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Analysis of the Geodesic Interpolating Spline

Anna Mills and Tony Shardlow

School of Mathematics, The University of Manchester, Manchester M60 1QD, UK

(Received 31 October 2012)

We study the Geodesic Interpolating Spline with a biharmonic regulariser for solving the

landmark image registration problem. We show existence of solutions, discuss uniqueness,

and show how the problem can be efficiently solved numerically. The main advantage of

the Geodesic Interpolating Spline is that it provides a diffeomorphism and we show this

is preserved under our numerical approximation.

1 Introduction

Image registration is the process of aligning desired features in two or more images, to

which there are several approaches, as described in [17]. Landmark-based pairwise reg-

istration considers registering two images, each with a set of landmarks marked, with a

correspondence defined between the two sets of landmarks, where one of the images is

to be registered to the other by a nonlinear warp so that the landmarks on the template

image, T , are exactly aligned with with the corresponding landmarks on the reference

image, R. We study the technique for solving this problem known as the Geodesic Inter-

polating Spline (GIS). We consider a family of warps Φ: Ω→ Ω, where Ω is the domain

of the image, defined by the initial value problem

Φ(P) = x(1) where
dx

dt
= v(x, t), x(0) = P, (1.1)

and v : Ω× [0, 1]→ Rd is a time dependent deformation field. The GIS landmark problem

is to choose a warp Φ that satisfies the landmark matching conditions and minimises the

energy in the field v. In particular, we seek to minimise the energy

l(xi(t),v(t,x)) =

∫ 1

0

∫
Ω

‖Lv(t,x)‖2dx dt, (1.2)

over deformation fields, v(t,x) ∈ Rd and paths, xi(t) ∈ Ω for i = 1, . . . , nc, where L is

a constant-coefficient, differential operator, and such that

dxi
dt

= v(t,xi(t)), 0 ≤ t ≤ 1, (1.3 a)

and

xi(0) = Pi, and xi(1) = Qi, i = 1, . . . , nc, (1.3 b)

where Pi and Qi for i = 1, . . . , nc are knot points on, respectively, the template image,

T , and the reference image, R. In this paper, we focus on the energy, l, defined by
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the Laplacian, L = 4 in (1.2), which models the Willmore energy or bending energy

arising in the deformation of thin plates, as described in [6]. In information theory, the

energy l can also be interpreted as the minimum description or code length required to

send the warp parameters, when we assume the parameters are modelled by the Gibbs

distribution. This viewpoint is outlined further in [15].

The GIS technique has been developed by [4, 7, 10, 8, 22] and is intended to overcome

the difficulties of thin plate splines [3] that lead to folding or tearing of the image in

the case of large deformations. The use of velocity fields and an optical flow allows us

to deform the image in a sequence of small steps and the mapping, Φ is known to be a

diffeomorphism. This is important as we do not wish to lose any information from the

image, and for some implementations we require the mapping to be invertible. Problems

involved in using non-invertible mappings are discussed in [9]. The necessity for mappings

to be diffeomorphic is discussed in [10]. A similar method is defined for vector fields

discretised on grids in [11].

The paper is organised as follows. In section 2, we study existence of a minimising

deformation field v and distinguished paths xi (corresponding to each landmark). We

base our analysis on the work of Dupuis [7] and extend their result to include the bi-

harmonic energy. In [7], it is assumed that functions in the domain of L have Lipschitz

regularity, which excludes the biharmonic case (L = 4). Further, we develop the analysis

for landmark matching, rather than applying the penalty term used in [7]. In section 3,

we should how the deformation field can be expressed as a linear combination of Green’s

functions and hence show that the deformation field is unique given a set of paths xi. In

this situation, we choose Ω to be the unit ball in R2 and apply homogeneous Dirichlet

and Neumann conditions, so we have use of an explicit biharmonic Green’s function.

These boundary conditions are satisfied by the Biharmonic Green’s function derived by

Boggio [2]:

G(x,y) = |x− y|2
(

1

2
(A2 − 1)− lnA

)
, (1.4 a)

where

A(x,y) =

√
|x|2|y|2 − 2x.y + 1

|x− y|
, (1.4 b)

where x and y are two-dimensional vectors. In section 4, we show how to rewrite the

optimisation problem (1.2) as a shooting problem for a Hamiltonian system and discuss

its efficient numerical solution. In section 5, we show that the diffeomorphism property

of the warp is preserved under numerical approximation for the case d = 2. Finally,

in section 6, we show that in general there is no unique global minimum to the GIS

landmark problem.

2 Existence

We investigate the existence of minimizing paths and deformation fields for the Geodesic

Interpolating Spline problem (1.2). Based on the work of Dupuis, Grenander and Miller

[7], we show the existence of minimizing paths and vector fields.

First we define the spaces that give the setting of the problem. We work in the space
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V = L2([0, 1] : H × . . .×H), where we have the d-times product, where d is typically 2

or 3, of the space

H = {h ∈ H2(Ω) : h = 0 and
∂h

∂n
= 0 on ∂Ω},

for the domain Ω ⊂ Rd, where Ω is smooth and bounded. The vector n is the unit normal

on ∂Ω the boundary of the domain, Ω, and

H2(Ω) = {all distributions h : Ω→ R such that Dαh ∈ L2(Ω), |α| ≤ 2},

where Dαu represents all derivatives of total order ≤ α and

L2(Ω) =

{
f : Ω→ R such that

(∫
Ω

|f(x)|2dx

) 1
2

<∞

}
.

Define the norms

‖v‖2V =

d∑
k=1

∫ 1

0

‖vk(·, t)‖2Hdt, for v = (v1, . . . , vd) ∈ V, vk(·, t) ∈ H,

where

‖h‖2H =

∫
Ω

‖4h‖2Rddx, h ∈ H.

The space C1([s, t] : Ω) is the set of continuous functions from [s, t] to Ω with continuous

first derivatives with norm defined by

‖f‖C1([s,t]:Ω) =

1∑
j=0

∥∥∥∥∂jf∂tj
∥∥∥∥
C([s,t]:Ω)

where

‖f‖C([s,t]:Ω) = sup
s≤r≤t

‖f(r)‖Rd .

The space C1(Ω : R), abbreviated to C1(Ω), is the space of continuous functions from Ω

to R with continuous first derivatives. The corresponding norm is given by

‖f‖C1(Ω) = ‖f‖C(Ω:R) +

d∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥
C(Ω:R)

where

‖f‖C(Ω:R) = sup
x∈Ω
‖f(x)‖R.

Proposition 1 Let 0 < α < 1
2 . Then there exists C <∞ such that for all f ∈ H×. . .×H

and for all x,y ∈ Ω, d = 2, 3

‖f(x)− f(y)‖Rd ≤ C‖f‖H×...×H |x− y|α. (2.1)

Proof Working with the components, fk ∈ H,k = 1, . . . , d of f , the Compact Embedding

Lemma states that there exists C <∞ such that

|fk(x)− fk(y)| ≤ C‖fk‖H |x− y|α,
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where 0 < α < 1 for d = 2 and 0 < α < 1/2 for d = 3. By definition of the Rd norm,

‖f(x)− f(y)‖Rd =

(
d∑
k=1

(fk(x)− fk(y))2

) 1
2

≤

(
d∑
k=1

(C‖fk‖H |x− y|α)2

) 1
2

≤ C|x− y|α
(

d∑
k=1

‖fk‖2H

) 1
2

≤ C‖f‖H×...×H |x− y|α.

This gives us Hölder continuity for f ∈ H × . . .×H.

We show that minimizing paths and corresponding vector fields exist for (1.2). We

examine (control point) paths xi ∈ C1([0, 1] : Ω), i = 1, . . . , nc and deformation fields

v ∈ V, v = (v1, . . . , vd), on x ∈ Ω, where nc is the number of control points used.

Theorem 1 We assume that there exists at least one deformation field, v ∈ V , and

control point paths, xi ∈ C1([0, 1] : Ω), such that

xi(0) = Pi, xi(1) = Qi, i = 1, . . . , nc, (2.2)

where Pi and Qi give, respectively, the initial and final control point positions in Ω, and

xi(t) ∈ Ω represents the control point path xi at time t, conforming to the constraint

dxi(t)

dt
= v(xi(t), t). (2.3)

We describe such deformation fields and control paths as being in the feasible set

F =
{

(v, {xi, i = 1, . . . , nc}) ∈ V × C1([0, 1] : Ω)nc : (2.2) and (2.3) hold
}
.

Then there exist deformation fields and control point paths in the feasible set that min-

imise ‖v‖2V .

Proof By assumption, the feasible set is non-empty.

We begin by examining a sequence of deformation fields and paths,

(vn, {xni , i = 1, . . . , nc}) ∈ F such that ‖vn‖V → inf ‖v‖V where the limit is over

deformation fields and paths. Without loss of generality, in order to use the Banach-

Alaoglu Theorem (see [20] for a statement of the theorem) to show convergence of a

subsequence, we assume that the sequence is bounded above, so that we have

‖vn‖V ≤M, (2.4)

for some M <∞.

By the Banach-Alaoglu Theorem we know that vn, a sequence of deformation fields

in the feasible set, has a weakly convergent subsequence, vnm ∈ V , so that we can write

vnm ⇀ v∗ for some weak limit v∗ ∈ V .
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By weak lower semi-continuity of the norm, we have

‖v∗‖2V ≤ lim inf
m→∞

‖vnm‖2V . (2.5)

We assume that there are paths x∗i , i = 1, . . . , nc such that we have

(v∗, {x∗i , i = 1, . . . , nc}) ∈ F which will be shown later in the proof. With this assumption

we see that

‖v∗‖2V ≥ lim inf
n→∞

‖vn‖2V , (2.6)

since v∗ with associated paths is always in the feasible set, so its norm must be greater

than or equal to the infimum limit of the norm of the elements of the feasible set.

Therefore, from (2.5) and (2.6), we have

lim inf
n→∞

‖vn‖2V = lim inf
m→∞

‖vnm‖2V = ‖v∗‖2V , (2.7)

so the sequence of deformation fields tends to the minimum.

We now examine the paths for the mappings. We want to show that we have a sequence

of paths, xn(s; t,x) such that

d

ds
xn(s; 1,x) = vn(xn(s; 1,x), s)

xn(1; 1,x) = x. (2.8)

We show that this sequence behaves such that xn → x∗ on C1([0, 1] : Ω), where x∗ solves

the ordinary differential equations

d

ds
x∗(s; 1,x) = v∗(x∗(s; 1,x), s)

x∗(1; 1,x) = x, (2.9)

the derivatives being taken with respect to s.

Before proceeding with the proof, we obtain an important result about the solution

of (2.9). Because v ∈ V , the deformation field v is continuous and by standard ODE

theory a solution to (2.9) exists. Hence, the system (2.9) gives us a flow across the whole

domain. We only set constraints (2.2), (2.3) on the control point paths, but results that

hold for the whole domain will apply to control point paths.

We take a control point, x ∈ Ω. In order to apply the Arzela-Ascoli theorem to our

sequence of paths to show the existence of a convergent subsequence, we want to show

{xn(·; 1,x)} to be compact in C([t− δ, t+ δ] : Rd) for small δ. We have

‖xn(t; 1,x)− xn(s; 1,x)‖Rd =

∥∥∥∥∫ t

s

vn(xn(r; t,x), r)dr

∥∥∥∥
Rd

(2.10)

≤
∫ t

s

‖vn(xn(r; t,x), r)‖Rddr (2.11)

≤
∫ t

s

‖vn(·, r)‖C(Ω:Rd)dr. (2.12)

Since H is continuously embedded in C(Ω : R) by the Sobolev Embedding Theorem we

have, for some A <∞,

‖vn(·, r)‖C(Ω:Rd) ≤ A‖vn(·, r)‖H×...×H . (2.13)
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Hence, we can write

‖xn(t; 1, x)− xn(s; 1, x)‖Rd ≤ A
∫ t

s

‖vn(·, r)‖H×...×Hdr

≤ A
∫ 1

0

1(s,t)(r)‖vn(·, r)‖H×...×Hdr,

where

1(s,t)(r) =

{
1 if r ∈ (min(s, t),max(s, t))

0 otherwise
.

Applying the Cauchy-Schwarz inequality and evaluating the first integral gives

‖xn(t; 1, x)− xn(s; 1, x)‖Rd ≤ A(t− s) 1
2

(∫ 1

0

‖vn(·, r)‖2H×...×Hdr

) 1
2

. (2.14)

Using (2.4), we conclude

‖xn(t; 1, x)− xn(s; 1, x)‖Rd ≤ A(t− s) 1
2M.

This gives us Hölder continuity which gives us equicontinuity for the paths. In order to

apply the Arzela-Ascoli Theorem, we also require our sequence to be bounded in the

space C([t− δ, t+ δ] : Rd). We now move to considering control point paths at time t, so

we use the notation xni (t), i = 1, . . . , nc to denote the i-th control point path at time t.

We have

xni (t) = Pi +

∫ t

0

vn(xni (s), s)ds.

So we can write

‖xni (t)‖Rd ≤ ‖Pi‖Rd +

∥∥∥∥∫ t

0

vn(xni (s), s)ds

∥∥∥∥
Rd

(by the triangle inequality).

Examining the last term, we have∥∥∥∥∫ t

0

vn(xni (s), s)ds

∥∥∥∥
Rd

≤
∫ t

0

‖vn(·, s)‖C(Ω:R)ds

≤ A
∫ t

0

‖vn(·, s)‖H×...×Hds

≤ A‖vn‖V .

Since we assume that the sequence vn is bounded above (2.4) in the norm ‖ · ‖V , we see

that the sequence xn is bounded above in the norm ‖ · ‖Rd . Recalling that our domain

is compact, we are able to apply the Arzela-Ascoli theorem, so that we can write a

convergent subsequence of xn as φn with limit φ∗.

Adding and subtracting terms, we can write∫ 1

t

(vn(φn(s), s)−v∗(φ∗(s), s))ds =

∫ 1

t

(vn(φn(s), s)− vn(φ∗(s), s))ds

+

∫ 1

t

(vn(φ∗(s), s)− v∗(φ∗(s), s))ds. (2.15)
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By Proposition 1, we can estimate the first term of (2.15) as follows, applying the Cauchy-

Schwarz inequality as in (2.14)∫ 1

t

(vn(φn(s), s) − vn(φ∗(s), s))ds (2.16)

≤ (1− t) 1
2

(∫ 1

0

C‖f‖H×...×H‖φn(s)− φ∗(s)‖2Rdαds

) 1
2

≤ C‖φn(s)− φ∗(s)‖αC([0,1]:Rd)

→ 0 since φn is a convergent subsequence with limit φ∗.

To examine the second term, we use the weak convergence of vn to v∗ in C([0, 1] : Ω).

We can write wn = vn − v∗ ⇀ 0 and define the function zn ∈ C(Ω× [0, 1] : Rd) as

zn(·, t) =

∫ 1

t

wn(·, s)ds. (2.17)

In order to apply the Arzela-Ascoli theorem, we show zn to be bounded and equicontin-

uous on C(Ω× [0, 1] : Rd). With 0 ≤ s ≤ t ≤ 1 and x,y ∈ Ω, we have

‖zn(x, t)− zn(y, s)‖Rd ≤
∥∥∥∥∫ 1

t

(wn(x, r)−wn(y, r)dr

∥∥∥∥
Rd

+

∥∥∥∥∫ t

s

wn(y, r)dr

∥∥∥∥
Rd

(2.18)

≤ C‖x− y‖αRd + (t− s) 1
2 ‖wn‖V , (2.19)

using Proposition 1. By the construction of vn, ‖wn‖V is bounded, and the sequence zn

is equicontinuous.

We have

‖zn(x, t)‖Rd ≤ ‖zn(x, 1)‖Rd + ‖zn(x, 1)− zn(x, t)‖Rd

≤ A(1− t) 1
2 ‖wn‖V

as zn(x, 1) = 0. So the sequence is bounded.

Hence, by the Arzela-Ascoli theorem, we have zn → z∗ for some limit point z∗ ∈
C(Ω× [0, 1] : Rd). Since wn → 0 in V , we have∫

Ω

∫ 1

0

〈
γ(x, s),wn(x, s)

〉
Rd

ds dx→ 0 ∀γ ∈ V.

In particular, if γ(x, s) = γ(x)1{s≥t}, where

1{s≥t} =

{
1 if s ≥ t
0 otherwise

,

then we have ∫
Ω

〈
γ(x),

∫ 1

t

wn(x, s)ds

〉
Rd

dx→ 0.

Using

zn(x, t) =

∫ 1

t

wn(x, s)ds,
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we obtain ∫
Ω

〈
γ(x), zn(x, t)

〉
Rd

dx→ 0.

Since this holds for all γ ∈ C(Ω : Rd), we know z∗ = 0. So we have shown∫ 1

t

(vn(x, s)− v∗(x, s))ds→ 0 as n→∞, ∀x ∈ Ω. (2.20)

To show that the second term of (2.15) tends to zero, we deal with two cases. In the

particular case that we have φ∗(s) = x and fixed x ∈ Ω, clearly the second term tends

to zero. In the general case we can write, adding and subtracting terms appropriately,∫ 1

t

vn(φ∗(s), s)− v∗(φ∗(s), s)ds =

∫ 1

t

vn(φ∗(s), s)− vn(φm(s), s)ds

+

∫ 1

t

vn(φm(s), s)− v∗(φm(s), s)ds+

∫ 1

t

v∗(φm(s), s)− v(φ∗(s), s)ds. (2.21)

We can use similar arguments to those used in (2.16), to write∥∥∥∥∫ 1

t

vn(φ∗(s), s)− vn(φm(s), s)ds

∥∥∥∥
Rd

≤
∫ 1

t

‖vn(φ∗(s), s)− vn(φm(s), s)‖Rdds

≤ C
∫ 1

t

‖φ∗(s)− φm(s)‖αRdds, (2.22)

where α and C are the constants from Hölder continuity. Hence the first term of (2.21)

tends to zero as n→∞. Similarly the third term of (2.21) tends to zero as n→∞.

Examining the second term of (2.21), we introduce a sequence of piecewise constant

approximations φm to φ∗ such that

φ∗(s) = lim
m→∞

φm(s), ∀s ∈ [t, 1].

Let the elements of the sequence be constructed in the following way,

φm(s) =


a1, s ∈ (t, t+ ε1)

a2, s ∈ (t+ ε1, t+ ε1 + ε2)
...

...

aq, s ∈ (t+
∑q−1
i=1 εi, 1),

where the function takes q constant, not necessarily distinct, values a1, . . . , aq ∈ Ω over

intervals of length ε1, . . . , εq. So we have for the second term of (2.21)∫ 1

t

(vn(φm(s), s)− v∗(φm(s), s))ds =∫ t+ε1

t

(vn(a1, s)− v∗(a1, s))ds+ . . .+

∫ 1

t+
∑q−1

i=1 εi

(vn(aq, s)− v∗(aq, s))ds.

So by (2.20), we see that the second term of (2.21) tends to zero as n → ∞, since all

arguments to v∗ and vn are constant. Hence we conclude for all t ∈ [0, 1],∫ 1

t

(vn(φn(s), s)− v∗(φ∗(s), s))ds→ 0 as n→∞
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and therefore we have

φ∗(t) = lim
n→∞

φn(t) = lim
n→∞

∫ 1

t

vn(φn(s), s)ds+ x

=

∫ 1

t

v∗(φ∗(s), s)ds+ x.

Differentiating with respect to t,

v∗(φ∗(t), t) =
dφ∗(t)

dt
,

which shows that φ∗(t) conforms to the required constraint, since letting φ∗(t) = x∗i (t)

gives

dx∗i (t)

dt
= v∗(x∗i (t), t).

Since φn is a convergent subsequence of xn, and sup0≤t≤1 |φn(t)−φ∗(t)| → 0 as n→∞,

we have φn(0) = Pi, φ
n(1) = Qi.

Hence we see that there exist deformation fields and control point paths in the feasible

set that minimise ‖v‖2V .

3 Representation as a finite linear combination of Green’s functions

We define the representative of a functional and show that the velocity field can be

expanded as a finite linear combination of Green’s functions with zero Dirichlet boundary

conditions without introducing any approximation. In particular, for a given set of control

paths xi, we have an explicit expression for the deformation field v.

Theorem 2 Riesz Representation Theorem - To each bounded linear functional, Φ on a

Hilbert space H, there corresponds an element u ∈ H such that

Φ(f) = 〈f, u〉H ∀f ∈ H.

The element u is called the representative of Φ in H.

Theorem 3 Cheney and Light (see [5] for proof) - Let Φ1, . . . ,Φnc be continuous linear

functionals on a Hilbert space, H. Suppose we have, for some unknown element, f , a

set of numerical values Φ1(f), . . . ,Φnc(f). Then f can be any element in the manifold

M = {m ∈ H : Φi(m) = Φi(f), 1 ≤ i ≤ nc}. Suppose vmin is the element of M with

minimal norm, known as the minimal norm interpolant. Then for

Y = {y ∈ H : Φi(y) = 0, 1 ≤ i ≤ nc},

we have vmin ⊥ Y .

We adapt a theorem taken from Cheney and Light [5] to show that the velocity fields

can be expanded in terms of their representatives.

Theorem 4 Let Φ1, . . . ,Φnc
be continuous linear functionals on a Hilbert space, H, with

representatives u1, . . . , unc ∈ H respectively. Suppose for some unknown element h ∈ H,
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we have values Φ1(h), . . . ,Φnc(h). Then h is some element of the manifold M = {m ∈
H : Φi(m) = Φi(h), 1 ≤ i ≤ nc}. Suppose hmin is the element with minimal norm, the

minimal norm interpolant. Then hmin =
∑nc

j=1 αjuj, where the coefficients αj solve the

system of linear equations
nc∑
j=1

αj〈ui, uj〉 = 〈h, ui〉. (3.1)

Proof Let

Y = {y ∈ H : Φi(y) = 0, 1 ≤ i ≤ nc}
= {y ∈ H : 〈y, ui〉 = 0, 1 ≤ i ≤ nc}

=

nc⋂
i=1

u⊥i .

Now, hmin is characterised by the properties hmin ⊥ Y (from Theorem 3) and Φi(hmin) =

Φi(h) for 1 ≤ i ≤ nc. Since hmin ∈ (
⋂nc

i=1 u
⊥
i )⊥, we can infer that hmin ∈ span{u1, . . . , unc

}.
Writing hmin =

∑nc

j=1 αjuj , we have

Φi(h) = Φi(hmin) =

nc∑
j=1

αjΦi(uj) (1 ≤ i ≤ nc).

Thus the coefficients αj solve the system of linear equations (3.1) described.

In Theorem 1, we have shown that a solution to the minimization problem minxi,v ‖v‖2V
exists. Now we show that the velocity field in the solution can be represented as a finite

linear combination of Green’s functions.

Theorem 5 Let d = 2. The solution v to the problem of Theorem 1 can be written in

the form

v(x, t) =

nc∑
i=1

αi(t)G(xi(t),x),

where G(·, ·) is a Green’s function with zero Dirichlet boundary conditions with coefficients

αi(t) ∈ Rd.

Proof We apply Theorem 4 in our case. We define a set of continuous linear functionals

on H for fixed k ∈ 1, . . . , d so that we examine one row of the representation, for fixed

time, t as

Φi(h) = h(Pi) i = 1, . . . , nc, Φi ∈ H, h ∈ H, (3.2)

where (P1, . . . ,Pnc
) is the set of initial control point positions. We know Φi to be linear

and continuous and hence bounded. Therefore we know by the Riesz Representation

Theorem (Theorem 2) that there exists some representative ui of Φi in H so that

Φi(h) = 〈ui, h〉H ∀h ∈ H, (3.3)

where 〈·, ·〉H denotes the inner product on H.
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We introduce a Green’s function, G(x,y) which behaves so that

42G(x,y) = δ(x− y).

We use the biharmonic Green’s function, as described in the introduction. We know this

Green’s function to be in L2(Ω) with first and second order derivatives in L2(Ω). This

Green’s function also has zero Dirichlet boundary conditions. Hence we see that the

Green’s function is in H, as described in Section 2. Let ui(x) = G(x,Pi). Then

42ui(x) = δ(x−Pi).

We have

〈G(·,Pi), h〉H = 〈δ(· −Pi), h〉L2
, h ∈ H

=

∫
Ω

δ(· −Pi)h(·)dx

= h(Pi) (by the sifting property of the δ−function).

We have shown G(·,Pi) to be a representative for Φi in H. Hence we see that G(·,Pk) ∈
H are representatives for Φk for k = 1, . . . , nn in H. We now apply this result for the

space, H, to the space, V .

We have the minimum norm interpolant vmin = (v1(·, t), . . . , vd(·, t)) ∈ V . So vmin
minimises ‖v‖2V , such that the interpolation conditions (3.4) hold. From the velocity

constraint (2.3), we have interpolation conditions given by

v(xi(t), t) =
dxi(t)

dt
, (3.4)

when we know the paths xi(t).

By definition of the norm on V , we have

‖v‖2V =

∫ 1

0

‖v(·, t)‖2H×...×Hdt

=

d∑
k=1

∫ 1

0

‖vk(·, t)‖2Hdt.

Examining the elements of v we observe that we can separate component-wise, both in

terms of time and knotpoints. Hence we see that if vmin is a minimum on V , the element

vk(·, t), k = 1, . . . , d minimises

‖vk(·, t)‖2H
such that

dxi,k(t)

dt
= vk(xi(t), t),

where the paths xi(t) = (xi,1(t), . . . , xi,d(t)) are known so that the left hand side of the

above represents the known values as in Theorem 4.

Hence we see that vk(·, t) is in the appropriate manifold, M , for the problem, given

by M = {vk(·, t) ∈ H :
dxi,k(t)

dt = vk(xi(t), t), 1 ≤ i ≤ nc} and we have shown vk(·, t) to be

the element of the manifold with minimal norm. Hence, by Theorem 4, we see that we
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can represent the elements vk, k = 1, . . . , d of vmin as

vk(·, t) =

nc∑
i=1

αi,k(t)G(·,xi),

where we have αi(t) = (αi,1(t), . . . , αi,d(t)). Therefore we can represent the minimum

norm interpolant of v as

vmin(x, t) =

nc∑
i=1

αi(t)G(xi(t),x). (3.5)

This expansion gives us the velocity field in a form convenient for implementation without

introducing any approximation.

4 Numerical Methods

We restate the Geodesic Interpolating Spline problem in a Hamiltonian dynamics frame-

work, and solve numerically. Similar methods for computation of the solution to the

problem are discussed further in [16, 14, 1].

Using the representation for the velocity field from (3.5) in (1.2)–(1.3 a), the Geodesic

Interpolating Spline problem can be written as

min

∫ 1

0

1

2

nc∑
i,j=1

α>i αjG(qi,qj)dt (4.1 a)

such that

dqi
dt

=

nc∑
j=1

αjG(qi,qj), qi(0) = Pi i = 1, . . . , nc, (4.1 b)

where (4.1 b) gives the velocity constraint and Pi is a set of knotpoints on the image to

which the warp is to be applied.

We can treat this as a Lagrangian by setting

L(q, q̇) =
1

2

nc∑
i,j=1

α>i αjG(qi,qj), (4.2)

where q = (q1, . . . ,qnc
) and q̇ = (q̇1, . . . , q̇nc

) = (dq1

dt , . . . ,
dqnc

dt ) represent position

and velocity respectively. We see that the Hamiltonian of the system is the Legendre

transform of the Lagrangian function as a function of the velocity q̇. The generalised

momentum is given by

∂L

∂q̇
= G−1Gα = α. (4.3)

Hence, we have the coupled system of Hamiltonian equations

q̇ =
∂H

∂α
, (4.4 a)
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α̇ = −∂H
∂q

, (4.4 b)

with initial conditions [
q(0)

α(0)

]
=

[
P

A

]
= Y, (4.5)

where P is the vector of initial knotpoint positions in (4.1 b) and A is the initial vector

of generalised momentum.

The system (4.1 a)–(4.1 b) is equivalent to the nonlinear system of equations Φ(A; P) =

Q which we solve for A as a shooting problem, where Φ(A; P) := q(1), the position

component of the solution of the Hamiltonian system

d

dt
qi =

nc∑
j=1

αjG(qi,qj), (4.6)

d

dt
αi = −

nc∑
j=1

α>i αj
∂

∂qj
G(qi,qj), i = 1, . . . , nc, (4.7)

with initial conditions given in (4.5).

To solve (4.6) and (4.7), we discretise in time. We choose to discretise using the Forward

Euler method. Experiments with symplectic methods have shown no advantage for this

problem, principally because it is a boundary value problem where long time simulations

are not of interest, and no suitable explicit symplectic integrators are available [12, 13].

Using the notation qni ≈ qi(n∆t), αni ≈ αi(n∆t), n = 0, . . . , N, ∆t = 1/N , we have

[
qn+1

αn+1

]
=

[
qn

αn

]
+ ∆t

 H(qn,αn)
∂α

−H(qn,αn)
∂q

 , [
P

A

]
=

[
q0

α0

]
= Y . (4.8)

We wish to examine the variation with respect to the initial momentum, A in order to

provide Jacobians for the nonlinear solver. The initial positions, P remain fixed. Using

the Forward Euler scheme for some function f , we have Xn+1 = Xn + ∆tf(Xn) with

initial condition X0 = Y. Differentiating with respect to A gives

dXn+1

dA
=

dXn

dA
+ ∆t

df(Xn)

dXn

dXn

dA
,

dX0

dA
= [0, I]> , (4.9)

where I is the dnc × dnc identity matrix.

Let Jn be the Jacobian and solve numerically a coupled system of equations

Jn+1 = Jn + ∆t
df(Xn)

dXn
Jn, Xn+1 = Xn + ∆t f(Xn) (4.10)

with initial conditions J0 = [0, I]>,X0 = Y. In our problem, we have

f(X) =

 ∂H
∂q

−∂H
∂α

 , X =

[
q

α

]
,

df(Xn)

dXn =

 ∂2H
∂q∂α

∂2H
∂α2

−∂
2H
∂q2 − ∂2H

∂α∂q

 . (4.11)

The entries of the Jacobian in (4.11) can be calculated explicitly. The analytic calculation

of the Jacobian permits efficient solution of the nonlinear equation Φ(A; P) = Q using
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the nonlinear iterative solver nag_nlin_sys_sol developed by the Numerical Algorithms

Group (NAG) [19]. The solver is based on MINPACK routines, described in [18].

We calculate the entries of (4.11). We have

H(α,q) =
1

2

nc∑
i,j=1

α>i αjG(qi,qj)

=
∑
i<j

α>i αjG(qi,qj) +
1

2

nc∑
i=1

α>i αiG(qi,qi),

where we use the notation
∑
i<j to denote summation from 1 to nc such that i < j. We

obtain first order derivatives

∂H

∂αk
=

nc∑
j=1

αjG(qk,qj), (4.12)

∂H

∂qk
=
∑
i 6=k

α>i αk
∂G(qi,qk)

∂qk
+

1

2
α>k αk

∂G(qk,qk)

∂qk
. (4.13)

Then we can calculate second derivatives

∂2H

∂αk∂αl
= G(qk,ql)I, (4.14)

∂2H

∂αk∂ql
= αl

∂G(qk,ql)

∂ql
, (4.15)

∂2H

∂αk∂qk
=

nc∑
j=1

αj
∂G(qk,qj)

∂qk
, (4.16)

∂2H

∂qk∂ql
= α>k αl

∂2G(qk,ql)

∂qk∂ql
, (4.17)

∂2H

∂qk∂qk
= α>k αk

∂2G(qk,qk)

∂qk∂qk
, (4.18)

(where I is the d-dimensional identity matrix). Then we can step forward using the For-

ward Euler scheme (4.10) to find control point paths for the system. Using this method,

a 123 point test set was solved in less than 40 seconds using a single processor desktop

computer.

5 The Diffeomorphic property under numerical approximation

The deformation field, v, defines a mapping, Φ, which we show to be diffeomorphic in

the case d = 2 under numerical approximation. Before proceeding, we show an important

inequality.

Proposition 2 Let d = 2. The minimizing deformation field v ∈ V is Lipschitz contin-

uous so that for some K > 0, we have

‖v(x, t)− v(y, t)‖Rd ≤ K‖x− y‖Rd , 0 ≤ t ≤ 1, x,y ∈ Ω.
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Proof We have a representation for v (3.5) from Theorem 5 in terms of αi(t),xi(t), i =

1, . . . , nc. The Green’s function is globally Lipschitz continuous for d = 2, and the co-

efficients are continuous on a compact domain and so bounded. Hence we see that v is

Lipschitz continuous.

We examine the differential equation

dxi(t)

dt
= v(xi(t), t), xi(0) = Pi, xi(t) ∈ Ω, (5.1)

with v ∈ V . Define a mapping Φ : Ω → Ω such that Φ(Pi) = xi(1), i = 1, . . . , nc. By

standards arguments (see, for instance [21]) and using the v is Lipschitz, we see that Φ

defines a diffeomorphism on the domain, Ω.

We discretise the mapping for the purposes of computation. We need to be certain

that the mapping will retain its diffeomorphic quality under this discretization.

We define a discretised mapping which we show to be well defined, by the Contraction

Mapping Theorem, and to be continuous with a well defined, continuous inverse and

hence show the discretised mapping to be a homeomorphism on a unit ball, Ω in the case

d = 2. We can then see by the Inverse Mapping Theorem that the discretised mapping

is diffeomorphic.

We examine the mapping, Φ∆t, where Φ∆t is a time one mapping calculated using a

Forward Euler numerical scheme with N time steps of size ∆t, where N∆t = 1. We use

the notation Φn∆t(X) to denote Xn, the value of the nth time step mapping. Then we

have

Φn+1
∆t (Pi) = Φn∆t(Pi) + ∆t v(Φn∆t(Pi), n∆t), i = 1, . . . , nc, Pi ∈ Ω. (5.2)

Theorem 6 Let d = 2. The mapping, Φ∆t : Ω → Ω is a diffeomorphism for ∆t < 1
K ,

where K is the Lipschitz constant of the deformation field v, recalling that v is Lipschitz

continuous by Proposition 2 and has zero Dirichlet boundary conditions on δΩ where Ω

is the unit ball.

Proof We consider two cases, as shown in Figure 1. First, we show that Φ∆t maps from

Ω into Ω.

In the first case, suppose Pi ∈ ∂Ω. Then Φn+1
∆t (Pi) = Φn∆t(Pi) due to the boundary

conditions, and so clearly we have Φn+1
∆t (Pi) ∈ Ω.

Now we examine the more general case, Φn∆t(Pi) ∈ Ω. Applying the triangle inequality

for norms to (5.2), we can write

‖Φn+1
∆t (Pi)‖Rd ≤ ‖Φn∆t(Pi)‖Rd + ∆t‖v(Φn∆t(Pi), n∆t)‖Rd .

The Lipschitz continuity of v gives

‖v(Φ1, s)− v(Φ2, s)‖Rd ≤ K‖Φ1 − Φ2‖Rd , K <∞, Φ1,Φ2 ∈ Ω, 0 ≤ s ≤ 1,

and so we can write∥∥∥∥v( Φn∆t(Pi)

‖Φn∆t(Pi)‖Rd

, s

)
− v(Φn∆t(Pi), s)

∥∥∥∥
Rd

≤ K
∥∥∥∥ Φn∆t(Pi)

‖Φn∆t(Pi)‖Rd

− Φn∆t(Pi)

∥∥∥∥
Rd

.
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Pi ∈ δΩ

Pi ∈ Ω

δΩ

δ

1− δ

Ω

Figure 1. Visualization of the Proof of Theorem 6

Since we know
Φn

∆t(Pi)
‖Φn

∆t(Pi)‖Rd
∈ ∂Ω, we have v

(
Φn

∆t(Pi)
‖Φn

∆t(Pi)‖Rd
, s
)

= 0, so we have

‖v(Φn∆t(Pi), s)‖Rd ≤ K
∥∥∥∥ Φn∆t(Pi)

‖Φn∆t(Pi)‖Rd

− Φn∆t(Pi)

∥∥∥∥
Rd

.

Hence we have

‖Φn+1
∆t (Pi)‖Rd ≤ ‖Φn∆t(Pi)‖Rd +K∆t

∥∥∥∥ Φn∆t(Pi)

‖Φn∆t(Pi)‖Rd

− Φn∆t(Pi)

∥∥∥∥
Rd

.

Now, without loss of generality, suppose ‖Φn∆t(Pi)‖Rd = 1− δ, δ > 0.

We have
∥∥∥ Φn

∆t(Pi)
‖Φn

∆t(Pi)‖Rd

∥∥∥
Rd

= 1, so we can write

‖Φn+1
∆t (Pi)‖Rd ≤ 1− δ +K∆t(1− (1− δ))

≤ 1− δ +K∆tδ.

Since Φn+1
∆t (Pi) ∈ Ω for ‖Φn+1

∆t (Pi)‖Rd ≤ 1, we see that Φn+1
∆t (Pi) ∈ Ω for

1− δ +K∆tδ ≤ 1

K∆tδ ≤ δ
K∆t ≤ 1.

Hence we conclude Φ∆t : Ω→ Ω for ∆t ≤ 1
K , meaning that the behaviour of the required

∆t is independent of the position of the points, and only depends on the Lipschitz

constant of the function, v.

We see that Φ∆t has a unique solution by the same argument as that for the non-

discretised case. Now we show Φ∆t to be continuous. We adapt a proof from Stuart and

Humphries [21].
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Suppose we have points P1,P2 ∈ Ω. Then, at the first time step, we have Φ1
∆t(P1) =

P1 + v(P1, 0),Φ1
∆t(P2) = P1 + v(P2, 0), and so

‖Φ1
∆t(P1)− Φ1

∆t(P2)‖Rd ≤ ‖P1 −P2‖Rd + ∆t‖v(P1, 0)− v(P2, 0)‖Rd

≤ ‖P1 −P2‖Rd +K∆t‖P1 −P2‖Rd

≤ (K∆t+ 1)‖P1 −P2‖Rd (5.3)

where K is the Lipschitz constant for v. Hence Φ∆t is continuous for the first time step

and similarly will be continuous over all N time steps.

We define an inverse mapping Ψn
∆t such that Ψ0

∆t(Qi) = Qi and such that

ΨN
∆t(Qi) = Pi, i = 1, . . . , nc. This inverse mapping is generated by the Backward Euler

scheme

Ψn+1
∆t (Qi) = Ψn

∆t(Qi)−∆tv(Ψn+1
∆t (Qi), (n+ 1)∆t).

First, we show that this mapping is well defined.

We can define a mapping, M, as

M(Ψ) = Qi + ∆tv(Ψ, n∆t).

In order to use the Contraction Mapping Theorem, we show M to be a contraction.

Suppose we have two points Ψ1,Ψ2 ∈ Ω. Then we can write

‖M(Ψ1)−M(Ψ2)‖Rd = ‖Qi −Qi + ∆t(v(Ψ1, s)− v(Ψ2, s)‖Rd ,

≤ ∆tK‖Ψ1 −Ψ2‖Rd by Lipschitz continuity of v.

Hence we see that M defines a contraction, and so Ψ∆t is well-defined, for ∆tK < 1.

Following the approach of Stuart [21], we show that Ψ∆t is a continuous mapping for

∆t ≤ 1
K . Consider Backward Euler iterations

Ψn+1
∆t (Qi) = Ψn

∆t(Qi)−∆tv(Ψn+1
∆t (Qi), (n+ 1)∆t),

along with a second set of iterations given by

Υn+1
∆t (Qi) = Υn

∆t(Qi)−∆tv(Υn+1
∆t (Qi), (n+ 1)∆t).

Then we have

‖Ψn+1
∆t (Qi)−Υn+1

∆t (Qi)‖Rd ≤ ‖Ψn
∆t(Qi)−Υn

∆t(Qi)‖Rd +∆tK‖Ψn+1
∆t (Qi)−Υn+1

∆t (Qi)‖Rd ,

using the Lipschitz continuity of v. Then, since ∆t < 1
K , we can write

‖Ψn+1
∆t (Qi)−Υn+1

∆t (Qi)‖ ≤
1

1−K∆t
‖Ψn

∆t(Qi)−Υn
∆t(Qi)‖. (5.4)

So we see that the inverse mapping is continuous.

Hence we conclude that Φ∆t with ∆t < 1
K is homeomorphic on Ω.

From (5.3) and (5.4), we see that the Jacobians of the mapping and the inverse mapping

are bounded. Hence, by the Inverse Mapping Theorem, we conclude that the mapping is

also diffeomorphic.
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6 Uniqueness of paths - proof and numerical example

We have shown that minimizing velocity fields and paths exist for the Geodesic Interpo-

lating Spline problem, and have shown that the velocity field generated by minimizing

paths is unique. It should be noted, however that the minimizing paths are not always

unique, as there can be symmetric minimizing paths, which will be demonstrated by

numerical experiment, and shown in Proposition 3.

Proposition 3 There exist combinations of start points, Pi, and end points, Qi, for

which there is not a unique minimiser to the problem of Theorem 1.

Proof Suppose we have a set of two start points, P1,P2 ∈ Ω and two corresponding

end points, Q1,Q2 ∈ Ω with reflective symmetry about the x-axis so that we have

P1 = (−a, b),P2 = (−a,−b),Q1 = (a,−b),Q2 = (a, b), as illustrated in Figure 2.

Figure 2. Illustration of Symmetric Start and End Points

Suppose, toward a contradiction, that we have unique minimizing paths x1,x2 such

that

x1(0) = P1 = RP2 = Rx2(0)

and

x1(1) = Q1 = RQ2 = Rx2(1),

where R is an operator indicating reflection about the x-axis.

The uniqueness of minimizing paths implies that we must have x1(t) = Rx2(t) for

all t ∈ [0, 1]. Consider the point where the path x1 crosses the y-axis at, say x1(τ) =

(α, 0), some τ ∈ (0, 1), α ∈ [0, 1]. At this point we must have x2(τ) = (α, 0) = Rx2(τ).

Hence we have x1(τ) = x2(τ). This is impossible since we have uniqueness of solution to

the differential equations initialised from any point. Hence if we have x1(τ) = x2(τ), we

cannot have x1(1) = Q1 and x2(1) = Q2, since Q1 and Q2 are not coincident.

Hence we conclude that there are not always unique minimizing paths for a set of start

points and end points.

There are special cases for which there are symmetric solutions of paths. To force the

shooting method to find these symmetric solutions, we experiment with the choice of

initial data for α.

We examine the paths for a test problem with two initial knot point positions, (0.2,−0.2)

and (−0.2,−0.2) moving to final positions, (−0.2, 0.2) and (0.2, 0.2), respectively. First,

the initial α multipliers are set to 1, the default for the routine. The shooting method

solver then outputs a set of final values for α, producing the paths shown on the left

hand side of Figure 3. We then initialise the solver with −α. This produces the paths

shown on the right hand side of Figure 3. Experiments where all elements of α and −α
were initialised as either −1 or 1, according to the sign of the original element produced

exactly the same paths as those produced by initialising with α and −α.
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Figure 3. Symmetry Created By Changing the Initial Conditions for the Shooting Method
From α to -α

We have shown uniqueness of the velocity field generated from a given set of paths

in Section 2. This experiment shows that the paths that minimise the problem are not

always unique since they have symmetric equivalents for certain configurations, but from

Section 2, we know that once a path has been selected from a set of symmetrically

equivalent paths, there is only one possible velocity field to be generated.

7 Conclusion

We have extended a previous result to show that for exact landmark-matching the min-

imizing paths for GIS exist, with corresponding unique vector fields. We have adapted

techniques from approximation theory to show that the velocity fields can be expanded as

a finite linear combination of Green’s functions without introducing any approximation.

We introduced a numerical approximation to a formulation of the problem as a shooting

problem and proved that, under sufficiently small time steps, the discrete GIS mappings

are diffeomorphic, as was previously believed to be the case.
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