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Summary  
The transmission line method (TLM) is a very efficient method for dynamic 

modelling of flow in pipelines, and uses delay elements to represent wave 

propagation. In this paper an existing TLM model is investigated and shown to have 

some deficiencies. Some adjustments are proposed to avoid these deficiencies and 

enhance the transient and steady state accuracy. Very good agreement is obtained 

between this adjusted TLM and an analytical model. The model has been 

implemented in simulation of a number of highly dynamic systems, and has been 

found to be robust and reliable. 

 

1. Introduction 
Several techniques are available for dynamic modelling of laminar flow in 

pipelines. These include the Method of Characteristics (MOC) [1, 2], the lumped 

element method (LEM) [3], the finite element method (FEM) [4], various modal 

approximation (MA) methods [5, 6], and the Transmission Line Model (TLM) [7, 8, 

9]. In the simulation of many fluid systems, the dynamics of the flow in pipelines is 

not important and simpler models can be used, resulting in simpler, faster and often 

more reliable simulations. However for some systems involving rapid dynamics or 

long pipelines, wave transmission effects become significant and more sophisticated 

models need to be used.  
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The MOC can be an extremely accurate method and can give results that are 

virtually indistinguishable from analytical solutions. In its basic form it is only 

suitable for fixed time step solvers and constant properties, although it can be used 

with variable time steps and variable properties if combined with an interpolation 

technique [1]. This introduces additional complexity and some numerical error in the 

form of artificial damping and smoothing. The MOC is used in the ‘Flowmaster’ 

simulation package [10]. 

The LEM takes the form of a series of lumped parameter 

resistor/inductor/capacitor (RLC) networks [3]. It is a simple method to understand 

and implement, and is very flexible in that variable properties and cavitation can be 

implemented. The FEM is a similar technique with similar advantages and 

disadvantages. At present many system simulation programs, such as Amesim [11] 

and SimHydraulics [3], use LEM and FEM models, and have a range of models of 

varying complexity. Multiple element models of these types are known to have 

limited accuracy for very rapid transients and may introduce unrealistic oscillations in 

some situations. They may also be very inefficient [12, 13].  

The MA methods can be very accurate and are compatible with variable time step 

solvers, but are only suitable for fixed parameters and linear behaviour. MA methods 

are not widely used at present for fluid lines in commercial simulation packages. 

The TLM is a very efficient technique for modelling transmission line problems 

[7, 8, 9]. It makes use of the inherent delay in transmission of pressure and flow from 

one end of the line to the other. In some respects the method is very similar to the 

MOC; in the MOC, the line is split up into short elements and pressure and flow 

values propagate from one node to the next over one timestep. In the TLM, the line is 

not subdivided but pressure and flow (or other variables) at each end are stored for a 
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number of timesteps. The variables (pressure and flow, or equivalent) at a new 

timestep are calculated from the variables at the other end delayed by a period of time. 

Importantly, the TLM is compatible with variable timestep integrators as interpolation 

can be used between previous data points. This means it can be incorporated readily 

into system models. Like the MA methods, it is restricted to fixed parameters and 

linear behaviour, but is believed to be more computationally efficient [13]. Because 

the pipe ends are separated by delays it is very well suited to parallel computation [14, 

15]. 

Previous TLM models [8, 9] have been found to have some deficiencies. It was 

known that the TLM was unable to predict the shape of the initial transient in 

response to a step change at high damping levels, although this would be an 

insignificant effect in most cases. Perhaps more importantly, it will be shown later 

that the method gives an incorrect equivalent capacitance and inertance. The incorrect 

capacitance means that the pressure rise in response to an injection of fluid into a 

closed-ended tube will be inaccurate. The incorrect inertance means that the rate of 

change of flow in response to a change in pressure difference will be inaccurate. 

The aims of this paper are to investigate in detail a previous TLM model, and to 

correct some of the deficiencies of this model. 

2. Existing Transmission Line Method 
A pipeline can be represented by the transmission matrix [16] given by equations 

(1) and (2). 
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A

c
ZC

ρ
=  (2) 

N is a frequency dependent function that depends on the type of friction model 

that is used [17]. This equation can be implemented readily in the frequency domain, 

but it is more difficult to implement in the time domain and approximations are 

generally needed. The TLM is a method to approximate this equation in the time 

domain. 

In the absence of friction ( 1=N ), the TLM is extremely simple and can be 

implemented using delays and algebraic equations. When friction is included, it 

becomes more complicated and approximations are needed, largely because N  is 

complex and frequency dependent. Care has to be taken to ensure that the correct 

steady state pressure drop is predicted by the model as well as the correct damping of 

transients. Krus et al. [8] represented the equations by a block diagram similar to that 

shown in Figure 1. The characteristic values 1C  and 2C  are related to the pressure and 

flowrate by equations (3) and (4).  

111 QZCP C+=  (3) 

222 QZCP C+=  (4) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Block diagram for transmission line model 
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The block diagram shown in figure 1 can be combined with additional blocks 

representing equations (3) and (4) to obtain various combinations of pressures and 

flows as inputs or outputs to the model.  

2.1 Exact model  

The block diagram in figure 1 is an exact representation of the analytical 

transmission matrix, equation (1), if the terms are as follows [8]. 

( )1−= NZE C  (5) 

NZF C=  (6) 

( ) ( )11 −−−− == NjNTj eeG αβω
  (7) 

α  is the non-dimensional frequency, 
ν
ω

α
2r

=
,
 (8) 

and β  is the dissipation number, 
22 r

T

cr

L νν
β ==  . (9) 

If quasi-steady laminar resistance is assumed, N is given by equation (10). 

αj
N

8
1+=  (10) 

A more accurate model takes into account the velocity profile across the radius of the 

tube. The velocity profile varies with frequency [17] and the effect of this is 

commonly known as ‘unsteady’ or ‘frequency dependent’ friction. Including this 

effect and assuming laminar flow but neglecting thermal effects, N is given by the 

equation 

( )
( )zJ

zJ

z
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1

1

−
=   where αjjz = . (11) 
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2.2  Krus et al’s approximation 

Krus et al. [8] developed a model whose block diagram is as shown in Figure 1. 

Neglecting unsteady friction, the filters E and G were approximated to simple transfer 

functions. F was simply a constant. 
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=   . (12) 

κ  is an empirical factor. Krus et al. proposed that 25.1=κ . 

Using non-dimensional terms, ( )
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ακβ
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Equations (13) and (14) are not good approximations to the exact terms, equations 

(5) and (6), which both tend to infinity at low frequency. However this is not 

necessarily of direct importance, as it is the overall response of the approximated 

model that is important.  

There are some constraints that need to be met. Equation (17) must be satisfied in 

order to give the correct pressure drop for a given flowrate in the steady state, and 

equation (18) must be satisfied for steady state continuity. These conditions are met 

by Krus et al.’s approximations.  

( ) ( ) ( )β8100 −=−=− CC ZRZEF  (17) 

( ) 10 =G  (18) 



 Page 7  

2.3 Approximation to unsteady friction 

Trikha [18] developed a method for approximating unsteady laminar friction 

based on simple weighting functions, for use with the MOC. This is a flexible and 

efficient method which can be use to approximate a variety of transfer functions. 

Kagawa [19], Suzuki et al. [20], Taylor et al. [4] and Johnston [9] developed this 

method further. This method has also been applied to unsteady turbulent flow [4, 21, 

22, 23], and to flexible hoses [24].  

In their TLM model, Krus et al. [8] included an additional filter term in G to 

represent unsteady friction. They used a simple first-order lag which needed to be 

‘tuned’ to give satisfactory results. Johnston [9] incorporated Trikha’s weighting 

function method into the TLM. The effect of unsteady friction on E and F  was 

neglected.  

Johnston [9] defined a friction function H, where ( )1−= NjH α . From equation 

(11), the analytical expression for H is 
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Johnston approximated the friction function H by a sum of weighting functions, 

as follows: 
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To develop an approximation for G, an approximation for 1−N  is needed. 

Provided that 
αj
H

 is small (which is true except for low frequencies), this can be 

approximated using the binomial series to 

αα j

H

j

H
N

2
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Substituting this approximation into equation (7),  
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H
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Using the approximation for H given by equation (20), G  can be approximated to 
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At low frequency the true function for G , equation (7), tends towards an 

asymptotic value of 1. However the approximation, equation (23), has an asymptotic 

value of β4−e  and this will cause flow continuity errors. To overcome this problem, 

the same function for 1G  can be used as for steady friction, that is,  
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This is asymptotic to 1 at low frequencies and β4−e  at high frequencies, as 

required. 

Equation (25) for 2G  cannot easily be transformed to the time domain. Provided 

that the exponent is small, 2G  can be further approximated to a form that can be 

transformed easily to the time domain. Johnston [9] proposed equation (27), which is 

called ‘model 1’ in the current paper. The values of im  and in  are given in table 1. 

The terms form geometric series except for the first two m  terms. 
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Table 1  Terms used in friction approximation 

term i 
im  in  

1 2.2457 42.849 

2 6.8400 385.60 ( 91 ×= n ) 

3=i  to 8 31 ×= −ii mm  91 ×= −ii nn  

 

Unfortunately the magnitude of 2G  can exceed 1 at high frequency. The model 

can then become unstable and sharp spikes occur which increase in amplitude. This is 

most likely to occur for large values of β . This problem can be avoided by using 

fewer terms k, or artificially reducing the higher values of im  so that 1
1

<∑
=

k

i
imβ .  

These steps may ensure stability at the expense of accuracy. 

To avoid this instability problem without impairing accuracy, two alternative 

approximations are introduced: model 2 (equation 29) and model 3 (equation 31). In 

these models 2G  cannot exceed 1. 

Model 2:  
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Model 3:  

∑ 








+
+

∑ 








+
−

=

=

=

k

i i

i

k

i i

i

jn

jm

jn

jm

G

1

1

2

1

1

α
α

β

α
α

β

 (31) 



 Page 10  

This is based on 

…

…
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The three approximations to G  ( 21GG= ) and the analytical function G  are 

plotted against Tω  in figure 2. Eight terms were used in the approximation (k = 8). 

For small β , figure 2(a), the approximations are good for 10<Tω , but the phase 

deviates at higher frequencies. For large β , figure 2(b), the approximations are less 

good, and for model 1 the magnitude of G  exceeds 1 at high frequencies. Model 2 

gives a better match to the magnitude, and the magnitude never exceeds 1 regardless 

of the number of terms k, but the phase lag is under-predicted. Model 3 gives the best 

overall match and the magnitude is always less than 1. Nonetheless the match 

becomes poor when the theoretical magnitude becomes less than 0.5.  
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(b) 1.0=β  

Figure 2 Approximations to G for basic TLM 

 

The three weighting function models can be implemented readily using 

summations of simple first-order transfer functions. For example a block diagram for 

model 3 is shown in figure 3. Model 1 would be implemented using the left-hand half 

only of this block diagram, and model 2 would be implemented using the right-hand 

half only, in both cases multiplying the numerator of the weighting functions by two. 

Models 2 and 3 may result in implicit algebraic equations (known as an ‘algebraic 

loop’ in Matlab Simulink). To avoid the algebraic loop, an artificial low-pass filter 

transfer function can be added to the forward path, with a bandwidth greater than that 

of the highest weighting function. This is shown in the dotted box in figure 3, with a 

break frequency of twice the highest weighting function. It should have a negligible 

effect on the accuracy but may affect the simulation speed slightly. Another way of 

eliminating the algebraic loop is to expand the complete weighting function (equation 

29 or 31) to form a rational function (that is, a ratio of two polynomials). This can be 

done by pre-calculation before the simulation starts.  
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Figure 3  Implementation of 2G , model 3 

2.4 Transient simulation results 

 

The simulations presented here and in section 3 were done using a pipe length of 

45 m, a diameter of 13 mm, fluid density of 870 kg/m
3
 and a bulk modulus of 1.5182 

GPa, with a range of viscosities to give the required values of β  according to 

equation (9). All results shown here are non-dimensionalised, and they only vary 

depending on β ; the same results would be obtained if different pipe dimensions and 

fluid properties were used but the same values of β  were maintained. Results in 

section 2 are referred to as using the ‘uncorrected TLM’ to distinguish them from the 

‘corrected TLM’ in section 3. 

Figure 4 shows results for a step change in flow at the upstream end and a fixed 

pressure at the downstream end, for the three different approximations to 2G . Only 

results for 1.0=β  are shown as for smaller values of β  the differences are 

negligible. In this case the number of terms 4=k . The results are compared with an 

analytical solution obtained using an inverse Fourier transform of the model [4]. The 
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error is defined as the absolute difference between the TLM and analytical result, 

relative to the magnitude of the initial pressure step. There are very small differences 

between the three models, and no significant improvement in the overall accuracy by 

using model 3, even though the accuracy of G  itself is improved. Spikes are apparent 

in the results for models 1 and 3; model 2 is the smoothest. For these reasons model 2 

is considered to be the preferred model and is used for subsequent results. 
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Figure 4  Time domain results for a step change in upstream flow with a fixed 

downstream pressure, 1.0=β , with different unsteady friction models, 

uncorrected TLM 

 

Figure 5 shows analytical predictions and TLM results, for a step change in flow 

at the upstream end and a fixed pressure at the downstream end. The agreement in 
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figure 5(a) and (b) is quite good, especially for the flow predictions. Figure 5(c) 

shows an overshoot for 5.0=β . The agreement was found to be good for 3.0<β  . 
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(a) β  = 0.01 
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(b) β  = 0.1 
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Figure 5 Time domain results for a step change in upstream flow with a fixed 

downstream pressure, uncorrected TLM 

Figure 6 shows the predicted pressure for a closed-ended line with a short pulse of 

flow at one end, for a range of values of β . The analytical response is also shown for 

1.0=β . The non-dimensionalised pressure 
VB

pV

∆
 should tend to 1 after the transient 

dies away. The TLM significantly underestimates the pressure rise for low β and 

overestimates for high β. This indicates that the TLM model produces an error in the 

effective capacitance of the pipeline. This problem will be investigated in section 2.5. 
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Figure 6  Predicted pressure (non-dimensionalised) for a flow pulse at one end 

with the other end blocked, uncorrected TLM 

 

Figure 7 shows the response to a step change in upstream pressure, with a constant 

downstream pressure. Some difference in the response of the TLM model is apparent 

for 01.0=β , suggesting an inaccuracy in the effective inertance of the TLM model. 

The steady state pressure after the transient decays is predicted very accurately. 
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Figure 7  Predicted flowrate (non-dimensionalised) in response to a step change 

in pressure, with a fixed pressure at the other end, uncorrected TLM 

 

2.4.1 Effect of inaccuracy in E and F 

In the model, E  has been approximated to a first-order lag, and it is assumed that 

CZF = . This may cause significant error as the theoretical value of N  tends to 

infinity as 0→ω , regardless of whether unsteady friction is included, and so the 

theoretical magnitudes of E  and F  both tend to ∞  as 0→ω . If one considers an 

anechoic line or a very long line, a step change in flow should result in the pressure 

stepping up and then continuing to increase indefinitely as shown in the analytical 

prediction in figure 8 (the plot is zoomed in on the initial peak, and the pressure is 

initially zero, 011 =∆qZp C  for 0<t ). The response for any length should be 

identical to this anechoic line until the reflected wave causes a negative step change. 

As can be seen, the TLM model does not predict this correctly, and significantly 

under-estimates the pressure. The shape of the curve of the first pressure peak 
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predicted by the TLM differs according to the length of the pipeline. However until 

the first reflection occurs the length of pipeline should have no influence on the 

pressure. The reason that it does influence it in the TLM is that the approximated 

function for E  depends on β (equation 13).  
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Figure 8  Pressure response to a step change in flow (comparison with analytical 

response of a very long or anechoic line), uncorrected TLM 

 

2.5 Transmission Matrices 

To determine the reasons for the inaccuracies in the TLM results, the transmission 

matrix obtained using the approximate equations in the frequency domain was 

investigated. The analytical transmission matrix is defined by equation (1). The 

transmission matrix terms for the TLM approximation were determined by setting 

different boundary conditions to the block diagram shown in figure 1. By setting P2 to 

zero the relationship between P1 and Q2 gives 12t , and the relationship between Q1 

and Q2 gives 22t . Similarly by setting Q2 to zero, 11t  and 21t  can be found. These are 

given by equations (33) – (36). 
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Figure 9 shows the theoretical and approximated transmission matrices.  
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Figure 9  Transmission matrix terms, uncorrected TLM 
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The approximations are generally good for frequencies above the first modal 

frequency (
2

π
ω >T ) and small β, but slightly less good for large β. At low 

frequencies, the approximation to 11t  is good (and identical to 22t− ).  

There is a small deviation in 12t  below the first modal frequency but the lines 

converge at very low frequencies. This suggests that the effective inertance of the 

model is incorrect, which gives rise to the error in the rate of increase of flowrate in 

figure 7. The low-frequency asymptote for 12t  governs the steady state pressure drop 

(since 2121 QZtP C=  if 02 =P ), and the exact value is given by β812 =t . The low 

frequency asymptote of the approximate 12t  (equation 34) is given by the equation 
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This means that the model should give the correct steady state pressure drop and 

this is consistent with figure 7. 

There is a small deviation in 21t  below the first modal frequency and the two 

lines form parallel asymptotic straight lines. The low frequency asymptote for 21t  

governs the capacitance (since 
CZ

Pt
Q 221

1 =  if 02 =Q ). The capacitance is given by 

CZj

t

ω
21 . The exact 21t  term tends towards Tjt ω→21  as 0→ω .  

The low frequency asymptote for the approximated 21t  term is given by equation 

(38). The unsteady friction model has a strong effect on the low frequency asymptote 

and introduces an additional error into the capacitance. This is an unintended side-
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effect of the unsteady friction model, which was not expected to influence steady state 

behaviour. 
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The error is shown in figure 10, for k = 4. The error is significant (up to 16%) 

even for very small dissipation number β . In some situations this may be important, 

and this is the cause of the errors in the steady state pressure in figure 6. Krus et al.’s 

simplified model [8] of unsteady friction also suffers from this problem. 
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Figure 10  Error in capacitance and adjustment to CZ   

 

The low frequency response of 12t  depends on the resistance and inertance of the 

line. As can be seen in figure 9 the low frequency horizontal asymptote is correct, but 

the upward sloping section is incorrect in the model, suggesting an error in the 

inertance. This error is caused by the unsteady friction model, in a similar way to the 

capacitance error, and is the cause of the discrepancies in figure 8.  
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3. ‘Corrected TLM’ model with adjustment for capacitance  
 

The error in the capacitance can be eliminated by adjusting the characteristic 

impedance using equation (39). The model with this adjustment applied is called the 

‘corrected TLM’ here. 
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The percentage adjustment to CZ  is shown in figure 10, for k = 4. The magnitude 

of the adjustment is less than 20% for values of β  less than 0.3, but increases for 

higher values of β .  

The error in the inertance, and the effect of the capacitance correction on the 

inertance, are more difficult to quantify. The low frequency response of 12t can be 

represented as an effective resistance and inertance in series: 

EE LjRz ω+=12 .  (40) 

The effective inertance and resistance vary with frequency, and for high 

dissipation numbers the effect of the inertance is masked by the high resistance. An 

estimate of the error in the inertance can be obtained by considering the frequency at 

which the phase of 12t  passes through 45°, that is, where 
E

E

L

R
=ω . Figure 11 shows 

the percentage error in this frequency, relative to the frequency for the analytical 

model. When the capacitance correction is used the error is reduced for 05.0<β , but 

not eliminated.  
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Figure 11  Error in frequency at which phase of �4512 =t  

 

Figure 12 shows analytical predictions and TLM results with the capacitance 

correction applied, for a step change in flow at the upstream end and a fixed pressure 

at the downstream end. The agreement is good. The pressure peaks are over-estimated 

slightly for 01.0=β  and 0.1, but for 5.0=β  the agreement is better than for the 

uncorrected model, figure 5(c). The flow results are the same as for the uncorrected 

model. 
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(a) β  = 0.01 
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(b) β  = 0.1 
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(c) β  = 0.5 

 

Figure 12 Time domain results for a step change in upstream flow with a fixed 

downstream pressure, corrected TLM 

The initial pressure peaks for different values of β  are compared with the 

analytical pressure rise in figure 13. Whilst the uncorrected TLM model (figure 8) 

underestimated the pressure rise slightly, the corrected TLM model overestimates the 

rise slightly for these values of β . The initial edge of the pressure step is 

overestimated by about 15% in these cases, but the peak pressure at the trailing edge 

is overestimated by about 1 – 2%. For higher values of β  the initial edge of the 

pressure step is under-estimated as shown in figure 12(c). 
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Figure 13  Pressure response to a step change in flow (comparison with 

analytical response of a very long or anechoic line), corrected TLM 

 

Figure 14 shows the predicted pressure for a closed-ended line with a short pulse 

of flow at one end, for a range of values of β . The analytical response is also shown 

for 1.0=β  only. The corrected TLM estimates the steady state pressure rise correctly 

in all cases. However for very small dissipation number, 001.0=β , there is a small 

overshoot and slow decay towards the correct value. This is because the time constant 

for the first term of the unsteady friction approximation is equal to 
β1n
T

 seconds, and 

becomes large for small β . 
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Figure 14  Predicted pressure (non-dimensionalised) for a flow pulse at one end 

with the other end blocked, corrected TLM 

 

Figure 15 shows the response to a step change in upstream pressure, with a 

constant downstream pressure. Compared to figure 7 the rate of pressure rise is 

greatly improved. For 1.0=β  the pressure rise is very rapid and the results are 

dominated by the high resistance, although the pulsations are underestimated slightly 

at this condition. The steady state pressure after the transient decays is predicted very 

accurately. 
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Figure 15  Predicted flowrate (non-dimensionalised) in response to a step change 

in pressure, with a fixed pressure at the other end, corrected TLM 

 

4. Discussion 
In section 2, the previous TLM model has been investigated in detail. The 

limitations of it have been explored, and a small improvement to eliminate a potential 

instability has been developed. The model has been found to give errors in the 

effective capacitance and inertance, and in the amplitude and shape of the step 

response.  

In section 3, a simple adjustment to the model has been proposed to correct for the 

error in the capacitance. This also reduces but does not eliminate the error in the 

inertance. The adjustment improves the results in most cases. The error in the 

inertance may be important in some situations, for example when modelling a 

Helmholtz damper where the inertance of the tube is important, and this should be 

borne in mind. 
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For β  less than about 0.001, the time constants for the first terms of the unsteady 

friction model become very long compared to the wave delay time. This has been 

found to cause a slight overshoot followed by slow decay of the results towards the 

steady state value after a transient. In this situation a very simple undamped model 

may be sufficient, as damping in adjoining components is likely to be far more 

significant. Alternatively the unsteady friction may be removed, or just the first one or 

two weighting terms of the unsteady friction could be removed. 

The model does not work well for 5.0>β , which may occur for combinations of 

very long lines with small diameter and high viscosity. However wave effects may not 

be important for these very high damping conditions, and simpler lumped parameter 

models may be used. Alternatively multiple TLM models can be connected in series 

to represent very high values of β .  

The TLM model has been applied extensively to switched hydraulic systems [25]. 

These systems use fast-acting valves in a form of pulse-width modulation. A long 

‘inertance’ tube may be connected to the valve, and the momentum of the fluid in this 

tube enables step-up or step-down conversion of pressure or flow. The dynamic 

behaviour of the inertance tube has a very important effect on the result. The TLM 

model has been used to represent this inertance tube and has proved to be very 

reliable, robust and efficient. The models for the valve, inertance tube and other 

components have been linked together using small compressible volumes, partly to 

represent real fluid volumes at the interfaces but also to eliminate implicit algebraic 

equations. The selection of the size of these volumes is a compromise, in that a larger 

than real volume will affect the accuracy whereas a small volume may increase the 

simulation run-time. However provided that a suitable ‘stiff’ solver is used, it has 
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been found that sufficiently small volumes (typically 0.1% to 1% of the pipeline 

volume) may be used without affecting accuracy or run-times significantly. 

The increased accuracy of the proposed TLM model compared to the previous 

model of Krus et al. [8] is gained at the expense of more computational effort. Krus et 

al.’s model required 6-8 states, whilst the proposed model typically requires 14 states 

(for k = 4). Both models require two delays. The proposed model may become 

numerically stiff and computationally slow if the number of terms k is large, as the 

highest terms (with high index i) in the summations in equations (27), (29) or (31) 

may have very small time constants. 

As discussed here, the corrected TLM has a few limitations, with small errors in 

the inertance, small errors in the pulsation magnitude and shape, and possible 

overshoot and slow drift for low dissipation number. These errors are relatively minor 

and may be acceptable in most situations. However an enhanced TLM model is being 

developed which addresses these limitations at the expense of increased complexity. It 

is hoped that this will be published in the near future. 

The TLM model can be extended to turbulent flow. However this is more complex 

as additional factors need to be considered – Reynolds number and roughness. Initial 

results have been encouraging. It may require that the coefficients are time-dependent 

as Reynolds number will change during a transient simulation. 

5. Conclusions  
An existing transmission line model has been found to be inaccurate under certain 

circumstances. The reasons for these inaccuracies have been analysed. The method 

has been modified to enhance the transient and steady state accuracy, with the result 

that very good agreement is obtained between this corrected TLM and an analytical 

model.  
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The TLM models have been implemented in Matlab Simulink and are available 

for downloading [26]. They have been used in various system models and have been 

found to be reliable and efficient. They are easy to link into system simulations using 

variable time step solvers. However it is recognised that more testing in actual 

applications is needed, and the experience of other users will be valuable in 

establishing the performance and ease of use of the TLM models in practice.  
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Appendix 1: Nomenclature 
A  Internal cross-sectional area 

c  Speed of sound 

2,1C  Characteristic at end 1 and 2 

E  Weighting function 

F  Weighting function 

G  Weighting function 

1G  Steady friction component of G  

2G   Unsteady friction component of G  

H  Friction function 

1,0J  Bessel functions of the first kind 

L  Length of pipeline 

EL  Effective inertance 

im  Coefficient of weighting function 

in  Coefficient of weighting function 

N  Friction function 

r  Internal radius of pipe 

R  Resistance 

ER  Effective resistance 
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2,1p  Pressure at end 1 and 2 

2,1P  Fourier transform of pressure at end 1 and 2 

2,1q   Flow into end 1 and 2 

2,1Q   Fourier transform of flow into end 1 and 2 

22,21,12,11t  Transmission matrix terms 

T  Wave propagation time for pipeline 

V  Fluid volume in pipeline 

z  Complex non-dimensional frequency parameter 

CZ  Characteristic impedance 

p∆  Pressure difference across ends of pipe 

q∆  Magnitude of step change in flowrate 

V∆  Volume of fluid injected into pipe 

α  Non-dimensional frequency 

β  Dissipation number 

κ  Empirical factor 

ν  Kinematic viscosity 

ρ  Fluid density 

ω  Angular frequency 

 

 


