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Università degli Studi dell’Aquila

Via Vetoio, Loc. Coppito - I-67010 - L’Aquila, Italy

(Communicated by Christian Schmeiser )

Abstract. In this paper we deal with diffusive relaxation limits of nonlin-
ear systems of Euler type modeling chemotactic movement of cells toward
Keller–Segel type systems. The approximating systems are either hyperbolic–
parabolic or hyperbolic–elliptic. They all feature a nonlinear pressure term
arising from a volume filling effect which takes into account the fact that cells
do not interpenetrate. The main convergence result relies on energy methods
and compensated compactness tools and is obtained for large initial data under
suitable assumptions on the approximating solutions. In order to justify such
assumptions, we also prove an existence result for initial data which are small
perturbation of a constant state. Such result is proven via classical Friedrichs’s
symmetrization and linearization. In order to simplify the coverage, we restrict
to the two–dimensional case with periodical boundary conditions.

1. Introduction. This paper deals with diffusive relaxation limits for the nonlin-
ear hyperbolic model describing chemotactic movement of cells, also known as the
persistence and chemotaxis model,






∂τρ + ∇ · (ρv) = 0

∂τv + v · ∇v + ∇g(ρ) = ∇c − dv

σ∂τ c = ∆c + αρ− βc,

(1)

with α, β, d, σ positive constants. The function g(ρ) is taken of the form g(ρ) = ργ

with γ > 0, we shall discuss this choice later on in this introduction. The model (1)
has been introduced and motivated very precisely in [1], whereas similar models have
been also discussed in [22, 29, 12, 20]. We shall briefly summarize the biological
motivations behind (1) by framing them in the general context of PDE systems
describing chemotactical phenomena.
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76N10.
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The analysis of partial differential equations modeling chemotaxis goes back to
the work of Keller and Segel [32], who proposed a macroscopic model for aggre-
gation of cellular slime molds, and to the earlier related work of Patlak [44], who
derived similar models with applications to the study of long-chain polymers. In the
successive decades, the term chemotaxis has been used to represent the dynamics
of several biological systems (such as the bacteria Escherichia Coli, or the amoebae
Dictyostelium Discoideum, or endothelial cells of the human body responding to
angiogenic factors secreted by a tumor) in which the motion of a species is biased
by the gradient of a certain chemical substance. Typically these models consist of
a system of drift–diffusion equations of the form

{
ρt = ∆ρ−∇ · (ρχ(ρ, c)∇c)

ct = ∆c + r(ρ, c),
(2)

with diffusion terms modeling random motion for the density ρ of the individu-
als (cells, bacteria and so on) and for the concentration c of the chemoattractant
(the chemical substance responsible of the chemotactical movement), first order
drift terms modeling chemotactical aggregation and zero order reaction terms in
the equation for the chemoattractant. The coefficient χ(ρ, c) is called chemotac-
tical sensitivity. The simplest model combining diffusion and chemotaxis is the
well known parabolic–elliptic Patlak–Keller–Segel system (or simply Keller–Segel
system) {

ρt = ∆ρ−∇ · (ρ∇c)

0 = ∆c + ρ,
(3)

which has the interesting mathematical feature of producing smooth solutions for
small initial norms (in the appropriate space) and blow-up (in the form of concen-
tration to deltas) for large initial norms. The rigorous analysis of such mathematical
issue (also extended to fully parabolic systems and to more complex models) has at-
tracted the attention of many mathematicians in the last decades. We mention the
pioneering works of Jäger–Luckaus [28], Nagai [42], Herrero–Velazquez [27] among
others. The existence vs. blow–up problem in two space dimensions for the clas-
sical Keller–Segel model (3) has been completely solved in [19], where the authors
proved that if the initial mass is less than a threshold value m∗ (depending on the
coefficient χ) then the solution exists globally in time in L1, whereas if the initial
mass is larger than m∗ then the solution blows up in a finite time. A more complete
presentation of this issue is provided in [3]. We refer to the surveys [24, 25] for a
complete and detailed description of the literature of this topic.

In the last years, some authors [31, 5, 35] have proposed variants of Keller–
Segel type models featuring global existence of solutions no matter how large the
initial mass is, obtained by replacing the linear diffusion term in the equation for
the population density by a degenerate nonlinear diffusion term with super–linear
growth for large densities. This choice can be motivated by taking into account
the fact that cells do not interpenetrate (that is, they are full bodies with nonzero
volume) and therefore diffusion is supposed to inhibit singular aggregation effects
when the density is very high. We mention here that other authors proposed the use
of a nonlinear chemotaxis coefficient ρχ(ρ) which attains the value zero when the
population density ρ reaches a fixed maximal value – see for instance [45, 4, 2, 26]
– being this choice motivated by the fact that individuals stop aggregating when
the density is too high. In both cases, in the resultant model overcrowding of cells
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(concentration to deltas for the cells density ρ) is prevented independently on any
initial parameter.

In the last years, several authors have started to describe biological systems with
chemotaxis from a hydrodynamical point of view, i. e. via nonlinear hyperbolic
systems of Euler type, see in particular [1, 22, 29, 12, 20]. The models obtained
are of the form of system (1), where the chemotactical force ∇c in (1) and the
pressure contribute to balance the rate of change of the momentum. Moreover, our
model (1) features a friction term modeling the drag between cells and the substrate
material (some authors also considered models with a linear viscous term). In this
framework, the nonlinear pressure term g(ρ) in (1) plays the role of the diffusive
one in the drift–diffusion equation. Therefore, one can interpret the overcrowding–
preventing effect described before (sometimes referred to as volume filling effect)
by thinking of the cellular matter as a medium with limited compressibility, i. e.
closely packed cells exhibit a limited amount of resistance to compression. In this
sense, a reasonable choice of a pressure g(ρ) is a function of the form g(ρ) = ργ ,
γ > 0. Such an expression also has the advantage of modeling absence of stresses
for low densities (see [1] for a more detailed description).

In this paper we want to contribute to the problem of establishing a rigorous
mathematical link between the system (1) and several Keller Segel type models of
the form (2) in terms of diffusive relaxation limits. A typical example of diffusive
scaling on the system (1) that we shall consider (see subsection 2.1) is the following

d =
1

ε
, τ =

t

ε
, vε(x, t) =

1

ε
v

(
x,

t

ε

)

which transforms (1) into the following rescaled system





∂tρε + ∇ · (ρεvε) = 0

ε2 [∂tvε + vε · ∇vε] + ∇g(ρε) = ∇cε − vε

ε∂tcε = ∆cε + αρε − βcε.

(4)

Formally, as ε → 0, we expect the solution (ρε, vε, cε) to system (4) to behave like
the solution (ρ0, v0, c0) to the drift–diffusion system of Keller–Segel type

{
∂tρ0 + ∇ · (ρ0∇(c0 − g(ρ0)) = 0

∆c0 + αρ0 − βc0 = 0,
(5)

where the loss of the persistence term in the equation for the momentum yields a
constitutive law for the velocity v0 = ∇c0 −∇g(ρ0) (which can be considered as an
equivalent of the Darcy law in [36]).

A way to understand the meaning of this phenomena is to consider it as the
large time behaviour of dissipative nonlinear hyperbolic systems and to look at the
asymptotic profile as the relaxed equilibrium. This is the case for many relevant
situations in mathematical physics and applied mathematics. Singular limits with
a structure similar to (4) have been analyzed by Marcati and Milani [36]. In that
paper they investigate the porous media flow as the limit of the Euler equation in
1 − D, later generalized by Marcati and Rubino [39] to the 2 − D case. Relaxation
phenomena of the same nature appear also in the zero relaxation limits for the Euler-
Poisson model for semiconductors devices and they were investigated by Marcati
and Natalini [37, 38] in the 1 − D case and by Lattanzio and Marcati [34] in the
multi-D case. We remark that the rigorous justification of diffusive relaxation limits
appears also in the context of kinetic models for chemotaxis, see [7, 8]. For a general
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overview of the theory of the singular limits see the survey [17] and the paper [18],
where the theory is completely set up.

To perform the relaxation limit we follow the same techniques developed in
[36, 39, 18] (among others), which are crucially based on the method of compen-
sated compactness of Tartar and Murat (see [46, 47, 41]) combined with the Young
measures associated to the relaxing sequence ρε (see [46, 13, 14, 15, 16]). Through-
out the whole paper, we shall restrict ourselves to the case of two space dimensions,
which is also the most treated case in the literature concerning Keller–Segel type
systems. Moreover, for the sake of simplicity we shall work on the 2-dimensional
torus. We shall prove that this singular limit can be rigorously justified as far
as the new time variable τ stays in a bounded interval [0, T ] for an arbitrary T
and provided that certain a priori assumptions holds for the solution to (4) (see
assumption 1 below). These a priori assumptions are usual in the framework of re-
laxation limits for nonlinear hyperbolic systems (see also [34], [39]) and they don’t
include any smallness assumption on the initial conditions. The main additional
difficulty in our estimates (with respect to the afore mentioned references) lies on
the control of the gradient of the chemoattractant c, which is responsible for the
aggregation of cells and therefore produces an ‘anti-dissipative’ term in the total
energy of the system (contrary to what happens, for instance, in hydrodynamical
models for semiconductors). The rigorous statements of these results are contained
in Theorem 4.2.

In order to produce a nontrivial class of solutions to the nonlinear hyperbolic
system (1) which relax toward a Keller–Segel type model after a proper rescaling,
we shall also provide an existence theorem for the approximating system (4) and
prove the uniform estimates needed to justify the assumptions (1) in case of initial
densities ρ0 which are small perturbation of an arbitrary non zero constant state
(see Theorem 5.1). This result is achieved by means of the classical Friedrichs’
symmetrization technique and by a linearization argument, see [21, 30]. We remark
that, in many of the estimates performed here, the pressure term need not to be
of the form g(ρ) = ργ . Indeed, some of the estimates proven are still valid if
one considers a logarithmic pressure g(ρ) = log ρ, which corresponds to a linear
diffusion term in the limit problem (2) (this fact is not in contradiction with the
blow–up of the density in the limit problem with linear diffusion, see the Remark
6). However, while considering the alternative scaling introduced in subsection 2.2
(where the limit is the classical Keller–Segel system (3)), such an expression for the
pressure seems to be essential in order to achieve the needed estimates no matter
how large the initial mass is, in a very similar fashion to what happens in [5]. We
remark that our convergence results hold on an arbitrary time interval. Therefore,
at least in the case of the second scaling treated in section 2.2 (where the expression
g(ρ) = ργ is crucial in order to achieve the desired estimates), our result can be seen
as a new interpretation of the overcrowding–preventing effect due to the power–like
expression of the pressure. More precisely, the global smoothness of the limit density
ρ0 (and the absence of concentration to deltas for all times of ρ0 as a byproduct)
can be obtained as a consequence of our relaxation result, alternatively to the more
direct proof developed in [31, 5].

The paper is organized as follows. In section 2 we state the three different scalings
we shall deal with. In section 3 we perform the uniform estimate we need in order
to prove the main convergence theorem. In section 4 we prove the main convergence
theorem for large data under the a priori assumption 1 by means of compensated
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compactness and Minty’s argument. In section 5 we prove an existence theorem for
the approximating rescaled system in order to provide a class of solutions satisfying
the basic assumptions 1.

2. Preliminaries and rescalings. We consider the following nonlinear mixed
hyperbolic–parabolic system modelling persistence and chemotaxis






∂τρ + ∇ · (ρv) = 0

∂τv + v · ∇v + ∇g(ρ) = ∇c − dv

σ∂τ c = ∆c + αρ− βc

(6)

where α, β, d, σ are nonnegative constants. The system (6) is endowed with the
following 1–periodic initial data

ρ(0, x) = ρ0(x), v(0, x) = v0(x), c(0, x) = c0(x)

The nonlinear function g(ρ) has the form

g(ρ) = ργ , for some γ > 0.

Remark 1. The nonlinear pressure g(ρ) grows faster than the critical pressure
(in the sense of the classical 2 dimensional Keller–Segel system): there exists κ >
m/4π =: κ∗ and U > 0 such that for all ρ > U , g(ρ) ≥ κ log ρ (see [5]).

Some of the results contained in the present paper hold in any space dimension
n, whereas some of them are true only in the case n = 2. In order to simplify the
coverage, we shall always restrict ourselves to the latter case. In the sections 2,
3 and 4 we shall not deal with the existence theory of (6), whereas we shall work
under the following basic assumption.

Assumption 1. There exists a global solution (ρ, v, c) to (6), smooth enough in
order to justify the estimates contained in section 3 and such that

(A1) the total mass M =
∫
ρdx is conserved,

(A2) ρ(x, t) ≥ k > 0,
(A3) (ρ, ρv) ∈ L∞(T2 × [0, +∞)).

Let us now explain in detail the relaxation limits we want to perform. We
shall deal with three different asymptotic regimes for (6), corresponding to small
parameter limits of three different types of scaling.

2.1. First scaling: Large time and large damping. For a fixed constant ε > 0
we consider the large damping rate d = 1

ε in (6). Then, we introduce the fast time
variable

τ =
t

ε
,

and the new independent variables

vε(x, t) =
1

ε
v(x, τ), ρε(x, t) = ρ(x, τ), cε(x, t) = c(x, τ). (7)

Moreover, we fix σ = 1 in the third equation. Then, system (6) in the new variables
reads 





∂tρε + ∇ · (ρεvε) = 0

ε2 [∂tvε + vε · ∇vε] + ∇g(ρε) = ∇cε − vε

ε∂tcε = ∆cε + αρε − βcε.

(8)
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The formal limit as ε → 0 is given by the parabolic–elliptic system
{
ρ0

t + ∇ · (ρ0∇(c0 − g(ρ0)) = 0

∆c0 + αρ0 − βc0 = 0.
(9)

2.2. Second scaling: Large time and large damping with Poisson coupling.
A simplified version of (6), namely with β = 0 and σ = 0, is given by the following
system 





∂τρ + ∇ · (ρv) = 0

∂τv + v · ∇v + ∇g(ρ) = ∇c − dv

0 = ∆c + αρ.

(10)

By performing the same scaling as before, namely

τ =
t

ε
, vε(x, t) =

1

ε
v(x, τ), ρε(x, t) = ρ(x, τ), cε(x, t) = c(x, τ), (11)

and by putting d = 1
ε , we obtain





∂tρε + ∇ · (ρεvε) = 0

ε2 [∂tvε + vε · ∇vε] + ∇g(ρε) = ∇cε − vε

0 = ∆cε + αρε.

(12)

The formal limit as ε → 0 leads to the usual Keller–Segel model with nonlinear
diffusion (see [5]) {

ρ0
t + ∇ · (ρ0∇(c0 − g(ρ0)) = 0

∆c0 + αρ0 = 0.
(13)

2.3. Third scaling: Diffusive scaling with small reaction rates. Starting
once again by (6), we consider the case σ = d = 1. We consider ε–depending

reaction coefficients α and β, namely we require α = εα̃ and β = εβ̃ for fixed
α̃, β̃ > 0. We then perform the diffusive scaling

τ =
t

ε2
, y =

x

ε
,

vε(x, t) =
1

ε
v(x, τ), ρε(x, t) = ρ(x, τ), cε(x, t) = c(x, τ). (14)

This leads to the rescaled system





∂tρε + ∇ · (ρεvε) = 0

ε2 [∂tvε + vε · ∇vε] + ∇g(ρε) = ∇cε − vε

∂tcε = ∆cε + α̃ρε − β̃c.

(15)

Therefore, the formal limit as ε → 0 is given in this case by the following fully
parabolic model (we drop the ˜ symbol for simplicity)

{
ρ0

t + ∇ · (ρ0∇(c0 − g(ρ0)) = 0

c0
t = ∆c0 + αρ0 − βc0.

(16)

Remark 2. From the hypotheses (A3) and the scalings (7), (11), (14), it follows
that the sequences {ρε}, {ερεvε} are uniformly bounded in L∞(T2 × [0, +∞)) with
respect to ε.
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3. Estimates. In this section we provide suitable estimates on the solutions of the
three rescaled models (8), (12) and (15). For future use we define

P (ρ) :=

∫ ρ

0
g(n)dn =

1

γ + 1
ργ+1. (17)

3.1. First scaling. We have the following standard energy estimate for the rescaled
system (8).

Proposition 1. The following identity is satisfied for any t ∈ [0, T ], by any solution
(ρε, vε, cε) to (8):

∫

T2

[
ε2

2
ρε(x, t)|vε(x, t)|2 + P (ρε(x, t))

]
dx +

1

2

∫ t

0

∫

T2

ρε(x, s)|vε(x, s)|2dxds

≤
∫

T2

[
ε2

2
ρε0(x)|vε0(x)|2 + P (ρε0(x))

]
dx +

(
K̃t + ε

∫

T2

cε0(x)

2
dx

)
. (18)

Proof. By multiplying second equation in (8) by ρεvε by using the first equation in
(8) and by integration by parts it follows that

d

dt

∫

T2

[
ε2

2
ρε(x, t)|vε(x, t)|2 + P (ρε(x, t))

]
dx +

∫

T2

ρε(x, s)|vε(x, s)|2dx

=

∫

T2

ρε(x, s)vε(x, s)∇cε(x, t)dx ≤
1

2

∫

T2

ρε(x, s)|vε(x, s)|2dx

+
1

2
‖ρε‖∞

∫

T2

|∇cε(x, t)|2dx. (19)

Now, by multiplying the third equation of (8) by cε we get, for any δ > 0,

d

dt

∫

T2

ε

2
|cε(x, t)|2dx = −

∫

T2

|∇cε(x, t)|2dx + α‖ρε‖∞
(
|T2|2

4δ
+ δ

∫

T2

|cε(x, t)|2dx

)

− β

∫

T2

|cε(x, t)|2dx. (20)

By choosing δ < β
2 , by integrating in time we obtain, for fixed constant K̃, inde-

pendent on ε, that cε satisfies the following inequality

∫

T2

ε

2
|cε(x, t)|2dx +

β

2

∫ t

0

∫

T2

|cε(x, t)|2dxds

+

∫ t

0

∫

T2

|∇cε(x, t)|2dxds ≤ K̃t + ε

∫

T2

|cε0(x)|2

2
dx. (21)

The estimate (18) follows now by using together (19) with (21) and by taking into
account the hypothesis (A3).

Corollary 1. Let (ρε, vε, cε) be a solution to (8) satisfying assumption 1 and with
initial datum (ρε0, v

ε
0, c

ε
0) satisfying

∫

T2

[
ε2

2
ρε0|vε0|2dx + (ρε0)

γ+1 + ε|cε0|2
]

dx uniformly bounded w.r.t. ε * 1. (22)
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Then, for all T > 0,

ε
√
ρεvε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (23)

ρε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (24)
√
ρεvε is uniformly bounded in L2([0, T ]× T

2), (25)
√
εcε is uniformly bounded in L∞([0, T ], L2(T2)), (26)

cε is uniformly bounded in L2([0, T ], H1(T2)). (27)

Proof. (23) and (24) are a consequence of the assumption 1, while (25) follows from
the inequality (18). Finally (26), (27) follow from (21).

Remark 3. In the above result a ‘closed’ energy structure is hidden in the compu-
tation. In fact one can easily prove that

d

dt

[
ε2

2

∫
ρ|v|2dx +

∫
P (ρ)dx +

β

α

∫
c2dx +

1

2

∫
|∇c|2dx −

∫
ρcdx

]

= −
∫

ρ|v|2dx.

This computation would lead to the same estimates proven in Corollary 1. In-
deed, the assumption 1 on ρ implies that the term β

α

∫
c2dx −

∫
cρ is uniformly

bounded from below.

3.2. Second scaling. We consider the following energy for the solution to (12)

Eε(t) =

∫

R2

[
ε2

2
ρε|vε|2 + P (ρε) −

1

2
ρεcε

]
dx, (28)

where P is given by (17). For simplicity we will take α = 1. We have the following
estimate.

Proposition 2. The following equality is valid for any solution (ρε, vε, cε) to (12):

Eε(t) +

∫ t

0

∫

T2

ρε(x, s)|vε(x, s)|2dxds = Eε(0) (29)

Proof. By using the Poisson equation of the system (12) we easily have

d

dt
Eε(t) = −

∫

T2

ρε|vε|2dx +

∫

T2

ρεvε · ∇cεdx +

∫

T2

cε∆cεtdx

= −
∫

T2

ρε|vε|2dx +

∫

T2

ρεvε · ∇cεdx +

∫

T2

(cε∇ · (ρεvε))dx,

and this implies
d

dt
Eε(t) = −

∫

T2

ρε|vε|2dx.

Integration with respect to time yields (29).

In order to recover an estimate for ∇cε, let us introduce the following convex
functional

J [ρε] =

∫

T2

(P (ρε(t)) − ρεcε(t))dx.
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Now we proceed by estimating the functional J [ρε] from below, using the same
strategy of [5]. Let us recall that if cε ∈ W 1,1(T2), then the convex functional J [ρε]
has a critical point ρ∗ which is a solution of

g(ρ∗) − cε = λ (30)

whenever ρ∗ > 0 and null otherwise. Here λ is the Lagrange multiplier associated to
the constraint given by the mass conservation

∫
ρ∗ = M and fixed by this condition.

We refer to [5] and ([6], Proposition 5) for details. Therefore, we have

J [ρε] ≥
∫

T2

(P (ρ∗) − ρ∗cε)dx =

∫

{ρ∗>0}
(P (ρ∗) − ρ∗g(ρ∗) + λρ∗)dx.

By taking into account the Remark 1 we can introduce the corrective term R such
that g(ρ∗) = κ log ρ∗ + R(ρ∗), then we have

J [ρε] ≥
∫

T2

(P (ρ∗) − κρ∗ log ρ∗)dx −
∫

{ρ∗>0}
ρ∗R(ρ∗)dx + λM. (31)

Now, (30) implies κ log ρ∗ + R(ρ∗) = λ + cε, whenever ρ∗ > 0 and thus
∫

{ρ∗>0}
exp

(
R(ρ∗)

κ

)
ρ∗dx = eλ/κ

∫

{ρ∗>0}
exp

(
cε

κ

)
dx,

so we have

λ = κ log

(∫

{ρ∗>0}
eR/κρ∗dx

)

− κ log

(∫

{ρ∗>0}
ecε/κdx

)

. (32)

If we replace λ by its expression in the inequality (31), we conclude that

J [ρε] ≥
∫

T2

(P (ρ∗) − κρ∗ log ρ∗)dx −
∫

{ρ∗>0}
ρ∗R(ρ∗)dx

+ κM log

(∫

{ρ∗>0}
eR/κρ∗dx

)

− κM log

(∫

{ρ∗>0}
ecε/κdx

)

. (33)

By taking into account the Remark 1 we have that
∫

{ρ∗≥U}
(P (ρ∗) − κρ∗ log ρ∗)dx ≥ C.

On the other hand, we have
∫

{ρ∗<U}
(P (ρ∗) − κρ∗ log ρ∗)dx ≥ −

(

sup
[0,U)

(P − κρ log ρ)−
)

|T2|.

Therefore, ∫

T2

(P (ρ∗) − ρ∗ log ρ∗)dx

is uniformly bounded from below. Now, the Jensen inequality for the probability
density ρ∗/M over the set where ρ∗ > 0, gives us that

exp

∫

{ρ∗>0}

(
R(ρ∗)

κ

ρ∗

M
dx

)
≤
∫

{ρ∗>0}
eR/κ ρ∗

M
dx,

and thus

κM log

(∫

{ρ∗>0}
eR/κ ρ

∗

M
dx

)

−
∫

{ρ∗>0}
ρ∗R(ρ∗)dx ≥ 0.

Finally, we recall and use the Trudinger - Moser inequality [40, 9, 23, 43].
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Theorem 3.1. Assume that Ω ⊂ R2 is a C2, bounded, connected domain. It exists
a constant CΩ, such that for all h ∈ H1 with

∫
Ω h = 0 we have

∫

Ω
exp(|h|)dx ≤ CΩexp

(
1

8π

∫

Ω
|∇h|2dx

)
.

By applying the previous theorem to cε/κ we obtain
∫

{ρ∗>0}
ecε/κdx ≤

∫

T2

ecε/κdx ≤ exp

(
1

8πκ2

∫

T2

|∇cε|2dx

)

and thus

−κM log

(∫

{ρ∗>0}
ecε/κdx

)

≥ −
M

8πκ2

∫

T2

|∇cε|2dx.

So by (33) we have that

J [ρε] ≥ C −
M

8πκ2

∫

T2

|∇cε|2dx (34)

Proposition 3. Assume (ρε, vε, cε) be a solution to (12) satisfying assumption 1
then ∫

T2

|∇cε|2dx is uniformly bounded. (35)

Proof. We can rewrite (29) as

Eε(0) =

∫

T2

ε2

2
ρε|vε|2dx +

∫

T2

J [ρε] +
1

2

∫

T2

|∇cε(t)|2dx

+

∫ t

0

∫

T2

ρε(x, s)|vε(x, s)|2dxds. (36)

Combining (36) with (34) we get that

Eε(0) ≥
∫

T2

ε2

2
ρε|vε|2dx +

∫ t

0

∫

T2

ρε(x, s)|vε(x, s)|2dxds

+ C|T2| +
1

2

(
1 −

M

4πκ

)∫

T2

|∇cε(t)|2dx. (37)

Finally, Remark 1 implies κ > κ∗, i.e.
(
1 − M

4πκ

)
> 0 and thus

∫

T2

|∇cε|2dx

is uniformly bounded.

Corollary 2. Let (ρε, vε, cε) be a solution to (12) satisfying assumption 1 and with
initial datum (ρε0, v

ε
0, c

ε
0) satisfying

∫

T2

[
ε2

2
ρε0|vε0|2dx + (ρε0)

γ+1 −
1

2
ρε0c

ε
0

]
dx uniformly bounded w.r.t. ε * 1. (38)

Then, for all T > 0,

ε
√
ρεvε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (39)

ρε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (40)
√
ρεvε is uniformly bounded in L2([0, T ]× T

2), (41)

cε is uniformly bounded in L∞([0, T ], H1(T2)). (42)
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Proof. (42) follows from Proposition 3 and by taking into account that we are in a
periodic domain. (39) and (40) are a consequence of the assumption 1, while (41)
is a consequence of (29) and (35).

3.3. Third scaling. With the same procedure as in the Proposition 1 we are able
to prove the following proposition.

Proposition 4. Let (ρε, vε, cε) be a solution to (15) satisfying assumption 1 and
with initial datum (ρε0, v

ε
0, c

ε
0) satisfying

∫

T2

[
ε2

2
ρε0|vε0|2dx + (ρε0)

γ+1 + |cε0|2
]

dx uniformly bounded w.r.t. ε * 1. (43)

Then, for all T > 0,

ε
√
ρεvε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (44)

ρε is uniformly bounded in L∞([0, T ], Lp(T2)), for all p ≥ 1, (45)
√
ρεvε is uniformly bounded in L2([0, T ] × T

2), (46)

cε is uniformly bounded in L∞([0, T ], L2(T2)) ∩ L2([0, T ], H1(T2)). (47)

4. Strong convergence. This section is devoted to the study of the relaxation of
the systems (8), (12), (15) towards their formal limit (9), (13), (16), respectively. As
a consequence of the Corollary 1 and the Propositions 3, 4 we have that, extracting
if necessary a subsequence,

∇cε ⇀ ∇c0 weakly in L2([0, T ] × T
2), as ε ↓ 0 .

This convergence for cε is enough to pass into the limit in (8), (12), (15) and to get,
in the sense of distribution, (9), (13), (16), respectively, provided that ρε converges
in a strong topology. In fact by the Remark 2, we know that ρε → ρ0 in L∞

∗−weakly, while by (24), (40), (45) we have ρε ⇀ ρ0 weakly in Lp, for any p > 1.
These convergence are clearly too weak to pass into the limit in the nonlinear terms
of (8), (12), (15). So, in this section we will investigate the strong convergence of
the approximating sequence ρε. The analysis of this convergence reduces to the
analysis of the convergence of quadratic forms with constant coefficients via the
classical compensated compactness technique due to Tartar [46, 47] and Murat [41]
(see Dacorogna [10]). As we will see later on, these techniques will apply in the
same way to the three scalings (7), (11), (14), so we will discuss them together. Let
us recall the following theorem

Theorem 4.1. (Tartar’s Compensated compactness)
Let us consider

1. a bounded open set Ω ⊂ Rn;
2. a sequence {lν}∞ν=1, lν : Ω ⊂ Rn −→ Rm;
3. a symmetric matrix Θ : Rm −→ Rm;
4. constants ai

jk ∈ R, i = 1, . . . , q, j = 1, . . . , m, k = 1, . . . , n.

Let us define

f(α) = 〈Θα, α〉 , for all α ∈ R
m;

Λ =





λ ∈ R

m : ∃η ∈ R
n \ {0},

∑

j,k

ai
jkλjηk = 0, i = 1, . . . , q





.

Assume that
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(a) there exists l̃ ∈ L2 (Ω) such that lν ⇀ l̃ in L2 (Ω) as ν ↑ ∞;

(b) Ailν =
∑

j,k
ai

jk
∂lνj
∂xk

, i = 1, . . . q are relatively compact in H−1
loc (Ω);

(c) f|Λ ≡ 0;

(d) there exists f̃ ∈ R such that f(l) ⇀ f̃ in the sense of measures M(Ω).

Then we have f̃ = f(l̃).

4.1. Weak convergence of ρεP (ρε). First of all we start by studying the weak
convergence of ρεP (ρε). Our goal will be to prove that

ρεP (ρε) ⇀ ρ0P (ρ0),

where ρ0 is the weak limit of ρε. To this end we are going to apply the Theorem
4.1 in the same spirit of [39]. In order to fit the into the hypotheses of the Theorem
4.1 we rewrite the first two equations of the systems (8), (12), (15), as






ρεt + mε
x + nε

y = 0

ε2mε
t +

(
ε2 (mε)2

ρε
+ γP (ρε)

)

x

+

(
ε2 mεnε

ρε

)

y

= ρεcεx − mε

ε2nε
t +

(
ε2 mεnε

ρε

)

x

+

(
ε2 (nε)2

ρε
+ γP (ρε)

)

y

= ρεcεy − nε.

(48)

where
vε = (vε1, v

ε
2) ρεvε = (ρεv1, ρ

εv2) = (mε, nε). (49)

It will be useful to rewrite (48) in the following way

ρεt + mε
x + nε

y = 0

γP (ρε)x = −ε2mε
t − ε2

(
(mε)2

ρε

)

x

− ε2

(
mεnε

ρε

)

y

+ ρεcεx − mε (50)

γP (ρε)y = −ε2nε
t − ε2

(
mεnε

ρε

)

x

− ε2

(
(nε)2

ρε

)

y

+ ρεcεy − nε.

By using (25), (41), (46), (35), and the assumption (A3) we get that ρεvε, ρε∇cε ∈
L2([0, T ] × T2). In fact

‖ρεvε‖L2([0,T ]×T2) ≤ ‖
√
ρε‖∞‖

√
ρεvε‖L2([0,T ]×T2) (51)

‖ρε∇cε‖L2([0,T ]×T2) ≤ ‖ρε‖∞‖∇cε‖L2([0,T ]×T2) (52)

Moreover, by taking into account the assumptions (A2) and (A3) and (25), (41),

(46) we have that ε2
(

(mε)2

ρε

)

x
, is relatively compact in H−1

loc ([0, T ]×T2). In fact let

us consider ω relatively compact in [0, T ] × T2, then by taking into account (A2),
(A3) and the Remark 2 we have,

∥∥∥∥ε
2

(
(mε)2

ρε

)

x

∥∥∥∥
H−1(ω)

≤ sup
‖φ‖

H1
0(ω)=1

∣∣∣∣

〈
ε2

(
(mε)2

ρε

)

x

, φ

〉∣∣∣∣

≤ ε‖ρεvε‖∞
1√
k
‖
√
ρεvε‖L2(ω) (53)

In a similar way it can be proved that the terms

ε2

(
mεnε

ρε

)

y

, ε2

(
mεnε

ρε

)

x

, ε2

(
(nε)2

ρε

)

y

, ε2(ρεvε)t
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are relatively compact in H−1([0, T ] × T2). Now, (51)–(53), imply that



ρεt + mε

x + nε
y

P (ρε)x

P (ρε)y



 is relatively compact in
(
H−1

loc

)3
. (54)

In order to fit into the framework of the Theorem 4.1 we set x1 = x, x2 = y, x3 = t,
lε = (mε, nε, ρε, P (ρε)), hence m = 4. In our case the differential constraints are
q = 3. So we can define the matrices A1,A2,A3 ∈ M4×3, where Ai = {ai

jk},
i = 1, 2, 3, j = 1, . . . , 4, k = 1, 2, 3 as follows:

A1 =





1 0 0
0 1 0
0 0 0
0 0 0



 A2 =





0 0 0
0 0 0
0 0 0
1 0 0



 A3 =





0 0 0
0 0 0
0 0 0
0 1 0



 .

The characteristic manifold Λ is then given by

Λ =
{
λ ∈ R

4 | ∃ξ ∈ R
3 \ {0}, B(ξ, λ) = 0

}

where

B(ξ, λ) =




λ1ξ1 + λ2ξ2 + λ3ξ3

λ4ξ1
λ4ξ2



 .

Therefore

Λ =





λ ∈ R

4 | det




λ1 λ2 λ3

λ4 0 0
0 λ4 0









=
{
λ ∈ R

4 | λ3λ4 = 0
}

.

If we define

M =
1

2





0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



 ∈ M4×4,

then f(λ) = λT Mλ = λ3λ4 and, of course f|Λ ≡ 0. Now, by applying the Theorem

4.1 we have f(lε) ⇀ f(l̃), and in our case this means

ρεP (ρε) ⇀ ρ0P 0,

where P 0 = w − limP (ρε).

4.2. Strong convergence of ρε. In the previous section we proved that

ρεP (ρε) ⇀ ρ0P 0.

Here we will be able to prove that

ρε → ρ0 strongly in Lp, p < +∞.

At this point we can follow the methods of [36], [39]. First of all let as use Minty’s
argument ([33], [36]) to prove that P 0 = P (ρ0). Since the function P is monotone,
for any w ∈ L∞ and ϕ test function, ϕ > 0, we have that

H(ε) ≡
∫ ∫

(P (ρε) − P (w))(ρε − w)ϕdxdt ≥ 0. (55)

But, for ε ↓ 0, we have that
∫ ∫

P (ρε)ρεϕdxdt →
∫ ∫

P 0ρ0ϕdxdt.
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So from (55) we get that for ε ↓ 0

H(ε) → H ≡
∫ ∫

(P 0 − p(w))(ρ0 − w)ϕdxdt ≥ 0.

If we choose w = ρ0 + λz, with λ ≤ 0 and arbitrary z ∈ L∞, we have

G(λ, z) ≡
∫ ∫

(P 0 − P (ρ0 + λz))zϕdxdt

=
1

λ

∫ ∫
(P 0 − P (ρ0 + λz))λzϕdxdt ≤ 0

and for λ ↑ 0, G(0, z) ≤ 0 for any z ∈ L∞, then

G(0, z) =

∫ ∫
(P 0 − P (ρ0))zϕdxdt = 0,

and finally P 0 = P (ρ0).
Our next step now, is to prove the strong convergence for ρε → ρ0 in Lp

loc. To this
end we characterize the weak convergence by means of Young’s probability measures
(see [46],[13], [14], [15], [16]). Let us recall that if {uε} is sequence converging to
U in L∞ ∗-weakly , we can associate to {uε} a family {ν(x,t)(λ)} of probability
measures such that for any continuous function F (·)

∗ − lim
ε→0

F (uε) =

∫
F (λ)ν(x,t)(dλ) a.e.

If ν(x,t) = δU(x,t) then uε → U strongly in Lp
loc for any p ∈ (1, +∞) (see [10],

Corollary 6.2). Let {ν(x,t)} be the family of Young’s probability measures associated
to the sequence {ρε}: since ρε −→ ρ0 in L∞ ∗-weakly, we can find a closed interval
[a, b], 0 ≤ a ≤ b, such that supp ν(x,t) ⊆ [a, b]. Since P (r) = rα, α > 1, we have
three possibilities:

1. P ∈ C2 (R \ {0}) and P ′′(r) ↑ +∞ for r ↓ 0, if 1 < α < 2;
2. P ∈ C2 (R) and P ′′(0) = 1, if α = 2;
3. P ∈ C2 (R) and P ′′(0) = 0, if α > 2.

Let us assume that 1 < α ≤ 2. Then we can write for any λ, λ0

P (λ) − P (λ0) = P ′(λ0) (λ− λ0) +
1

2
P ′′ (λ∗) (λ− λ0)

2 ,

where λ∗ belongs to the segment between λ and λ0. If we choose

λ0 =

∫ b

a
λν(x,t) (dλ) = ρ0,

since P 0 = P (ρ0)

P (λ0) =

∫ b

a
P (λ) ν(x,t) (dλ)

so that ∫ b

a
{P (λ) − P (λ0)}ν(x,t) (dλ) = 0.

On the other hand we also have
∫ b

a
P ′(λ0) (λ− λ0) ν(x,t) (dλ) = P ′(λ0)

{∫ b

a
λν(x,t) (dλ) − λ0

∫ b

a
ν(x,t) (dλ)

}

= 0,
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so we can conclude that
∫ b

a
P ′′ (λ∗) (λ− λ0)

2 ν(x,t) (dλ) = 0.

Taking E = min
λ∈[a,b]

P ′′ (λ) > 0, we get

E

∫ b

a
(λ− λ0)

2 ν(x,t) (dλ) ≤ 0,

namely ∫ b

a
(λ− λ0)

2 ν(x,t) (dλ) = 0,

and it follows a = b and ν(x,t) = δ, a point mass and so we finally get

ρε → ρ0 strongly in Lp
loc.

To conclude we remark that in the case α > 2 this result can be obtained in the
same way by using the function −P−1.

Remark 4. The strong convergence result for ρε obtained in this section is still valid
in the case of linear diffusion, namely if we consider g(ρ) = log ρ and consequently
P (ρ) = ρ log ρ− ρ.

By using the estimates and the strong convergence of the sequence {ρε} obtained
in the previous section we are able to prove the following main theorem.

Theorem 4.2. Let T > 0 be arbitrary and let (ρε, vε, cε) be a family of solutions
to the system (8) ( (12) and (15) respectively) with initial data satisfying (22) ((38)
and (43) respectively). Assume that the assumption 1 holds, then, there exist ρ0 ∈
L∞([0, T ] × T2) and c0 ∈ L2([0, T ], H1(T2)), such that, extracting if necessary a
subsequence,

ρε −→ ρ0 strongly in Lp([0, T ]× T
2) for any p < ∞

∇cε ⇀ ∇c0 weakly in L2([0, T ]× T
2).

Moreover the couple (ρ0, c0), satisfies the system (9) ( (13) and (16) respectively) in
the sense of distributions.

5. Perturbation of constant states in the approximating system. In this
section we deal with the rescaled system






∂tρε + ∇ · (ρεvε) = 0

ε2 [∂tvε + vε · ∇vε] + ∇g(ρε) = ∇cε − vε

ε∂tcε = ∆cε + αρε − βcε,

(56)

with x ∈ T2, t ≥ 0, where T2 is the flat normalized two–dimensional torus. The
system (56) is complemented with the 1-periodical initial data

ρε(x, 0) = ρε0(x), vε(x, 0) = vε0(x), cε(x, 0) = cε0(x).

We shall consider small perturbations of the stationary state

(ρ, v, c) = (ρ̃, ṽ, c̃), ρ̃ > 0, ṽ = 0, c̃ =
α

β
ρ̃ (57)

and we prove the existence of classical solutions (ρε, vε, cε) such that the density
ρε stays away from zero, uniformly in ε, on an arbitrary time interval [0, T ] (see
similar results in [30] and [11]). In order to perform this task, we shall use an
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iterative method, namely we define recursively the sequence (ρn, vn, cn) as follows:
(ρ0(x, t), v0(x, t), c0(x, t)) = (ρε0(x), vε0(x), cε0(x)) and, for n ≥ 1, (ρn, vn, cn) solves
the linear system






∂tρ
n + vn−1 · ∇ρn + ρn−1∇ · un = 0

∂tv
n + vn−1 · ∇vn +

g′(ρn−1)

ε2
∇ρn =

1

ε2
∇cn −

1

ε2
vn

∂tc
n =

1

ε
∆cn +

α

ε
ρn −

β

ε
cn.

(58)

From now on we shall drop the dependency on ε on the solutions (ρ, v, c) for the
sake of clarity. Moreover, we shall use the following notation: the variables taken
at the step n− 1 will be denoted e. g. by ρn−1 = ρ̂; the variables taken at the step
n will be denoted without any additional symbol, e. g. ρn = ρ; the deviation from
the aforementioned constant stationary states will be denoted e. g. by ρ̄ = ρn − ρ̃
and ρ = ρn−1 − ρ̃.

The first two equations in system (58) can be easily viewed as a hyperbolic system
in vectorial form. More precisely, let us define the 3–dimensional variable U as

U := (ρ, v1, v2),

where v = (v1, v2). Let us denote

A1(Û) :=




v̂1 ρ̂ 0

g′(ρ̂)
ε2 v̂1 0
0 0 v̂1



 , A2(Û) :=




v̂2 0 ρ̂
0 v̂2 0

g′(ρ̂)
ε2 0 v̂2



 ,

B(U) :=
1

ε2




0

∂x1c − v1

∂x2c − v2



 .

Then, with all these notations, the system (58) can be rephrased as follows:





∂tU + A1(Û)∂x1U + A2(Û)∂x2U = B(U)

∂tc =
1

ε
∆c +

α

ε
ρ−

β

ε
c.

(59)

The first line in (59) corresponds to a linear hyperbolic system which can be sym-
metrized by means of the matrix

S(Û) := diag

(
g′(ρ̂)

ε2
, ρ̂, ρ̂

)
. (60)

The matrix S(Û) is uniformly positive definite provided the variable ρ̂ satisfies a
condition of the form 0 < c ≤ ρ̂ ≤ C (we recall that g′(ρ) = γργ−1 exhibits a
singularity at zero in case of γ < 1). The two matrices S(Û)A1(Û) and S(Û)A2(Û)
can be easily proven to be symmetric. We now rewrite system (59) in terms of the
deviations Ū and c̄:





∂tŪ + A1(Ũ + U)∂x1Ū + A2(Ũ + U)∂x2 Ū = B(Ũ + Ū) = B(Ū )

∂tc̄ =
1

ε
∆c̄ +

α

ε
ρ̄−

β

ε
c̄.

(61)

We introduce the energy functional

E(U, c) :=
1

2

∫

T2

[
UT S(Û)U + λc2

]
dx =

1

2

∫

T2

[
g′(ρ̂)

ε2
ρ2 + ρ̂|v|2 + λc2

]
dx,

where λ > 0 is a constant to be chosen later on. We have the following
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Proposition 5. Let T > 0. There exist constants ε0, δ ∈ (0, 1), K ∈ (0, ρ̃/2) such
that, if

‖ρε0 − ρ̃‖H4(T2) + ε‖vε0‖H4(T2) +
√
ε‖cε0 − c̃‖H4(T2) ≤ δ and

sup
0≤t≤T

(
‖ρ(t)‖H4(T2) + ε‖v(t)‖H4(T2) +

√
ε‖c(t)‖H4(T2)

)
≤ K, (62)

for all ε ∈ (0, ε0), then,

sup
0≤t≤T

(
‖ρ̄(t)‖H4(T2) + ε‖v̄(t)‖H4(T2) +

√
ε‖c̄(t)‖H4(T2)

)
≤ K (63)

for all ε ∈ (0, ε0).

Proof. During the proof of this proposition we shall often make use of the Sobolev
inequality ‖f‖L∞(T2) ≤ C‖f‖H2(T2).

Step 1. Due to the symmetry of the two matrices SA1 and SA2, we can use
integration by parts in the evolution of E(Ū , c̄) as follows:

d

dt
E(Ū , c̄) =

1

2

∫

T2

ŪT
[
S(Û)A1(Û )

]

x1

Ūdx +
1

2

∫

T2

ŪT
[
S(Û)A2(Û)

]

x2

Ūdx

+

∫

T2

ŪT S(Û)B(Ū)dx −
λ

ε

∫

T2

|∇c̄|2dx +
λα

ε

∫

T2

ρ̄c̄dx −
λβ

ε

∫

T2

c̄2dx.

(64)

Due to the assumption (62) we have

d

dt
E(Ū , c̄) ≤C(K)

(
‖∇ρ‖L∞ + ‖∇v‖L∞

) 1

2

∫

T2

(
ρ̄2

ε2
+

|v̄|2

ε2

)
dx

+
‖ρ̂‖L∞

ε2

∫

T2

v̄ · ∇c̄dx −
(ρ̃− K)

ε2

∫

T2

|v̄|2dx −
λ

ε

∫

T2

|∇c̄|2dx

+
λα

ε

∫

T2

ρ̄c̄dx −
λβ

ε

∫

T2

c̄2dx (65)

for a function C(K) > 0 of the constant K such that C is continuous on K ∈ [0, ρ̃/2].
By choosing

λ =
(ρ̃ + K)2

ε(ρ̃− K)

and ε0 < 1, we can use once again (62) and find a constant C1 > 0 such that

d

dt
E(Ū , c̄) ≤KC(K)

1

2

∫

T2

(
ρ̄2

ε2
+

|v̄|2

ε2

)
dx

−
(ρ̃− K)

2ε2

∫

T2

|v̄|2dx −
(ρ̃ + K)2

2(ρ̃− K)ε2

∫

T2

|∇c̄|2dx

−
(ρ̃ + K)2β

2(ρ̃− K)ε

∫

T2

c̄2dx +
(ρ̃ + K)2α2

2(ρ̃− K)εβ

∫

T2

ρ̄2dx.

We now choose the constant K such that KC(K) < 1
2 (ρ̃ − K). By using the

coercivity property

E(U, c) ≥ c(K)

∫

T2

[
ρ2

ε2
+ |v|2 +

c2

ε

]
dx, (66)
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which holds for a certain c(K) > 0, due to Gronwall inequality we easily obtain

E(Ū (t), c̄(t)) +
1

ε2

∫ t

0

∫

T2

[
|v̄(τ)|2dx + |∇c̄(τ)|2

]
dxdτ

+
1

ε

∫ t

0

∫

T2

c̄(τ)2dxdτ ≤ AE(Ū(0), c̄(0))eBt

for certain constants A, B > 0 depending only on K and ε0. The above implies in
particular

sup
0≤t≤T

∫

T2

[
ρ̄(t)2 + ε2|v̄(t)|2 + εc̄(t)2

]
dxdt ≤ C(K)δeBT ,

for a certain C(K) depending on K. Therefore, by choosing δ small enough such
that C(K)δeBT ≤ K2 we obtain

sup
0≤t≤T

(
‖ρ̄(t)‖L2(T2) + ε‖v̄(t)‖L2(T2) +

√
ε‖c̄(t)‖L2(T2)

)
≤ K.

Step 2. We now perform the energy estimate of the space derivatives of (Ū , c̄).
For j = 1, 2 we denote the derivative with respect to xj by the subscript ρj = ∂xj

ρ.
The system satisfied by (Ūj , c̄j) is





∂tŪj + A1(Û)∂x1Ūj + A2(Û)∂x2Ūj = B(Ū)j − A1(Û)jŪ1 − A2(Û)j Ū2

∂tc̄j =
1

ε
∆c̄j +

α

ε
ρ̄j −

β

ε
c̄j.

(67)

The evaluation of the energy

E(Ūj , c̄j) =
1

2

∫

T2

[
ŪT

j S(Û)Ūj + λc̄2
j

]
dx

in a similar way as in (64) yields

d

dt
E(Ūj , c̄j) =

1

2

∫

T2

ŪT
j

[
S(Û)A1(Û)

]

x1

Ūjdx +
1

2

∫

T2

ŪT
j

[
S(Û)A2(Û )

]

x2

Ūjdx

+

∫

T2

ŪT
j S(Û)B(Ū)jdx −

λ

ε

∫

T2

|∇c̄j |2dx

+
λα

ε

∫

T2

ρ̄j c̄jdx −
λβ

ε

∫

T2

c̄2
jdx −

∫

T2

ŪT
j S(Û)A1(Û)jŪ1dx

−
∫

T2

ŪT
j S(Û)A2(Û)jŪ2dx.

Assumption (62) allows for the estimate of the first two terms above as in (64), as
well as for the estimate of the last two terms in a similar fashion. The result is the
following estimate

d

dt
E(Ūj , c̄j) ≤C̃(K)

(
‖∇ρ‖L∞ + ‖∇v‖L∞

) 1

2

∫

T2

(
ρ̄2

j

ε2
+

|v̄j |2

ε2

)

dx

+
‖ρ̂‖L∞

ε2

∫

T2

v̄j · ∇c̄jdx −
(ρ̃− K)

ε2

∫

T2

|v̄j |2dx

−
λ

ε

∫

T2

|∇c̄j |2dx +
λα

ε

∫

T2

ρ̄j c̄jdx −
λβ

ε

∫

T2

c̄2
jdx,
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which is the equivalent of the estimate (65) where (Ū , c̄) are replaced by their first
derivatives. Therefore, we can easily conclude as before

sup
0≤t≤T

(
‖∇ρ̄(t)‖L2(T2) + ε‖∇v̄(t)‖L2(T2) +

√
ε‖∇c̄(t)‖L2(T2)

)
≤ K.

Step 3. The second space derivatives of (Ū , c̄) satisfy the system





∂tŪij + A1(Û)∂x1Ūij + A2(Û)∂x2 Ūij = B(Ū)ij − A1(Û)iŪ1j − A2(Û)iŪ2j

−A1(Û)ij Ū1 − A2(Û)ijŪ2

−A1(Û)jŪ1j − A2(Û)jŪ2j

∂tc̄ij =
1

ε
∆c̄ij +

α

ε
ρ̄ij −

β

ε
c̄ij ,

(68)

for i, j = 1, 2. The structure of system (68) is similar to (67) and therefore the
estimate of the energy

E(Ūij , c̄ij) =
1

2

∫

T2

[
ŪT

ijS(Û)Ūij + λc̄2
ij

]
dx

can be performed as in step 2. The only extra terms which needs to be analyzed
are the following, for i, j, k = 1, 2 (C(K) denotes a generic constant depending on
K):
∫

T2

ŪT
ijS(Û)Ak(Û)ij Ūk ≤

C(K)

ε2

∫

T2

|Ūij |
[
|U iU j | + |U ij |

]
|Ūk|dx

≤
K2C(K)

ε2

∫

T2

|Ūij ||Ūk|dx +
KC(K)

ε2

∫

T2

|Ūij ||U ij |dx

≤
(K + K2)C(K)

ε2

[∫

T2

|Ūij |2dx + K2

]
,

where we have used once again (62) and the result in step 2. Notice that so far
we have used L∞ estimates only up to the firs order derivatives of Ū and U . In
the last inequality above, the second derivatives are only estimated in L2. We have
therefore obtained, for 0 < K < 1,

d

dt
E(Ūij , c̄ij) ≤

K3C(K)

ε2
+ C(K)K

1

2

∫

T2

(
ρ̄2

ij

ε2
+

|v̄ij |2

ε2

)

dx

+
‖ρ̂‖L∞

ε2

∫

T2

v̄ij · ∇c̄ijdx −
(ρ̃− K)

ε2

∫

T2

|v̄ij |2dx

−
λ

ε

∫

T2

|∇c̄ij |2dx +
λα

ε

∫

T2

ρ̄ij c̄ijdx −
λβ

ε

∫

T2

c̄2
ijdx

and, by using the same choice of λ and K as in step 1, after using Gronwall Lemma
we obtain

E(Ū(t), c̄(t)) ≤ C(K)

[
E(Ū(0), c̄(0)) +

K3

ε2

]
eBt.

Then, the coercivity property (66) and the assumptions (62) imply

sup
0≤t≤T

(
‖D2ρ̄(t)‖2

L2(T2) + ε‖D2v̄(t)‖2
L2(T2) +

√
ε‖D2c̄(t)‖2

L2(T2)

)
≤ C(K)(δ + K3)

and clearly, a choice of δ and K small enough implies C(K)(δ + K3) < K2, which
concludes the estimate of the second derivatives.

Step 4. In order to conclude the proof of the proposition, one needs to perform
the same energy estimate also on the space derivatives of order 3 and 4. All the
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estimates on the nonlinear terms on the right–hand side are analogous to those in
Step 3. The integrals with over-quadratic terms always contains not more than two
terms involving more than two derivatives. Therefore, all the extra terms can be
estimated in L∞ by using assumption (62) and the results in the previous steps.
We shall skip the details of these computations. The proof is complete.

We are now ready to state the main theorem of this section.

Theorem 5.1. Let T > 0 and let 0 < s < 4. Let (ρ̃, ṽ, c̃) be the constant state
in (57). There exists constants δ, ε0 ∈ (0, 1) such that, if the initial data ρ0, v0, c0

satisfy
‖ρε0 − ρ̃‖H4(T2) + ε‖vε0‖H4(T2) +

√
ε‖cε0 − c̃‖H4(T2) ≤ δ,

for all ε ∈ (0, ε0), then there exists a classical solution (ρε, vε, cε) to (56) such that
the quantity

sup
0≤t≤T

(
‖ρε(t)‖Hs(T2) + ε‖vε(t)‖Hs(T2) +

√
ε‖cε(t)‖Hs(T2)

)

is uniformly bounded with respect to ε ∈ (0, ε0) and such that the density ρε satisfies

ρε(x, t) > ρ̃/2 > 0

for all ε ∈ (0, ε0).

Proof. For any fixed ε ∈ (0, ε0), the sequence (ρn, vn, cn) has all space derivatives up
to order 4 in L2 and all time derivatives up to order 3 in L2. Therefore, (ρn, vn, cn)
is relatively strongly compact in W 1,∞ and it converge (up to a subsequence) to a
solution to the original problem (56). Moreover, the estimate

sup
0≤t≤T

(
‖ρε(t)‖Hs(T2) + ε‖vε(t)‖Hs(T2) +

√
ε‖cε(t)‖Hs(T2)

)
≤ K

can be passed to the limit by weak lower semicontinuity and the proof is
complete.

Remark 5. The whole procedure developed in the proof of the above theorem can
be easily generalized to the case of the third scaling introduced in section 2.3.

Remark 6. We observe here that the power like expression for the pressure g(ρ) =
ργ can be replaced by a more general one in order to achieve the same existence
result as in the above theorem. In particular one can use g(ρ) = log ρ, thus ob-
taining a system which relaxes toward a Keller–Segel type system with linear diffu-
sion. Therefore, some of the relaxation results contained in chapter 4 would include
Keller–Segel type system with linear diffusion as possible limits. This fact is not
in contradiction with the finite time blow up phenomena occurring in the latter,
because the class of initial data for which the above theorem holds is not significant
enough in order to see the appearance of blow–up in the limit system. More pre-
cisely, the initial datum is not concentrated enough in order to see the appearance
of a concentration in a finite time.
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[28] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential

equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819–824.
[29] R. Kowalczyk, A. Gamba and L. Preziosi, On the stability of homogeneous solutions to some

aggregation models, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 203–220, Mathematical
models in cancer (Nashville, TN, 2002).

[30] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large

parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34

(1981), 481–524.
[31] R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005),

566–588.
[32] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J.

Theor. Biol., 26 (1970), 399–415.
[33] J. L. Lions, “Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Opti-
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