), and, as we have seen, is easily a mem-
ber of the PolynomialFactorizationExplicit cate-
gory. Factorization in k[y][x] is also posssible (though
not so often implemented in computer algebra systems),
i.e. k[y] satisfies condition (F). However, the algorithms
given in the previous section will not make it a mem-
ber of the PolynomialFactorizationExplicit cate-
gory, since we may be unable to find a reduction from
k[y][x] to k[x] preserving the square-free nature of our
polynomial, and, even if we can, such reductions may
not preserve the factorization structure of our polyno-
mial — indeed they are unlikely to.

The onus is on SparseUnivariatePolynomial to
ensure that k[y] is a PolynomialFactorizationEx-
plicit. This is achieved by special code in the defini-
tion of SparseUnivariatePolynomial. The gcdPoly-
nomial operation is implemented via a subresultant
method. The implementation of solveLinearPolyno-
mialEquation reduces the problem to a univariate one,
and then lifts, extending the field if no element of the
original prime is suitable. factorSquareFreePolyno-
mial determines a priori a large enough field extension
and chooses evaluation points in this extension to ensure
that the square-free polynomial remains square-free. If
R has FiniteFieldCategory then we will need a step
at the end of the lifting to combine factors until we find

true factors. Otherwise we assume that our specializa-
tion preserves the structure of the factorization and we
only need to test divide the lifted factors.

Fraction — field of fractions

This constructor is handled the same way as in char-
acteristic zero.

SimpleAlgebraicExtension — [θ]

We will assume that the polynomial to factor is square-
free, since the hard part of ensuring this is to do with
inseparability, which is discussed in the next section.
We must now distinguish two cases: either the ring over
which we are taking an extension is finite, or it is not. If
the ring is finite, then it is a finite field, and an algebraic
extension of a finite field is itself a finite field. Hence
the “distinct degree” algorithm [Cantor & Zassenhaus,
1981] is a suitable polynomial factorization algorithm.
In the case of infinite fields, we will split our extension
into a separable extension followed by a purely insep-
arable one. Let f(z) be the minimal polynomial of θ
over k. We first find the maximal value of r such that
f(z) = g(zpr

). r = 0 if and only if θ is separable over k.
Thus we split our extension into a tower of two exten-
sions. First we extend by α a root of g(y) which gives
a separable extension. Then we extend by θ = α1/pr

,
which gives a purely inseparable extension. To factor
over separable extensions of infinite fields we can use
Trager’s [1976] algorithm as if the characteristic were
zero. To factor h(x) over a purely inseparable extension
of degree pr of some field k, we first factor the polyno-
mial H(x) = h(x)pr

over k. Note that H is simply the
norm of h and has all its cofficients in k. For each irre-
ducible factor Hi of H we compute the hi = gcd(h, Hi)
which yields the corresponding irreducible factor of h.

4. Finite Characteristic — Condition P

Throughout this section, p will denote the character-
istic of the fields being discussed. The other problem
that arises in finite characteristic is that of insepara-
bility. We are used to the fact that the factorization
of a polynomial depends on the ambient field, but in
finite characteristic the square-free decomposition may
also depend on the field. For example, the polynomial
xp − y is either irreducible or a perfect p-th power, de-
pending on whether or not the ambient field contains
y1/p. Seidenberg [1970] introduces an additional condi-
tion, which he calls (P), on fields to provide a construc-
tive mechanism for handling this difficulty. He says that
a field k satisfies condition (P) if, given a system of ho-
mogenous linear equations over k, we can decide if it
has a non-trivial solution in kp, and, if so, exhibit one.

We have chosen to extend PolynomialFactoriza-
tionExplicit to provide this functionality (logically
speaking, we could define a separate category with this
operation, but this seems unnecessary). Hence the defi-
nition of PolynomialFactorizationExplicit given in

section 2 is augmented by

if $ has CharacteristicNonZero then
conditionP: Matrix $ ->

Union(Vector $,"failed")
CharthRoot: $ -> Union($,"failed")

Here the operation conditionP corresponds to Seiden-
berg’s definition generalized to rings — given a matrix
over k, either return failed or a vector of elements of
k. Seidenberg insisted that the solution should be in
kp, but algorithmically one wishes to know the precise
expression of these solutions as elements of kp, so the
vector returned is the vector of p-th roots of a non-trivial
solution of the homogenous linear equations implied by
the matrix. The operation CharthRoot returns the p-th
root of an element (or failed if there is no such root).
It is logically not necessary, since it can be defined in
terms of conditionP, but is provided for efficiency and
as a convenience to the programmer.

FiniteFieldCategory — Finite Fields

The implementation of CharthRoot is simple enough in
finite fields: in prime fields it is the identity, otherwise,
in a field of size pn, we raise elements to the power pn−1.
For conditionP, we first solve the linear system, and,
if this is possible, we then take the p-th roots of the
solution’s elements.

Fraction — field of fractions

The implementation of conditionP is simple, we clear
fractions from each equation, and then call conditionP
from the domain whose fractions we are implementing.
If this call succeeds, then we attach a denominator of
1 (by convention) to each element of the solution. For
domains which are stored canonically, the implementa-
tion of CharthRoot is to compute, using CharthRoot in
the domain whose fractions we are implementing, the p-
th root of the numerator and of the denominator. The
answer is then the quotient of the two p-th roots, and
exists only if both p-th roots exists. If the domain is not
stored canonically, we use the identity p

√
n
d = 1

d
p
√

ndp−1

to reduce the problem to that of CharthRoot in the do-
main whose fractions we are implementing.

SparseUnivariatePolynomial — [y]

The implementation of CharthRoot relies on the result
that a polynomial is a perfect p-th power if, and only
if, it is a polynomial in yp, each of whose coefficients is
a perfect p-th power. Hence we need merely check the
exponents, and call CharthRoot on the coefficients if ap-
propriate. The same is essentially true of conditionP:
all the polynomials occurring must have exponents a
power of p, and the corresponding coefficients must be
solutions of a system obtained by equating coefficients.
This system can be solved by calling conditionP() from
the underlying domain.

SimpleAlgebraicExtension — [θ]

SimpleAlgebraicExtensions of elements of the cate-
gory FiniteFieldCategory are themselves in Finite-
FieldCategory, and these implementations have al-
ready been discussed. So we confine ourselves here to
the case of applying SimpleAlgebraicExtension to an
infinite field k of characteristic p.

For a purely separable extension generated by θ
satisfying a minimal polynomial m of degree n, we
write each unknown X over k[θ] as X0 + X1θ

p + · · · +
Xn−1θ

(n−1)p, similarly with the coefficients of the ma-
trix, and reduce modulo m. This converts a conditionP
problem over k[θ] to one with n times as many equations
and unknowns over k, which is soluble if, and only if,
the original system was soluble: if the p-th roots of the
Xi are given as Yi, then the p-th roots of the solution
of the original system, i.e. the answer that conditionP
should return, are of the form

∑
Yiθ

i. A CharthRoot
problem over k[θ] is converted into an n×n conditionP
problem over k, which explains the importance of the
more general conditionP procedure.

For a purely inseparable extension generated by θ
satisfying a minimal polynomial m(θ) = θp−a, we write
each unknown X over k as X0 + X1a + · · ·+ Xp−1a

p−1,
similarly write the coefficients of the matrix as c0+c1θ+
· · · + cp−1θ

p−1, and equate coefficients of powers of θ.
This converts a conditionP problem over k[θ] to one
with p times as many equations and unknowns over k,
which is soluble if, and only if, the original system was
soluble. A CharthRoot problem over k[θ] is converted
into n CharthRoot problems over k.

A mixed extension is treated as a combination of
purely separable and purely inseparable extensions.

squareFreePolynomial — square-free factorization

Now that we have shown how to guarantee our abil-
ity to compute p-th roots, we can explain the necessary
modifications to the squareFreePolynomial algorithm
in finite characteristic. If we perform the same steps as
we do in characteristic zero, we eventually arrive at a
polynomial whose derivative with respect to x is zero.
In characteristic zero this would mean that this poly-
nomial no longer depended on x, but in finite charac-
teristic, it simply means that f(x) = g(xp), i.e. our
polynomial is in fact a polynomial in xp. At this point
we compute this polynomial g(x) which is just f with
all its exponents divided by p. Now we need to perform
a complete factorization of g(x). Thus in finite charac-
teristic, the ability to do a square free factorization is
intertwined with the ability to factor. To factor f we
first need to square-free decompose f , but this requires
us to factor g. We are making progress since the degree
of g is smaller than the degree of f by at least a factor
of p. If we let

∏
gai

i (x) be the complete factorization
of g(x), then f(x) =

∏
gai

i (xp). There remains only to
decide whether gi(xp) is square-free or not. It is at this
point in the factorization algorithm that we need to use
the CharthRoot operation that we have just introduced.

gi(xp) is a p-th power if and only if its coefficients are
p-th powers. We can decide this using CharthRoot.

5. Conclusions

We have presented the novel features of the algorithms
that Scratchpad uses to implement its categorical view
of factorization. The key concept is that of a Polyno-
mialFactorizationExplicit domain, which, roughly
speaking, is one that understands factorization of uni-
variate polynomials over itself, including, in character-
istic p, the factorization of xp − y for y in the domain.

We do not claim that the algorithms presented in
this paper (which are complemented, in Scratchpad, by
additional algorithms for common special cases) are the
most efficient in any particular case, rather we claim
that they are sufficiently efficient (unlike Seidenberg’s
[1974] treatment for example, where Kronecker’s trick is
used to reduce multivariate polynomial factorization to
univariate factorization), and, more importantly, that
they really exist in the generality claimed for them, so
that, for example, Scratchpad can factor polynomials in
the type Q[

√−2][x][
√

x][y] since the system will choose
the appropriate algorithms and recursions based on the
structure of this type, since Q has the appropriate prop-
erties, which are preserved by the functors

√−2, [x],
(field of fractions) and

√
x.

There are several aspects of general algorithms for
factorization which still need to be developed. We
mentioned in the abstract one difficulty with our cur-
rent formulation — all the intermediate domains need
to be unique factorization domains. In the example
quoted, Z[

√−5][x] cannnot be deduced to be Polyno-
mialFactorizationExplicit, since deductions about
the PolynomialFactorizationExplicit of domains
are made by functoriality, and Z[

√−5] is not a unique
factorization domain, so cannot be PolynomialFac-
torizationExplicit. If it were possible to weaken
the definition of R being PolynomialFactorization-
Explicit, so that the factorizations of elements of
P = R[x] involved did not have to unique in the tradi-
tional sense (unique up to units and order), but only in
some weaker sense, such as unique up to elements of R,
we might be able to factorize over a still wider class of
rings.

Nothing in this paper has addressed the problems of
factorization in non-commutative rings, or in differential
rings, for the simple reason that the known algorithms
are sufficiently different from those for the commutative
case that synthesis appears to be impossible.
Acknowledgements. This paper has benefited from
the contributions of many members of the Scratchpad
group, and from IBM’s support of all the authors. A
longer version of this paper, with more details of the
Scratchpad code, is available as University of Bath
Computer Science Technical Report 91–46.

6. References

[Cantor & Zassenhaus, 1981] Cantor,D.G. & Zassen-
haus,H., A New Algorithm for Factoring Polyno-
mials over Finite Fields. Math. Comp. 36 (1981)
pp. 587–592. Zbl. 493.12024. MR 82e:12020.

[Char et al., 1984] Char,B.W., Geddes,K.O. & Gonnet,
G.H., GCDHEU: Heuristic Polynomial GCD Algo-
rithm Based on Integer GCD Computation. Proc.
EUROSAM 84 (Springer Lecture Notes in Com-
puter Science 174, Springer-Verlag, 1984) pp. 285–
296.

[Davenport & Padget, 1985a] Davenport,J.H. & Pad-
get,J.A., HEUGCD:How Elementary Upperbounds
Generate Cheaper Data. Proc. EUROCAL 85, Vol.
2 (Springer Lecture Notes in Computer Science Vol.
204, Springer-Verlag, 1987) pp. 18–28

[Davenport & Padget, 1985b] Davenport,J.H. & Pad-
get,J.A., On Numbers & Polynomials. Computers
and Computing (ed. P. Chenin, C. Dicrescenzo, F.
Robert), Masson and Wiley, 1985, pp. 49–53.

[Davenport & Trager, 1990] Davenport,J.H. & Trager,
B.M., Scratchpad’s View of Algebra I: Basic Com-
mutative Algebra. Proc. DISCO ’90 (Springer Lec-
ture Notes in Computer Science Vol. 429, 1990)
pp. 40–54. A longer version appears as University
of Bath Computer Science Technical Report 90-31.

[Fröhlich & Shepherdson, 1956] Fröhlich,A. & Shep-
herdson,J.C., Effective Procedures in Field Theory.

Phil. Trans. Roy. Soc. Ser. A 248 (1955–6) pp. 407–
432. Zbl. 70,35.

[Jenks et al., 1988] Jenks,R.D., Sutor,R.S. & Watt,S.M.,
Scratchpad II: An Abstract Datatype System for
Mathematical Computations. Proc. “Trends in
Computer Algebra” (Springer Lecture Notes in
Computer Science 296, 1988) pp. 12–37.

[Loos, 1982] Loos,R., Generalized Polynomial Remain-
der Sequences. Symbolic & Algebraic Computa-
tion (Computing Supplementum 4) (ed. B. Buch-
berger, G.E. Collins & R. Loos) Springer-Verlag,
Wien-New York, 1982, pp. 115–137

[Seidenberg, 1970] Seidenberg,A., Construction of the
Integral Closure of a Finite Integral Domain. Rend.
Sem. Mat. Fis. Milano 40 (1970) pp. 100–120. MR
45 #3396.

[Seidenberg, 1974] Seidenberg,A., Constructions in Al-
gebra. Trans. AMS 197 (1974) pp. 273–313.

[Trager, 1976] Trager,B.M., Algebraic Factoring and
Rational Function Integration. Proc. SYMSAC
76 (ACM, New York, 1976) pp. 219–226. Zbl.
498.12005.

[Yun, 1976] Yun,D.Y.Y., On Square-free Decomposition
Algorithms. Proc. SYMSAC 76 (ACM, New York,
1976) pp. 26–35. Zbl. 498.13006.

[Yun, 1977] Yun,D.Y.Y., On the Equivalence of Polyno-
mial Gcd and Squarefree Factorization Algorithms.
Proc. 1977 MACSYMA Users’ Conference (NASA
Publication CP–2012, National Technical Informa-
tion Service, Springfield, Virginia) pp. 65–70.

