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Abstract 20 

Two models, Z Dosage and Dominant W, have been proposed to explain sex determination in birds 21 

where males are characterized by the presence of two Z chromosomes and females are hemizygous 22 

with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene is 23 

needed to trigger male development, whereas the Dominant W model postulates that female 24 

development is triggered by a still unknown W-linked gene. Using 33 polymorphic microsatellite 25 

markers we describe a female triploid Kentish plover Charadrius alexandrinus identified by 26 

characteristic ‘three allele’ genotypes at 14 autosomal markers that produced viable diploid offspring. 27 

Peak ratio analysis showed that the sex chromosome composition of this female was ZZW. Our 28 

results suggest a prominent role for a female determining gene on the W chromosome. In light of this 29 

result, we propose that avian sex determination is more dynamic and complex than currently 30 

envisioned. 31 

 32 

Introduction 33 

Birds show striking sexual dimorphism with pronounced phenotypic differences between males and 34 

females. Sex in birds is determined genetically; males are ZZ and females are ZW. However, 35 

precisely how the phenotypic sexual dimorphism is initiated, is debated (Teranishi et al. 2001; Smith 36 

et al. 2009; Ellegren 2011). Two models have been proposed to explain sex determination in birds 37 

(Clinton 1998). The Z Dosage model postulates that the main determinant for sex is located on the Z 38 

chromosome. This sex determinant interacts with an autosomal gene and, depending on the ratio 39 

between copies of Z chromosomes and autosomes (Z:A ratio), the embryo will develop as male or 40 

female. If Z:A = 1 the embryo will develop into a male and, if Z:A = 0.5 into a female. Z Dosage is 41 

based on the observed ineffective dosage compensation for Z genes, i.e. their expression is 42 

proportional to the copy number (Itoh et al. 2007; but see Mank, Ellegren 2009). The model is 43 

supported by experimental RNA inhibition of DMRT1 a major sex determining gene in vertebrates 44 

which is located on the Z chromosome (Smith et al. 2009). When DMRT1 was inhibited early in 45 



development, ZZ chicken Gallus gallus embryos subsequently developed ovaries but no testes. By 46 

contrast, the Dominant W model postulates that the main determinant for females is located on the W 47 

chromosome. For example, the presence of a gene located on the W chromosome may 48 

antagonistically interact with DMRT1 by altering methylation of the male hypermethylated region 49 

(MHM) adjacent to DMRT1 in chicken (Teranishi et al. 2001). However, such a ‘female gene’, 50 

potentially located upstream of DMRT1 in the sex determination cascade, has yet to be described in 51 

birds. 52 

 53 

Chromosomal aberrations such as aneuploidy can help to clarify the sex determination mechanism 54 

although they are often already lethal at the embryonic stage in birds (Forstmeier, Ellegren 2010). 55 

Triploid chickens with a ZWW genotype are not viable whereas triploid ZZZ chickens develop a male 56 

phenotype but produce only abnormal sperm. Triploid ZZW chickens initially develop female 57 

phenotypes but before sexual maturity they develop male phenotypes (Lin et al. 1995). Their right 58 

gonad develops into a testis whereas the left gonad develops into an ovotestis that degenerates shortly 59 

after hatching. Importantly, these intersexual chickens fail to produce viable gametes (Lin et al. 1995). 60 

 61 

Here we present a case of a female triploid Kentish plover Charadrius alexandrinus that reproduced 62 

successfully in a natural population. We explore the type of sex chromosome aneuploidy exhibited by 63 

this bird and discuss the implications of this case for models of avian sex determination. 64 

 65 

Material and Methods 66 

The female was a regular breeder in a large Kentish plover population at Tuzla, Turkey (36°42’ N, 67 

35°03’ W), and captured during incubation in both 1997 and 1999. In 1999 this female, her mate and 68 

their three chicks were sampled for blood. Twenty-five µl of blood were taken from either brachial 69 

vein (adults) or metatarsal vein (chicks) and stored in Queen’s lysis buffer (Seutin, White, Boag 70 



1991). The female and her mate were initially sexed in the field based on plumage characteristics and 71 

sex-specific pattern of incubation in this species (Cramp, Simmons 1983; Kosztolányi, Székely 2002; 72 

AlRashidi et al. 2010). Molecular sexing (described in (Küpper et al. 2009) confirmed the field 73 

observation by the presence of Z and W fragments in the female and Z fragments only in her mate. 74 

Sexing of the offspring showed that all three chicks were male. Subsequently the family was 75 

genotyped using 33 microsatellite markers including two Z-linked and one W-linked locus (Küpper et 76 

al. 2007; Küpper et al. 2008; Dawson et al. 2010). Genotypes were checked for consistency across 77 

two runs. Because no shorebird genome is yet available we mapped the location of the microsatellites 78 

to the chicken (WSHUC2) and zebra finch Taeniopygia guttata (taeGut3.2.4) genome data bases 79 

following the methodology described in (Küpper et al. 2008). 80 

 81 

The sex-linked markers had low polymorphism and the female genetic profile was monomorphic for 82 

all three sex chromosomal markers (Supplementary Material). Therefore we performed a peak height 83 

ratio analysis to establish the composition and number of sex chromosomes (Young et al. 2001). We 84 

amplified products for the W-linked marker Calex-31 and one Z-linked marker Calex-26 together in a 85 

single PCR with 35 cycles and established the W/Z peak height ratio of the triploid female and 22 86 

females from the same population that had the same genetic profiles at the sex-linked markers. We 87 

then compared the value of the triploid female to the distribution of W/Z peak height ratios of the 88 

control females. 89 

 90 

Results 91 

All alleles of the chicks could be assigned to either the triploid mother or the diploid father. None of 92 

the chicks nor the male showed a three-allele genotype. For 17 of the 33 markers we identified 93 

homologues on nine zebra finch and nine chicken chromosomes (Table S1). The female had three 94 

allelic genotypes at 14 markers and all three female alleles were represented in the offspring for six of 95 



these 14 markers (Table 1, for a genotype profile example see Figure S2). Eight three allelic markers 96 

could be mapped to six zebra finch and eight chicken autosomes (Table 1). The peak height ratio 97 

analysis revealed that the triploid female differed from the mean peak height ratio of the 22 control 98 

females by 4.47 standard deviations. The Z product was overrepresented in the triploid female by a 99 

factor of 1.5 to 2.2 in comparison with the control females suggesting a ZZW sex chromosome 100 

aneuploidy (Figure 1). 101 

 102 

Discussion 103 

We have demonstrated that a triploid ZZW Kentish plover produced viable diploid offspring. 104 

Triploidy is usually lethal at the embryonic stage in birds (Forstmeier, Ellegren 2010). However, it 105 

may occur more frequently than presently thought because the presence of three alleles at a single 106 

locus is easily confused with contamination. 107 

 108 

The Z:A ratio is an important feature of the Z Dosage model (Clinton 1998). Triploid ZZW chickens 109 

that have an intermediate Z:A ratios of 2:3 are sex changers that start as females but assume 110 

phenotypic characteristics of males before sexual maturity. Importantly, these sex changers do not 111 

produce viable gametes (Lin et al. 1995) whereas the triploid Kentish plover we studied produced 112 

viable female gametes. The Kentish plover female was observed twice over a period of three years 113 

and we noted two attempts of reproduction with the same male. The age of the female was at least 114 

three years when it reproduced successfully and last seen alive. We consider it unlikely that she 115 

changed her sex subsequently, long after onset of sexual maturity and successful reproduction. 116 

 117 

The observation of a reproducing ZZW female has implications for avian sex determination. Despite 118 

the recent support for an important role for DMRT1 in the sex determination cascade in a bird, an 119 

effect of a W-linked gene that triggers femaleness should not be discarded (Ellegren 2011). This still 120 



unknown gene could antagonistically interact with DMRT1, for example through changes of 121 

methylation patterns (Teranishi et al. 2001). In amphibians with a ZW sex determination system, DM-122 

W, a recently identified truncated paralogue of DMRT1, interacts antagonistically with DMRT1 and is 123 

known to trigger femaleness (Yoshimoto et al. 2010). DM-W has no known homologue in chicken 124 

although current lack of sequence information for the W chromosome from other birds does not rule 125 

out the presence of a DMRT1 paralogue or other potentially female-determining genes in other avian 126 

lineages. 127 

 128 

We suggest that more than one sex determination mechanism may have evolved in birds and that the 129 

current description of DMRT1-driven male determination in birds is incomplete or overly simplistic. 130 

In most vertebrate groups the mechanism of sex determination is not fully conserved (Graves, Peichel 131 

2010). For example, switches between environmental and genetic sex determination (ZW or XY) have 132 

occurred frequently during the evolutionary history of reptiles (Ezaz et al. 2006; Janes, Organ, 133 

Edwards 2009). Previously, adult ZZW females have been reported in blue-and-yellow macaw Ara 134 

ararauna and great reed warbler Acrocephalus arundinaceus (Tiersch, Beck, Douglass 1991; Arlt et 135 

al. 2004). However, the evidence of both cases was less conclusive than in our case. In both previous 136 

studies the aneuploidy was established only for blood cells. The females either did not have offspring 137 

(in case of the macaw) or transmitted only alleles of one Z chromosome to her 17 offspring (in case of 138 

the warbler). Therefore alternative explanations such as a tissue-restricted mosaicism cannot be ruled 139 

out (Fechheimer, Jaap 1980). By contrast, we observed triploidy in blood cells and found all three 140 

alleles for a number of chromosomes in the offspring profiles. Nevertheless, taken together the three 141 

ZZW cases suggest the intriguing possibility that non-galliform birds may have evolved a different 142 

sex determination mechanism different from chicken. This is further supported by the large extent of 143 

size variation in bird sex chromosomes (Stiglec, Ezaz, Graves 2007), and the observation that the 144 

expression of Z-linked genes, including the region where major sex determination factors such as 145 

DMRT1 and MHM are located, differs between Galliform and non-galliform birds (Itoh et al. 2010). 146 

Taken together, our findings suggest that avian sex determination is more complex and dynamic than 147 



currently recognized. We suggest that future studies should focus not only on chicken but include a 148 

phylogenetically broad range of bird species to fully understand the sex determination pathway in 149 

birds. 150 
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Table 1. Genotypes of 14 diagnostic loci of the triploid female Kentish plover, her mate and their 157 

offspring. 158 

Marker # Chr 

Chicken / 

Zebra Finch  

Female Male Chick1 Chick2 Chick3 

Calex-02 1 / ? 148/152/158 150/156 156/158 148/150 148/150 

Calex-04
a
 2 / 2 213/217/221 211/219 217/219 219/221 211/213 

Calex-14
a
 14 / 14 204/206/218 206/208 204/206 208/218 206/208 

Calex-18
a
 17 / ? 155/159/163 157/159 155/159 157/159 157/163 

Calex-19 20 / 20 303/306/308 301/303 303/308 303/306 303/306 

Calex-39 ? / ? 145/147/153 139/141 139/153 141/153 139/147 

C201 na 129/133/139 131/137 137/139 129/131 129/131 

C203 na 183/185/187 183/187 183/187 187/187 183/187 

C205
a
 na 179/183/187 177/185 183/185 185/187 177/179 

Hru2 ? / ? 144/146/148 146/148 144/148 163/167 146/146 

Calex-35 ? / ? 127/141/147 141/143 141/143 143/143 143/147 

Tgu04-004
a
 4 / 4 161/163/169 161/167 167/169 163/167 161/167 

Tgu03-002 3 / 3 120/122/124 122/122 122/122 122/124 122/124 

RGB18
a
 9 / 9 260/266/270 264/266 266/270 260/264 266/266 

 

159 
#Chr, Chromosome number of hit in Chicken (Gga) / Zebra Finch (Tgu) 160 

a
all three female alleles are represented in offspring 161 

?, no conclusive hit to genome map 162 

na, microsatellite flanking region sequence not available 163 

  164 



Figure 1. Peak height ratio of one triploid (black circle) and 22 diploid (open circles) females for 165 

Calex-26 (Z-linked) and Calex-31 (W-linked). 166 
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