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Introduction


There is a growing consensus surrounding the importance of 

attentional processes in pain [6]; [15]. Pain functions to warn of potential 

danger and promote analgesic behaviour in oneself and from others. A reason 

for this interference effect is because attention has limits [11]; [17]; [26]. When 

competing demands are presented preferential selection occurs, and this is 

usually towards pain [33]. 

Although studies show that task performance deteriorates under painful 

conditions [4]; [7]; [8], such effects are not always found, and can depend on 

task-related factors [2]; [35]. For example, when measuring attention span, 

Bingel, et al. [2] found an effect of laser-induced pain on a more complex 2­

back task, but not the 1-back task. To help explain this discrepancy, Legrain 

et al. [15] suggest that there is a range of influences, including top-down 

motivational characteristics (e.g., avoidance of harm and threat value) as well 

as bottom-up characteristics of the stimulus (e.g., intensity and novelty). 

Bottom-up factors are proposed to alert a person to the salience of pain and 

top-down factors to control pain. The question now turns to identifying under 

which conditions pain interference is more likely to occur. 

One line of research has been to investigate whether there are certain 

tasks that are more or less susceptible to pain-related interference. Moore et 

al. [25] found that heat-induced pain affected performance on complex tasks 

such as divided attention, switching and attention span, but not on simpler 

tasks such as those involving continuous performance. One explanation is 

that these more complex tasks reflect a general attentional deficit. An 

alternative explanation is that tasks which require more complex, executive­
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like, demand show the greatest interruption effect from pain. Indeed, Miyake 

et al. [22] suggested that executive function is made up of shifting/switching 

(i.e. switching task), inhibition and updating (i.e. n-back task). These are 

exactly the higher order cognitive functions implicated in attention to pain 

[8,14]. 

Although higher-order executive-like tasks seem to be vulnerable to 

pain interference effects, it is likely that other contextual factors may increase 

or decrease this vulnerability. For example, if a person finds themselves in a 

threatening situation then the presence of threat can increase susceptibility to 

pain interference [5]; [14]; [30]; [31]. The threat of pain differs from the 

sensation of pain by adding psychological distress to nociception and can 

operate in the anticipation of pain as well as the presence of it. It is possible 

therefore that pain-related interference of executive-type tasks may be 

particularly pronounced under conditions of high threat. The aim of the current 

study was to examine whether situational threat moderates pain-related 

interference on executive-like cognitive tasks. We sought to address this 

question by employing similar cognitively demanding tasks to those used 

previously [25], and combine them with an experimental manipulation of mild 

pain related threat used in previous studies [14]; [33]. We hypothesised that 

pain will have a significant interference effect on these tasks, and threat will 

increase this interference effect. 

Methods 

Design 

In a mixed-groups design participants were assigned randomly to 

either a threat condition or a control condition. After randomisation all 
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participants completed three cognitive tasks on two occasions: once while 

experiencing a mild painful sensation, and once without a pain sensation 

(control). The dependent variables were performance indicators (e.g., reaction 

time, accuracy) derived from the three tasks. 

Participants 

Fifty adult participants (21 male) were recruited into the study from the 

University of Bath staff and student population. Their mean age was 22.06 

(SD=5.35). Participants reported that they were not currently in pain, had no 

existing chronic pain condition, and were not taking analgesic medication. 

Participants also reported no skin complaints or sensitivity, and all were paid a 

modest sum for participation. 

Attention tasks 

Three tasks were used in the current study, all of which were drawn 

from those used in a previous study [25]. The tasks were designed and 

controlled using E-Prime II professional software [29]. Stimuli were presented 

on a Iiyama prolite B1902S TFT monitor, which was powered by a Viglen 

genie desktop computer with a 3GHz Pentium Intel Core 2 duo processor and 

2Gb of RAM. Responses were made using a PST model 200a serial response 

box. The three tasks were as follows: 

Attention span task: Attention span is the amount of information that 

can be processed at any one time [16]. The n-back task was used, as it 

measures attention span by asking participants to indicate if a current 

stimulus matches one presented previously. Participants were presented with 

a stream of 90 letters, each for 500ms, followed by a 1500ms blank screen. 

Participants’ task was to report whether the current letter matched the letter 



5 

presented two letters previously. Participants pressed one key if the letter was 

the same, and another if the letter was different. There were 30 target stimuli 

presented and 60 non-target stimuli randomly distributed through the task, 

and the task lasted approximately 3 minutes. The outcome variables for the n-

back task were the number of correctly identified targets (hits), number of 

missed targets (misses), number of times non-targets were identified as 

targets (false alarms) and the number of non-targets correctly identified 

(correct rejections). In the current study the n-back task was considered to be 

a measure of attention span related to executive functioning [3; 18]. Although 

the n-back task is also used as a measure of working memory (e.g., [10; 12]) 

and may involve some of these components, the correlation between the n-

back task and other working memory measures has been shown to be low 

(e.g., [9; 13]). 

Attentional switching task: Attentional switching is the process of 

alternating between multiple separate attentional tasks. Responses after task 

switches are typically slower and less accurate than task repetitions. These 

switch costs reflect an aspect of executive control processing, with some 

suggesting that task-switch costs in response time (RT) reflect the duration of 

an executive control process [20]; [23]; [28]. The present switching task is 

based on that of a previous study [1] in which a simple single digit is 

presented to participants who have to classify this as higher or lower than 5 or 

odd/even depending on secondary cues. This was conducted using a task-

cueing paradigm [20] in which participants are cued to which task to perform 

on each trial. The task cueing approach was developed as an alternative to 

predict sequence task switching (i.e. AABBAABB). There is some evidence 
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that using random trial orders as in the task-cueing paradigm can result in 

greater switch costs than using predictable runs [24]. 

In the current task, participants were presented with single digit 

numbers (1, 2, 3, 4, 6, 7, 8, 9) which occupied .70 of visual angle on the 

screen. On some trials participants indicated whether the number was odd or 

even, whereas on other trials they indicated whether the number was greater 

or less than 5. A response box was used to collect responses, which 

consisted of five buttons, numerically labelled one through to five. Participants 

were asked to press the ‘one’ key on the response box if the number was odd, 

and the ‘five’ key if the number was even. In the ‘high vs. low’ task they 

pressed the ‘one’ key if the number was less than 5, and the ‘five’ key if the 

number was greater than 5. For each trial, the task could either remain the 

same as the one just completed, or randomly switch to the alternative task. A 

priming screen was presented for 500ms, before the presentation of the 

numbers, which indicated how participants should respond (odd/even or 

high/low). Target stimuli were presented to participants until response. A total 

of 200 trials were presented, with a total duration of approximately 6 minutes. 

The outcome variables for this task were reaction time and accuracy. 

Divided attention task: Divided attention is the ability to process more 

than one source of information simultaneously [38]. The divided attention task 

used in the current experiment was based on one previously used in a study 

of the effects of alcohol on divided attention [21]; [25]. Participants were 

presented with a display consisting of a central number and two lines which 

could be either horizontal or vertical in orientation. They were then presented 

with 400 displays, each display being presented for 1 second. The central 
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number occupied .7o of visual angle and the lines were presented 14.20 from 

the centre. For the numbers task participants’ responded with a single key 

press when three consecutive odd or even digits were presented. The other 

task involved responding with the same key used for the numbers task when 

the two lines were presented in different orientations. Participants were asked 

to respond with the same response when either a number target was 

presented or when a line target was presented. There were 8 numbers and 8 

lines targets per 80 displays, and numbers and lines target were never both 

presented on the same trial. The task lasted approximately 7 minutes. The 

outcome variable was accuracy. 

Pain manipulation 

Pain stimulation was achieved through the use of a Medoc PATHWAY 

- Advanced Thermal Stimulator (ATS). This has been designed for use in 

clinical and research settings, and induces pain through a metal plate, which 

is placed on the skin. The temperature of the plate increases or decreases, 

and is delivered and controlled through specialist hardware and software, 

designed for experimental purposes. 

Individual pain thresholds were generated using a search protocol. A 

30mm x 30mm thermode was attached to the participant’s right ankle. The 

thermode started from a baseline temperature of 320C and participants 

altered the temperature using two buttons, one to increase the temperature 

and one to decrease the temperature. Participants were asked to increase the 

temperature to a level which was ‘just painful’. This was then monitored for 15 

seconds and participants were asked again if this was ‘just painful’, if the 

participant reported that this level was still correct this was taken to be the 
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participant’s threshold, if not then participants were asked to adjust the 

temperature and this check was performed again. 

Once an individual thermal pain stimulation level was identified this 

was used to design a protocol for use during the experimental tasks, again 

using the PATHWAY ATS. Two heat conditions were used in the present 

study. The first of these was a baseline condition in which no additional 

stimulation was delivered to participants. In the second, the pain condition, the 

temperature increased at a rate of 80C/second to 10C above participants set 

pain threshold (up to a maximum of 480C, all participants with thresholds 

higher than this were tested with a temperature of 480C) this then oscillated 

between 10C above and 10C below the participant’s pain threshold at 

80C/second for 10 oscillations before returning to the baseline temperature 

(320C) at a rate of 80C/second. This procedure was repeated on a continuous 

cycle throughout each task. This resulted in a series of painful episodes 

punctuated by short period of non-pain. Therefore, this pain cycle was present 

throughout each of the cognitive tasks. This procedure was used to ensure 

that participants did not habituate to the painful stimulus. 

Threat manipulation 

Participants were also randomly assigned to either a threat or a control 

condition. The threat manipulation protocol was achieved through the use of 

different verbal instructions, and closely followed the threat induction 

procedures used by Van Damme at al. [34] McGowan et al. [19], and 

Karsdorp et al. [14]. Participants were given standard instructions about the 

heat pain induction protocol. This indicated that the heat protocol was a 

common and safe method of conducting pain research and that they would 
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experience a painful sensation “a little like passing their hand over a candle”. 

Both groups were informed that whilst most people respond to this with slight 

reddening of the skin, in some rare cases this could result in a burn. Those 

allocated to the threat condition were told that they would be participating in a 

‘vaso-contraction task’, and reiterated the point that that excessive heat 

exposure can result in blisters and burns. Participants were then told that it 

would be necessary to check their skin resistance (via the thermode) to 

ensure it was safe for them to continue into the study (this check was a foil). 

Following Van Damme at al. they were informed that their ‘skin resistance is 

rather low but just within the limits to allow you to take part in the vaso­

contraction task’. Participants in the threat condition were told between each 

cognitive task that they would have to move the location of the thermode as 

their resistance was very close to threshold to reaffirm the threat throughout 

the study. Participants in the control condition were also given standard 

instructions about the heat pain induction protocol (that it was a common and 

safe method of conducting pain research and that they would experience a 

painful sensation). Those in the control condition were just asked to move the 

thermode after each task. 

All participants were reminded that they were free to withdraw at any 

time for any reason without any consequences. 

Visual Analogue Scales (VAS) 

To examine the effect of the threat manipulation participants were also 

asked to complete a number of 100mm Visual Analogue Scales (VAS). 

Participant anxiety was examined at six time points during the experiment. 

Two time points were during the non-pain trials; these were before and after 
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completing the cognitive tasks. During the pain trials participants were asked 

to complete the VAS four times: these were (1) before determination of pain 

threshold (baseline), (2) after the threat manipulation (or control), (3) after the 

cognitive tasks and (4) after debriefing. At each time point participants were 

asked ‘How anxious do you feel right now?’. 

In addition to the six VAS measuring anxiety during the experiment, 

participants were asked to complete three additional 100mm VAS on a single 

occasion after the pain trials. Participants were asked (1) How much pain did 

you feel during the task? (2) How much distress did the pain you felt cause 

you? (3) How aware of the pain were you during the tasks? 

Finally, participants in the threat condition were also asked to indicate 

on a 0-10 scale how much they believed the information they were given 

about the threat (0 = not believed at all; 10 = completely believed the 

instructions). 

Procedure 

Ethical committees approval was granted. Each participant consented 

to undergo the procedure. Each individual pain thresholds was then 

calculated, and task instructions provided. Participants completed a short 

practice run to familiarise themselves with the task, before completing two 

experimental versions of the task: once without any heat stimulation, and 

once with a painful heat stimulus. The order of the experimental tasks was 

fully counterbalanced. Participants were instructed to complete the various 

VAS measures at the time points indicated above. 

Analysis 
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The first stage of the analysis was to examine the effectiveness of the 

threat manipulation. To examine the direct effect of the threat manipulation on 

participants current anxiety, data from the current anxiety VAS were entered 

into a 2 (threat condition; threat vs. control) x 3 (anxiety time point; before 

threat manipulation vs. after threat manipulation (or control instructions) vs. 

post cognitive task) mixed-groups ANOVA. Then to examine for any 

differences between the threat and non-threat groups independent samples t-

tests were used to examine for differences between VAS scores for pain 

intensity, pain related distress and pain awareness. 

To investigate the effects of pain and threat on each of the three 

cognitive tasks, data for each of the tasks were entered into a series of mixed 

groups ANOVAs. Each of these included pain as a within subjects factor and 

threat as a between subjects factor. For the attentional switching and divided 

attention tasks additional task specific variables were added. The dependent 

variables for each of the tasks were different due to the different demands of 

each task. For the n-back task the dependent variables were the number of 

correctly identified occasions on which a two back target was identified. A 

second dependent variable was the number of false alarms when participants 

reported that there was a two back trial when there was not. For the 

attentional switching task both accuracy and reaction time were selected as 

dependent variables. Both of these are commonly used to examine the effects 

of attentional switching. For the divided attention task, accuracy for the 

identification of the number and lines tasks was used as a dependent 

variable. Where significant interactions were observed these were broken 
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down using simple main effects analysis with a Sidak correction. Throughout 

the research alpha was held at .05. 

Results 

Threat manipulation 

Means and standard deviations for all anxiety measures are 

presented in Table 1. To examine the effectiveness of the threat manipulation, 

anxiety data were entered into a 2 (threat condition; threat vs. control) x 3 

(anxiety time point; before threat manipulation vs. after threat manipulation (or 

control instructions) vs. post cognitive task) mixed-groups ANOVA. This 

revealed no significant difference in anxiety amongst those in the threat 

condition and the control condition F(1,48)=.314, p=.578. There was also no 

significant interaction between threat condition and anxiety F(2,96)=.375, 

p=.688. There was however a significant main effect of time point 

F(2,96)=6.788, p=.002. This was broken down using a simple main effects 

analysis with a Sidak correction. This revealed that participants reported 

significantly less anxiety (mean = 18.00) post task compared to both time 

points before the task (mean = 27.30, 24.56) (p<.05). There was, however, no 

difference between participant anxiety before and after the manipulation 

(p=.574). 

[Table 1 here] 

Means and standard deviations for all distress and pain measures are 

presented in Table 2. Additionally, independent t-tests were used to examine 

differences between the threat and non-threat conditions for measures of pain 

intensity, pain related distress and pain awareness. These revealed no 

significant differences between the two threat groups on any of the measures, 
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pain during the task t(48)=.281, p=.780, pain related distress t(48)=.997, 

p=.324, awareness of pain t(48)=.860, p=.394. This suggests that the threat 

manipulation did not significantly change participants’ subjective responses to 

the task. 

[Table 2 here] 

Participants in the threat condition were also asked to rate on a 10 

point scale how believable they found the information given to them. The 

mean rating was 8.36 with only one participant rating below 5. We judge that 

our manipulation was believed by the participants in this study. This suggests 

that although the threat manipulation does not appear to have resulted in a 

significant increase in anxiety levels compared to before the manipulation or 

the control group it does appear that the manipulation was successful. 

Data screening 

All cognitive data were subjected to screening for parametric 

assumptions of GLM analyses. Outliers were found in each of the three 

experiments. Where violations were observed data corrections were applied. 

Participants were removed from the relevant task, and no participant had 

outlying data for more than one experiment. Means and standard deviations 

for all cognitive tasks are presented in Table 3. 

[Table 3 here] 

Cognitive tasks 

n-Back task 

To investigate whether pain affected 2-back task performance 

number of hits (correctly identified times when the current letter matched that 

two letters ago) were entered into a 2 (between; threat condition vs. control 
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condition) x 2 (within; pain condition vs. control condition) mixed-groups 

ANOVA. There was no significant main effect of threat condition F(1,47)=2.22, 

p=.143. There was however a significant main effect of pain condition 

F(1,47)=6.82, p=.012, consistent with participants producing fewer hits in the 

pain condition (mean = 22.31) than in the baseline condition (mean = 23.97). 

There was no significant interaction between pain condition and threat 

condition F(1,47)=.528, p=.471. The same pattern was observed for misses 

(given that misses are just the maximum n – hits). 

For false alarms (times that participants indicated that the current 

letter was the same as two letters ago when this was not the case) there were 

no significant main effects of either threat condition F(1,44)=.325, p=.572 or 

pain condition F(1,44)=.930, p=.340, and no significant interaction between 

these variables F(1,44)=.043, p=.837. For correct rejections (when 

participants indicated that the current letter was not the same as two letters 

ago and this was the case) there were no significant main effects of either 

threat condition F(1,44)=.005, p=.942 or pain condition F(1,44)=.266, p=.608, 

and no significant interaction between these variables F(1,44)=1.262, p=.267. 

Together this suggests that although pain negatively impacts upon 

attention span, it does not result in participants reporting more false alarms. 

Additionally this effect does not appear to be moderated by threat. 

Attentional switching 

To investigate whether pain affected attentional switching, data were 

entered into a 2 (between; threat condition vs. control condition) X 2 (within; 

switching condition vs. repeat condition) X 2 (within; pain condition vs. non-

pain condition) mixed-groups ANOVA. For reaction times this revealed a 

http:F(1,47)=2.22
http:F(1,47)=6.82
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significant main effect of switching condition F(1,46)=67.69, p<.001, 

consistent with participants responding faster to repeat trials (mean = 721.52 

ms) than to switch trials (mean = 824.76 ms). There were however no 

significant main effects of either pain condition F(1,46)=.372, p=.545 or threat 

condition F(1,46)=.216, p=.644. There were also no significant interactions; all 

F<1, all p>.5. 

The same analysis as above was run using accuracy data. Although 

accuracy was high, a ceiling effect is unlikely because fewer than 7% of data 

points resulted in 100% performance. Here there was a significant main effect 

of pain condition F(1,46)=14.87, p<.001; consistent with participants 

performing less accurately when in the pain compared to when in the non-

pain condition. There was also a significant main effect of switch condition 

F(1,46)=42.70, p<.001, consistent with more accurate responding on repeat 

trials (Mean = .94) than switch trials (Mean = .91). There was however no 

significant main effect of threat condition F(1,46)=.168, p=.684. There was 

also a significant interaction between switch condition and pain condition, 

F(1,46)=5.695, p=.021, see Figure 1. To examine this in more detail 

composite switch cost scores were calculated (repeat trials – switch trials). 

These data were then entered into a repeated measures t-test, which 

revealed that switch costs were significantly greater in the pain condition 

(mean = .037) than in the baseline condition (mean =.020); t(49)=2.068, 

p=.044. All other interactions were non-significant, all F<2, all p>.1. 

This suggests that pain adversely effects participants’ ability to switch 

between two tasks. This effect does not however appear to be modified by the 

threat manipulation. 

http:F(1,46)=67.69
http:F(1,46)=14.87
http:F(1,46)=42.70
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Divided attention 

To investigate whether pain or threat affected divided attention 

performance a 2 (between; threat condition vs. control condition) X 2 (within; 

numbers task vs. lines task) X 2 (within; pain condition vs. non-pain condition) 

mixed design ANOVA was conducted. This revealed a significant main effect 

of divided attention task F(1,48)=18.471, p<.001; participants performed more 

accurately on the lines task (Mean = .69; identifying when the two peripheral 

lines did not match) than the numbers task (Mean = .57; identifying three 

consecutive odd or even numbers). There were no significant main effects of 

either threat F(1,48)=1.687, p=.200 or pain condition F(1,48)=.864, p=.357. 

There was, however, a significant interaction between threat condition and 

divided attention task F(1,48)=4.867, p=.032. This interaction was broken 

down using a simple main effects analysis with a Sidak correction (see Figure 

2). This suggested that for the threat condition the lines tasks was performed 

more accurately than the numbers task (p=.035), however this difference was 

not significant in the non-threat condition (p=.146). Additionally, the numbers 

task was performed significantly less accurately in the threat condition than 

the non-threat condition (p=.025). However, on the lines task there were no 

significant differences between the threat and non-threat conditions (p=.511). 

This suggests that the threat manipulation caused participants to be less able 

to focus on the numbers task. All other interactions were non-significant, all 

F<2 all p>.2. 

Discussion 

Overall, the current study confirmed that pain appears to cause an 

interference effect on complex attentional tasks. This is consistent with a 
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number of studies using similar task paradigms [4; 7; 8; 25], and supports the 

view that attentional interruption by pain operates for tasks with an executive 

component. Pain caused impaired performance for the n-back task, and 

resulted in larger switching costs on the attentional switching task. Pain did 

not, however, affect performance on the divided attention task. Therefore this 

finding partially replicates our previous results [25]. 

There are a number of possible reasons for failing to find a pain 

interference effect on divided attention. The first is that pain simply does not 

reliably affect divided attention. However, we judge this as an unlikely 

explanation not only because we found robust effects in our previous study, 

but also because it makes theoretical sense, as divided attention can be seen 

to be conceptually linked to executive functioning. An alternative reason could 

be due to differences in protocols between the studies. First, the pain model 

used in the previous study relied on infrequent (2-10 seconds apart) pain 

stimuli of 1 and 3 seconds at pain threshold. The current study used a more 

frequent and regular pain sensation 10C above pain threshold. The less novel, 

yet more frequent, sensation used here may have reduced the salience of the 

pain stimuli, and so resulted in less interference (i.e., a form of habituation). A 

second difference was that the tasks used in the current study were presented 

as a battery, rather than on their own, as in our previous study. This might 

have affected performance for a number of reasons. First, participants 

completed more tasks both in absolute terms and a greater variety of tasks; 

this may have introduced fatigue which would affect performance on later 

tasks. Additionally by using a battery of tasks potential order effects might 

have been introduced. However, given that the current study replicated pain 
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interference effects in the n-back and attention switching tasks, these 

explanations are not entirely satisfactory. Indeed, that we replicated pain 

interference effects in two of our three tasks within a battery format could be 

viewed as a positive outcome; it suggests that our tasks show a degree of 

consistency and can be utilised as a battery of attentional interference. 

The primary goal of the current study was to consider whether pain 

interference would be more affected under conditions of high threat. 

Somewhat surprisingly the current findings suggest that threat (as instantiated 

in this experiment) does not significantly add to the impaired performance 

effects caused by pain. This is unexpected because previous research has 

found that attentional distraction was less successful in conditions in which 

pain is perceived as highly threatening [5]; [30]; [31]. 

One reason for this discrepancy could be linked to task complexity. For 

example, the distraction tasks are relatively simple to perform [34]; [36], and 

so it is also possible that although threat is able to add to the interruptive 

effect of pain on simple tasks, that the effect of pain on more complex tasks is 

less sensitive to top-down considerations such as threat. An additional 

limitation could be linked to the different indicators of interruption. For 

example, both speed and accuracy were used as outcomes, although not 

consistently across the tasks. The reason for this was because the different 

tasks have been created separately, and though to reflect different processes. 

It is possible, however, that these different indicators of interruption may 

reflect either different strategies or may reflect underlying features of 

attentional performance. 
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An alternative explanation could be that the threat manipulation was 

not effective. Indeed, examination of self-report measures indicated that those 

in the threat condition did not show any greater anxiety or distress related to 

the task. Therefore, we cannot be sure that the threat manipulation caused a 

significant increase in participants’ perceived threat. Although the 

manipulation used here did not result in a significant increase in anxiety 

participants reported that this was believable. Furthermore others have 

reported success using similar methods. The threat manipulation in the 

current study was adapted from McGowan et al. [19] who warned participants 

about the effects of exposure to prolonged cold (i.e. frostbite) and Van 

Damme at al. [34] who told participants that their blood pressure was only just 

within the limits to allow them to participate. A recent study by Karsdorp et al. 

[14] also used a similar threat manipulation, within the context of a finger 

pressing task; they provided fear-inducing information associated with 

repetitive movements, as well as false feedback about participants muscle 

EMG levels i.e., that EMG levels were high, but just within acceptable limits. 

Collectively these approaches are designed to partially remove the safety 

signal inherent in laboratory techniques. There are alternative methods for 

inducing threat both in pain and other anxiety related conditions (e.g., general 

anxiety). For example Van Damme et al. [32] conditioned innocuous stimuli to 

be associated with a painful electrocutaneous stimulus. Outside of pain threat 

has been induced in a number of ways including social threat (participants 

told they will be giving a presentation) [39] or general anxiety states (by 

reading a series of anxiety related statements) [40]. All of these approaches 

have been shown to induce a mild threat which lasts for a short duration with 
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participants showing no lasting effects of the manipulation. Future research 

should consider alternative methods for threat induction to examine these 

effects. 

There are interesting directions for future research. Replication and 

extension studies are necessary. The pain induction method used here 

involved a thermal stimulus and this did not show an interaction with the threat 

manipulation. Future research could determine whether similar disruptive 

effects would be found using alternative pain models e.g., chemical or 

electrocutaneous. This would allow us to determine whether such effects 

generalise across pain types. Given the context of threatening stimuli this 

might be of particular interest using electrocutaneous pain because previous 

studies have used this to condition pain related fear [27; 32; 33] and 

participants may find this more threatening. In addition to the generalizability 

of the pain stimulus it is also important to consider the generalizability of the 

threat. The threat manipulation used in the current study was specific to the 

pain used and therefore may not fully represent the real-world threat of pain. 

We do however judge that there are some aspects of this manipulation which 

reflect real-world pain; the manipulation represented a fear of damage and 

extension of the pain beyond a known time period. It may also be of interest to 

further examine the role of perceived threat relating to pain stimuli in 

attentional interruption. For example, the effects of pain on attention in 

participants who have a pre-existing tendency to perceive pain as threatening 

(i.e., high pain catastrophizers) could be examined. 

The current study examined the effects of pain in a battery of 

attentional tasks. It would therefore be of interest in future studies to examine 
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the robustness of these tasks as a battery. We could examine whether 

participants who show interference effects on one task also show similar 

effects on the other tasks in the battery. This would allow us to examine 

subtypes of people in terms of attentional interruption and predictors of these 

subtypes. 

There are other potential influences on the interruptive effect of pain 

on attention. For example Verhoeven et al. [36] showed that when participants 

are given financial motivation to distract themselves from pain that this 

distraction is more effective than when no motivation is given. It is therefore 

possible that if participants were similarly motivated that attentional 

interruption would be reduced. In addition, increasing the cognitive load 

associated with the cognitive task has also been shown to be more effective 

in reducing pain sensations than lower cognitive load tasks [37]. Therefore 

increasing the cognitive load of the tasks may alter how much interruption is 

achieved by pain. 

In conclusion, pain interrupts performance on the n-back and 

attentional switching, but not divided attention. This partially supports previous 

findings that performance of complex attentional tasks is impaired by 

experimental pain. Additionally threat did not appear to increase the extent of 

this attentional interruption. This however could be explained by evidence that 

the threat manipulation may not have been completely effective. 

Experimentally inducing a truly threatening pain stimulus is, however, 

methodologically and ethically challenging. Further research is needed to 

examine what individual differences factors may alter these relationships. 
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Table 1: Means and SD for anxiety measures taken during the experiment 

Anxiety during pain trials Anxiety during non-pain trials 

Pre test Post manipulation Post test Post debrief Pre test Post test 

Threat 

Non-threat 

25.80 (23.37) 

28.8 (22.19) 

21.8 (23.24) 

27.32 (22.79) 

17.48 (24.62) 

18.52 (19.88) 

9.84 (17.76) 

13.00 (15.62) 

13.80 (20.94) 

21.60 (20.01) 

16.12 (20.95) 

21.64 (23.97) 
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Table 2: Means and SD for affective measures take after cognitive testing 

Pain during cognitive tasks Pain related distress Awareness of pain stimuli 

Threat 37.56 (14.01) 25.28 (22.52) 56.04 (20.09) 

Non-threat 28.72 (15.14) 19.52 (18.07) 50.64 (24.14) 
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Table 3: Means and standard deviations for target variables for measures of cognitive functioning under threat and non-threat 

conditions. 

Task Threat Non-threat 

Two-back Hit 
Miss 
Correct rejection 
False Alarm 

No pain 
23.63 (2.50) 
6.38 (2.5) 
54.74 (7.17) 
4.26 (5.84) 

Pain 
21.5 (3.59) 
8.5 (3.59) 
55.61 (4.53) 
3.52 (3.85) 

No pain 
24.32 (4.34) 
5.68 (4.34) 
56.22 (4.75) 
4.91 (6.40) 

Pain 
23.12 (3.35) 
6.88 (3.35) 
53.87 (12.13) 
4.43 (3.89) 

Switch Repeat (RT) 
Switch (RT) 
Repeat (accuracy) 
Switch (accuracy) 

716.56 (169.98) 
832.20 (206.77) 
.95 (.05) 
.93 (.05) 

697.75 (150.97) 
797.94 (205.74) 
.93 (.06) 
.88 (.08) 

738.92 (199.79) 
837.38 (274.75) 
.95 (.04) 
.92 (.05) 

732.96 (192.13) 
831.51 (244.96) 
.94 (.06) 
.90 (.08) 

Divided attention task Number task (accuracy) 
Lines task (accuracy) 

.54 (.15) 

.72 (.19) 
.49 (.15) 
.71 (.18) 

.63 (.19) 

.68 (.20) 
.60 (.47) 
.68 (.22) 
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Fig 1 The interaction between switching condition and pain condition for 
accuracy scores 

Fig 2: The interaction between divided attention condition and threat condition 
for accuracy scores 



32 

Fig 1
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Fig 2: 
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