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Abstract 

Two agents must select one of three alternatives. Their ordinal rankings are commonly 

known and diametrically opposed. Efficiency requires choosing the alternative the agents 

rank second whenever the weighted sum of their von Neumann Morgenstern utilities is 

higher than under either agent’s favorite alternative. The agents’ utilities of the middle-

ranked alternative are i.i.d., privately observed random variables. In our setup, which is 

closely related to a public goods problem where agents face liquidity constraints but no 

participation constraints, decision rules that truthfully elicit utilities and implement efficient 

decisions do not exist. We provide analytical and numerical results on second-best rules. 

Keywords : Arbitration; Compromise; Mechanism design without transferrable utility. 

JEL classification: C72; D70; D80. 
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1. Introduction


You and your partner disagree about which restaurant to go to. You prefer the Italian 

restaurant over the English restaurant, and the English restaurant over the Chinese restau­

rant. But your partner has exactly the opposite preferences. Should you compromise by 

going to the English restaurant, or should you go to a restaurant that one of you likes best? 

The answer to this question presumably depends on how strongly each partner prefers his 

favorite restaurant over the compromise, and how strongly he prefers the compromise over 

the bottom ranked alternative. Is there a way of finding out the partners’ strengths of 

preference, or will they, for example, necessarily pretend to have a lower valuation of the 

compromise than they really have? This is the question which this paper addresses. 

We need to say first what we mean by “strength of preference.” One interpretation could 

be that the strength of preference is equal to the amount of money that an agent is willing 

to pay in order to obtain one outcome rather than another. If this were what we have in 

mind, then one could try to elicit the strength of the partners’ preferences by introducing a 

mechanism that obliges any partner whose favorite restaurant is chosen to pay compensation 

to the other. 

Here, we want to abstract from such side payments because they seem inappropriate in 

many situations. Spouses, for example, rarely pay money to each other to resolve conflicts. 

Another context in which money payments are uncommon is voting. Voting rules might try 

to elicit, in some sense, the “strength of preference” for candidates, yet voters are typically 

not asked to offer payments together with their votes. The problem that we study here is a 

simplified version of the problem of designing voting rules that elicit strengths of preferences 

without side payments. 

If side payments are ruled out, what do we mean by “strength of preference,” and how 

can we elicit them? We mean in this paper by “strength of preference” the von Neumann 

Morgenstern utility of alternatives. If we evaluate different mechanisms from an ex ante 

or an interim perspective (Holmström and Myerson [10]), then von Neumann Morgenstern 

utilities have to be taken into account when resolving conflicts. How can we elicit von 

Neumann Morgenstern utilities truthfully? By exposing agents to risk. Agents’ choices 
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among lotteries indicate their von Neumann Morgenstern utilities. If agents play a game 

with incomplete information, then they are almost always automatically exposed to risk. 

Their choices can then reveal their utilities. 

We develop this theme in a simple stylized example with two agents and three alterna­

tives. We assume that it is commonly known that the agents’ rankings of the alternatives 

are diametrically opposed. Their von Neumann Morgenstern utilities for the alternatives 

are, however, not known. Decision rules are evaluated using the ex ante Pareto criterion. 

This is equivalent to maximizing a weighted sum of ex ante expected utilities. Not taking 

into account incentive compatibility of truthful reporting of types, a rule is efficient if and 

only if it picks for every realization of von Neumann Morgenstern utilities an alternative 

that maximizes the weighted sum of the two agents’ utilities. 

For such a first-best decision rule to be implementable when von Neumann Morgenstern 

utilities are privately observed, the rule needs to be incentive compatible. Our first main 

result is that no first-best decision rule is incentive compatible if the distribution of von Neu­

mann Morgenstern utilities has a density with full support. We complement this observation 

with a study of second-best decision rules, that is, decision rules that are efficient among 

all incentive compatible rules. We explain that the structure of the second-best problem in 

our context is different from that in other, more familiar settings, and that a full analytical 

solution to the second-best problem appears difficult. We then report a mixture of partial 

analytical, and more complete numerical results about second-best decision rules. Our re­

sults indicate that the shape of second-best rules is different from the shape of second-best 

rules in more familiar settings, and that the amount of inefficiency that second-best rules 

imply is surprisingly small. 

One motivation for our paper is that mechanisms for efficient compromising are poten­

tially relevant to many areas of conflict, such as labor relations or international negotiations. 

A second motivation was already mentioned above: we are interested in the application of 

the theory of Bayesian mechanism design to voting. The current study is a first and limited 

step in that direction. Traditionally, the literature on voting has either studied strategic 

behavior under specific voting rules, or the design of voting rules using solution concepts 
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that rely on weak informational assumptions, such as dominant strategies (Gibbard [7], Sat­

terthwaite [18], Dutta, Peters and Sen [6]), or undominated strategies (Börgers [2]). Our 

purpose here is to explore the theory of voting with stronger informational assumptions, 

which are, however, frequently made in other areas of incentive theory. A third motivation 

for this paper is that it is a case study in Bayesian mechanism design without transferrable 

utility. Much of the literature on Bayesian mechanism design has relied on the assumption 

of transferrable utility. It seems worthwhile to explore what happens if this assumption is 

relaxed. 

It turns out that the setting that we study, although formally without transferrable utility, 

is closely related to models of mechanism design for public goods with transferrable utility as 

studied by d’Aspremont and Gérard-Varet [5], Güth and Hellwig [8], Rob [17], and Mailath 

and Postlewaite [14]. These papers all consider settings in which there are two goods, a 

public good, and “money.” Agents’ preferences are assumed to be additive in the quantity of 

the public good that is provided and “money.” In our setting there is no “money.” However, 

for each agent the probability with which their most preferred alternative is chosen serves 

in some sense as “money.” The public good is the probability with which the compromise 

is implemented. Agents “pay” for an increased probability of the compromise by giving up 

probability of their most preferred alternative. Agents’ preferences are additive in the “real 

good” and “money” because they are von Neumann Morgenstern preferences over lotteries, 

which are additive in probabilities. 

The details of the analogy between our work and the literature on mechanism design for 

public goods will be explained later. Two points deserve emphasis. Firstly, an important 

difference between our work and the established public goods literature is that agents, in 

our model, face a liquidity constraint, which is absent from traditional models. The liquidity 

constraint arises from boundaries on the amount of probability which agents can surrender: 

for instance, it cannot be larger than one. 

The second difference is that our model does not feature individual rationality constraints. 

Most, though not all, of the previous literature on public goods has postulated an individual 

rationality constraint (see the discussion in Hellwig [9]). Although in our setting there is 
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no “outside option” which would guarantee agents a minimum utility, a lower boundary for 

agents’ expected utility nevertheless easily follows from the facts that there is only a finite 

number of allocation decisions, and that there is an upper boundary for the “payments” 

which agents can make. Thus the liquidity constraint has a similar effect as an individual 

rationality constraint. 

In the light of the above discussions, it becomes intuitively plausible that it is not possible 

to implement the first-best in our setting. Analogous results have been obtained for the 

public goods setting by Güth and Hellwig [8], Rob [17], and Mailath and Postlewaite [14]. 

The analysis of the second-best in our setting is more involved than in the established public-

goods literature because of the difficulty involved in taking account of the implicit liquidity 

constraint. Our results on second-best rules indicate that the amount of inefficiency implied 

by second-best rules in our set-up is much smaller than the inefficiency of second-best rules in 

the corresponding public goods set-up. The reason is that the liquidity constraints implicit 

in our model are less restrictive than the individual rationality constraints present in the 

public goods model. 

This paper is organized as follows. In Section 2 we introduce our model. Section 3 

explains the analogy between our setting and the public goods problem. In Section 4 we 

characterize incentive compatible decision rules. Section 5 proves the impossibility of im­

plementing first-best decision rules. Section 6 explores second-best in a special case: equal 

welfare weights and uniform type distribution. For this case we give a detailed presentation 

of numerical findings as well as some partial analytical results. In Section 7 we pursue the 

numerical approach in a more general context. Whereas the bulk of the paper is concerned 

with ex ante efficiency we briefly weaken the efficiency concept in Section 8 and consider 

interim efficiency. Section 9 concludes. 

2. The Model 

Two agents i = 1, 2 collectively choose one alternative from the set {A, B, C}. Agent 1


prefers A over B, and B over C. Agent 2 prefers C over B, and B over A. These preferences
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are common knowledge among the two agents. We refer to alternative B as the “compromise” 

because it is the middle-ranked alternative for each of the two agents. 

Each agent i has a von Neumann Morgenstern utility function ui : {A,B, C} → R. We 

normalize utilities so that u1(A) = u2(C) = 1 and u1(C) = u2(A) = 0. These features of the 

von Neumann Morgenstern utility functions are common knowledge among the two agents. 

For i = 1, 2 we write ti for ui(B). We refer to ti as player i’s type. We assume that ti is a 

random variable which is only observed by agent i. The two players’ types are stochastically 

independent, and they are identically distributed with cumulative distribution function G. 

We assume that G has support [0, 1], that it has a continuous derivative g, and that g(t) > 0 

for all t ∈ (0, 1). The joint distribution of (t1, t2) is common knowledge among the agents. 

Definition 1 A decision rule f is a function f : [0, 1]2 Δ({A, B, C}) where Δ({A, B, → 

C}) is the set of all probability distributions over {A, B, C}. 

We write fA(t1, t2) for the probability which f(t1, t2) assigns to alternative A, and we 

define fB (t1, t2) and fC (t1, t2) analogously. Given any decision rule f , we denote for every ti ∈ 

[0, 1] by pi(ti) the probability that agent i’s favorite alternative is implemented, conditional 

on agent i’s type being ti, i.e.: 

� 1 � 1 

p1(t1) = fA(t1, t2)g(t2)dt2 and p2(t2) = fC (t1, t2)g(t1)dt1. 
0 0 

We denote by qi(ti) the probability that the compromise is implemented, conditional on 

agent i’s type being ti, i.e. for i = 1, 2: 

� 1 

qi(ti) = fB(t1, t2)g(tj )dtj where j = i. 
0 

Finally, we denote by Ui(ti) agent i’s expected utility, conditional on being type ti, that is: 

Ui(ti) = pi(ti) + qi(ti)ti. 

We restrict attention to decision rules for which the integrals pi(ti) and qi(ti) exist for every 

i = 1, 2 and every ti ∈ [0, 1]. 
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We evaluate decision rules using a utilitarian welfare criterion. Welfare is defined as the 

weighted sum of the agents’ ex ante expected utilities. 

Definition 2 For any λ ∈ [0.5, 1) the λ-weighted ex ante welfare associated with decision 

rule f is: � 1 � 1 

λ U1(t1)g(t1)dt1 + (1 − λ) U2(t2)g(t2)dt2. 
0 0 

In this definition we focus without loss of generality on the case that agent 1’s weight λ 

is at least 0.5, and we rule out the trivial case in which λ = 1. 

As noted by Holmström and Myerson [10], the set of all decision rules maximizing λ­

weighted ex ante welfare for some λ is the same as the set of all ex ante efficient rules. As 

Holmström and Myerson suggest, we shall compare rules that are classically efficient, i.e. 

ex ante efficient among all feasible rules (“first-best”), and rules that are ex ante incentive 

efficient, i.e. ex ante efficient among all incentive compatible, feasible rules (“second-best”). 

While the focus of this paper is on ex ante efficiency, we shall briefly consider in Section 8 

interim efficiency. As Holmström and Myerson [10] point out, this is equivalent to allowing 

the welfare weight attached to each agent i to depend on that agent’s type ti. 

The expression in Definition 2 can equivalently be written as: 

� 1 � 1 

(λfA(t1, t2) + [λt1 + (1 − λ)t2] fB (t1, t2) + (1 − λ)fC (t1, t2))g(t1)g(t2)dt1dt2. 
0 0 

From this expression it is obvious which decision rules f maximize λ-weighted ex ante welfare 

among all decision rules. We call such decision rules λ-weighted first-best rules. 

Definition 3 A decision rule f is called λ-weighted first-best if with probability 1 we have: 

If λ = 0.5:• 

t1 + t2 > 1 fB (t1, t2) = 1 ⇒ 

t1 + t2 < 1 fB (t1, t2) = 0 ⇒ 

If λ > 0.5:• 

λt1 + (1 − λ)t2 > λ fB (t1, t2) = 1 ⇒ 

λt1 + (1 − λ)t2 < λ fA(t1, t2) = 1 ⇒ 
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If λ > 0.5 the first-best decision rule is uniquely determined except for a set of types of 

measure zero. By contrast, if λ = 0.5, there are many first-best decision rules, and these 

rules differ from each other on a set of types of positive probability measure. The reason is 

that, for λ = 0.5, Definition 3 does not restrict the probabilities with which alternatives A 

and C are chosen if the compromise is not implemented. 

Because types are privately observed, in practice one can only implement incentive com­

patible rules. 

Definition 4 A decision rule f is incentive compatible if for i = 1, 2 and for any types 

ti, t
�
i ∈ [0, 1]: 

pi(ti) + qi(ti)ti ≥ pi(t
�
i) + qi(t

�
i)ti. 

The purpose of this paper is to study the potential discrepancy between λ-weighted 

first-best rules and incentive compatible rules. For this purpose we focus on λ-weighted 

second-best rules. 

Definition 5 A decision rule f is called λ-weighted second-best if it maximizes λ-weighted 

ex ante welfare among all incentive compatible decision rules. 

We now discuss some features of our model. We begin with the modeling of the utility 

functions. Our model implies that for each interim preference ordering that a player might 

have there is a unique type of that player with these preferences. The main implicit restriction 

is that we rule out multiple types that have the same interim preferences, i.e. whose von 

Neumann Morgenstern utility functions differ only by an affine transformation. From the ex 

ante point of view, it could be important to keep types with identical interim preferences in 

the model, because welfare maximization might assign different allocations to these types. 

However, if two types have identical interim preferences, they will make the same choice, 

provided that the optimal choice is unique. An incentive compatible mechanism will not be 

able to assign different outcomes to these types.1 Therefore, not much is lost by assuming 

that for each interim preference ordering there is only one type that has this preference 

ordering. 
1For a more thorough discussion of this point, though in a different setting, see Hortala-Vallve [11, 

Proposition 1]. 
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The fact that for each agent the normalization of utilities is the same across different types 

is not restrictive. Differences in the normalization of utilities for different types would reflect 

that these types receive different weight in the decision maker’s ex ante expected utility 

maximization. These weight differences can equivalently be expressed by the probability 

distribution of types. 

The assumption that types are identically distributed for the two players can easily be 

relaxed. In fact, it is immediate that our theoretical analysis and results in Section 4 would 

remain unchanged. The numerical analysis would change, although the findings that we 

report in Sections 6 and 7 are robust in the sense that small changes to the distributions 

would not change the results by much. 

It is also potentially important that types are independently distributed. In mechanism 

design with transferrable utility, models with types that are not independent sometimes 

have incentive compatible rules that achieve first-best (e.g. Crémer and McLean [4]). The 

constructions used in this context in the literature do not immediately extend to a setting 

without transferrable utility. We have not yet explored relaxations of the independence 

assumption in our model. 

3. Analogy with the Public Goods Problem 

There is a close analogy between our model and models typically considered in the theory 

of Bayesian mechanism design for non-excludable public goods (d’Aspremont and Gérard-

Varet [5], Güth and Hellwig [8], Rob [17], Mailath and Postlewaite [14]). We can view the 

probability with which the compromise is chosen in our framework as the quantity of a 

public good without exclusion that is consumed by both agents. Each agent’s private type 

determines the agent’s valuation of the public good. Agents pay for the public good with a 

reduced probability of their favorite alternative. 

To make this analogy more precise let us define somewhat arbitrarily the outcome in 

which each of the two extreme alternatives A and C is chosen with probability 0.5 as the 

default outcome. For every agent i define mi(t1, t2) to be the difference between the default 

10




probability of this agent’s favorite alternative, and the probability with which the agent’s 

favorite alternative is chosen by a given decision rule if the types are (t1, t2): 

m1(t1, t2) ≡ 0.5 − fA(t1, t2) 

m2(t1, t2) ≡ 0.5 − fC (t1, t2) 

for all (t1, t2) ∈ [0, 1]2 . We can think of mi(t1, t2) as the payment made by agent i if types 

are (t1, t2). The probability of the compromise is then: 

fB (t1, t2) = m1(t1, t2) + m2(t1, t2) 

for all (t1, t2) ∈ [0, 1]2 . We can think of this probability as the quantity of a public good 

that is produced if types are (t1, t2). The above equation shows that the public good is 

produced with a one-to-one technology where the quantity produced equals the sum of 

agents’ payments. The quantity of the public good can obviously not be more than one, and 

we can model this by assuming that the marginal cost rise to infinity if the quantity exceeds 

one. 

Our model is then isomorphic to the traditional set-up for Bayesian mechanism design 

for non-excludable public goods, except that we have to respect a liquidity constraint: For 

every i ∈ {1, 2} and every (t1, t2) ∈ [0, 1]2 we must have: 

mi(t1, t2) ∈ [−0.5, +0.5]. 

Otherwise fA(t1, t2) or fC (t1, t2) would be larger than one or smaller than zero. This implicit 

ex post liquidity constraint of individual agents is a first feature that distinguishes, to our 

knowledge, our set-up from all public good models that have been studied in the literature. 

A second feature that distinguishes our set-up from the traditional public goods set-up is 

the absence of individual rationality constraints in our model. In the public goods context, 

and in other related contexts, one is often interested in characterizing all decision rules that 
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are incentive compatible and individually rational.2 But in the context of arbitration there 

is no natural role for individual rationality. 

The two differences between our context and the traditional set-up neutralize each other 

to some extent. Specifically, even though there is no individual rationality constraint, there 

is a lower boundary for the interim expected utility of the agents because there is only a 

finite number of alternatives, and agents cannot be asked to pay more than their budget 

allows. 

4. Incentive Compatibility 

In this section we translate standard characterizations of incentive compatible decision rules 

into our setting. Because the proofs of these results are familiar from the literature, we omit 

them. 

Lemma 1 A decision rule f is incentive compatible if and only if for i = 1, 2 we have: 

(i) qi is monotonically increasing in ti; 

(ii) for any two types ti, t�i ∈ [0, 1] with ti < t�i: 

−t�i(qi(t
�
i) − qi(ti)) ≤ pi(t

�
i) − pi(ti) ≤ −ti(qi(t

�
i) − qi(ti)). 

The first item in this Lemma states that the probability of the compromise, conditional 

on an agent’s type, increases as this agent’s utility of the compromise increases. Where is 

this probability taken from? The second item in Lemma 1 shows that some of the probability 

has to be taken from the probability assigned to the agent’s favorite alternative. It is intu­

itive that the probability of the most preferred alternative must decrease. If the additional 

probability for the compromise were only taken from the agent’s least preferred alternative, 

then the agent would have an incentive to report a higher utility for the compromise than he 

actually has. The agent has to pay for a higher probability of the compromise with a lower 

probability of his favorite alternative. 

2An exception is d’Aspremont and Gérard-Varet [5]. 
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The inequality in the second item in Lemma 1 provides a lower and an upper boundary 

for the change in the probability of the most preferred alternative. Both of these boundaries 

are negative. The boundaries are such that among two types the higher type prefers to pay 

the price and obtain a higher probability of the compromise, whereas the lower type prefers 

not to pay the price. 

The next lemma describes incentive compatibility in terms of properties of the interim 

expected utility.3 

Lemma 2 A decision rule f is incentive compatible if and only if for every agent i = 1, 2: 

(i) qi is monotonically increasing in ti; 

(ii) for every ti ∈ [0, 1] such that qi is continuous at ti: 

Ui
�(ti) = qi(ti). 

We can use the differential equation in the second item of Lemma 2 to obtain a formula 

that links the interim expected probabilities of each agent’s favorite alternative to the interim 

expected probabilities of the compromise. This is done in Lemma 3. To solve the differential 

equation, we have to take as given the value of the interim expected utility at some boundary 

point. We choose here the highest type, i.e. ti = 1, rather than, as is convention in the 

literature, the lowest type, ti = 0, because this turns out to be more useful in the proof of 

Proposition 2 below. Apart from this modification, the proof of Lemma 3 is again standard, 

and is therefore omitted. 

Lemma 3 A decision rule f is incentive compatible if and only if for every agent i = 1, 2: 

(i) qi is monotonically increasing in ti; 

� 1
(ii) pi(ti) = pi(1) + qi(1) − qi(ti)ti − qi(si)dsi for all ti ∈ [0, 1]. 

ti 

3See, for example, Section 5.1.1 of Krishna [13] for a proof of a similar result. 
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5. Impossibility of Implementing First-Best Rules


For asymmetric welfare weights the impossibility of implementing the first-best rule is ele­

mentary. In this case there is essentially one λ-weighted first-best decision rule. Moreover, 

this decision rule never implements the most preferred action of the agent who has the lower 

welfare weight. But, as Lemma 1 revealed, this probability is the main instrument by which 

an agent can be given incentives to reveal truthfully their type. 

Proposition 1 No λ-weighted first-best decision rule is incentive compatible for λ > 0.5. 

Proof: By Definition 3 the λ-weighted first-best decision rule implies q2(t2) = 1 − 

G 1 − 1−
λ
λ t2 and p2(t2) = 0 for all t2 ∈ [0, 1] if λ > 0.5. But this violates condition (ii) 

of Lemma 1. For any t2, t�2 with 0 < t2 < t�2 the left hand and the right hand sides of the 

inequality in condition (ii) of Lemma 1 are negative, but the expression in the center of that 

inequality is zero. 

Q.E.D. 

The case of symmetric welfare weights is more subtle. In this case, there are multiple λ­

weighted first-best decision rules, and the interim probability of each agent’s most preferred 

alternative may vary with that agent’s type. Thus, an instrument for providing incentives 

is available for each agent. Yet these instruments are never flexible enough to make the 

first-best decision rule incentive compatible. 

Proposition 2 No λ-weighted first-best decision rule is incentive compatible for λ = 0.5. 

We shall prove Proposition 2 by showing that, if λ = 0.5, any first-best decision rule that 

is incentive compatible has the property that the ex ante probability of the compromise, and 

the ex ante probabilities of alternatives A and C, as implied by incentive compatibility, add 

up to more than one. This then contradicts the definition of decision rules. 

If our set-up is interpreted as a public goods set-up, as indicated in Section 3, our 

result shows that the contributions which individuals are willing to make under incentive 

compatibility are not enough, from an ex ante point of view, to cover the total resources 

required to produce the first-best quantity of the public good. The same reasoning is also 
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behind the impossibility of implementing the first-best in standard models of incentives in 

public goods provision (for example: Güth and Hellwig [8]). However, as argued above, 

our set-up differs from the most common set-up in that we have no individual rationality 

constraint. If there is no individual rationality constraint in the public goods framework, 

then the first-best can be implemented (d’Aspremont and Gérard-Varet [5]). We obtain 

a different result because, as explained in Section 3, our agents face individual liquidity 

constraints. These liquidity constraints imply lower boundaries for the utility of each type, 

even if no individual rationality is required. 

Despite the differences between our model and the public goods model, the proof of 

Proposition 1 that we provide below parallels the modern approach to proving impossi­

bility results in the field of mechanism design. For example, it is analogous to Milgrom’s 

[15, p.79] version of the proof of the Myerson-Satterthwaite [16] impossibility theorem. We 

begin the proof by arguing that Lemma 3 implies that all incentive compatible first-best 

decision rules have the same ex ante probabilities for the three alternatives. We then con­

struct one particular incentive compatible first-best decision rule for our problem, namely a 

Vickrey-Clarke-Groves (VCG) mechanism. We show for this decision rule that the ex ante 

probabilities of the three alternatives add up to more than one. It then follows that the 

same has to be true for all incentive compatible decision rules. 

An important difference between the structure of our proof and similar proofs of ear­

lier impossibility results in Bayesian mechanism design is that in earlier proofs individual 

rationality is used to select the mechanism on which to focus among all conceivable VCG-

mechanisms. In our proof, the VCG-mechanism on which we focus is determined by the 

condition that the highest type, ti = 1, has to expect the compromise with probability 1, 

and all other alternatives with probability zero. Thus, we use efficiency, and this agent’s 

“liquidity constraint” to select the appropriate VCG-mechanism. 

Proof: The proof is indirect. Suppose there were a first-best decision rule that is incen­

tive compatible. Then qi(ti) = 1 − G(1 − ti) for i ∈ {1, 2} and almost all ti ∈ [0, 1]. We want 

to use Lemma 3 to infer the functions pi. For this we need to know pi(1) + qi(1). Because 

qi(ti) = 1 − G(1 − ti) holds only for almost all ti ∈ [0, 1], we cannot assume that it holds 
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for ti = 1. However, interim expected utility Ui is continuous because, by Lemma 3, it is an 

integral. For almost all types interim expected utility is at least qi(ti)ti = (1 − G(1 − ti))ti. 

By continuity, therefore, the expected utility of type ti = 1 has to be equal to 1. 

We can now apply Lemma 3. Because sets of measure zero do not affect the value of the � 1
integral, we can deduce pi(ti) = 1 − (1 − G(ti))ti − (1 − G(si))dsi for all ti ∈ [0, 1]. This 

ti � 1
implies that the value of 

0 pi(ti)g(ti)dti is the same for all first-best, incentive compatible 

decision rules. 

The idea of the proof is now to show that the interim probabilities implied by first-best 

and incentive compatibility add up to more than one. We show this by considering the 

following decision rule, where we ignore for the moment that the components of this rule do 

not add up to one for every type vector. The function fB is the first-best rule of Definition 

3, first bullet point. The functions fA and fC are defined as follows. 

fA(t1, t2) = (1 − fB(t1, t2))(1 − t2) for all (t1, t2) ∈ [0, 1]2; 

fC (t1, t2) = (1 − fB(t1, t2))(1 − t1) for all (t1, t2) ∈ [0, 1]2 . 

We assume that players evaluate outcomes under this rule by the expected utility calculation 

shown in Section 2, ignoring the fact that the components of the decision rule do not always 

add up to one. 

This rule is incentive compatible. This follows from the fact that it is a weakly dominant 

strategy for each player to report his true type. To see that truth telling is weakly dominant, 

consider, say, player 1, and assume that player 1’s true type is t1. Suppose player 2’s reported 

type is t2. Assume first that t2 is such that t1 + t2 > 1. If player 1 reports his true type, 

he receives utility t1. If he reports a type τ1 such that τ1 + t2 < 1, then player 1’s utility 

becomes under the above rule: 1 − t2. Player 1 will prefer to report his true type because 

t1 > 1 − t2 ⇔ t1 + t2 > 1, by assumption. Now suppose alternatively that player 2’s reported 

type is some t2 such that t1 + t2 ≤ 1. Then, if player 1 reports his true type, he gets: 1 − t2. 

If, alternatively, he pretends to have a type τ1 such that τ1 + t2 > 1, then he receives utility 

t1. Player 1 prefers to report his true type because 1 − t2 ≥ t1 ⇔ t1 + t2 ≤ 1, by assumption. 
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The interim expected values of fA and fC implied by the above decision rule have to 

satisfy condition (ii) of Lemma 3. This is because the fact that the values of fA, fB and fC 

add up to 1 for all type vectors plays no role in the proof of Lemma 3. Therefore, the values 

of pi(ti) for i ∈ {1, 2} and ti ∈ [0, 1] that are implied by the above decision rule must be the 

same as the ones associated with any first-best, incentive compatible decision rule. 

We complete the proof by showing that for the above decision rule the sum of the expected 

values of qi(ti) (for arbitrary but fixed i ∈ {1, 2}), p1(t1) and p2(t2) is greater than one. This 

sum is equal to the expected value of the sum fA(t1, t2) + fB(t1, t2) + fC (t1, t2). Calculating 

this sum yields: 

fA(t1, t2) + fB(t1, t2) + fC (t1, t2) = 

⎧⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩


1 if t1 + t2 ≥ 1 

2 − t1 − t2 if t1 + t2 < 1. 

Because the bottom line is strictly larger than one, and because we have assumed that G has 

support [0, 1] it is obvious that the ex ante expected value of fA(t1, t2)+ fB (t1, t2)+ fC (t1, t2) 

is greater than one. 

Q.E.D. 

6. Second-Best Rules: Uniform Type Distribution and Equal Welfare Weights 

Analytical characterizations of second-best rules are difficult to obtain. Consider, for simplic­

ity, the case of equal welfare weights: λ = 0.5. We could try to mimic the typical approach 

to characterizing second-best mechanisms, which proceeds by writing the optimization prob­

lem that defines second-best rules so that only directly welfare-relevant variables appear as 

choice variables. In our model, when the agents have equal welfare weights, the directly 

welfare-relevant variables are the probabilities of the compromise, fB(t1, t2). Thus, we might 

seek to eliminate from the problem the variables fA(t1, t2) and fC (t1, t2) which are needed 

to maintain incentives, but do not directly enter the welfare function. To do so, we need a 

characterization of all functions fB that can be part of an incentive compatible decision rule. 
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In the theory of public goods, allocation rules that can be part of an incentive compatible 

scheme are those for which the interim expected allocations of the public good are mono­

tonically increasing, and for which the agents’ ex ante payments, as implied by an incentive 

compatibility condition like condition (ii) in Lemma 3, add up to the ex ante expected quan­

tity of the public good. That is, ex ante, in expected terms, the contributions to the public 

good have to cover the cost of producing the public good. These conditions are not only 

necessary, but also sufficient for an allocation to be part of an incentive compatible scheme 

(see, e.g., Theorem 1 in Mailath and Postlewaite [14]) because, whenever ex ante budget 

balance is satisfied by an incentive compatible decision rule, one can construct a payment 

scheme that is ex post budget balanced, incentive compatible, and that supports the same 

allocation rule and the same interim expected utilities. 

This argument does not apply in our setting. If we mimic the standard construction of ex 

post budget balanced rules (as described, for example, in the proof of Lemma 3 in Cramton, 

Gibbons and Klemperer [3]), then we violate the individuals’ liquidity constraints. That is, 

individuals would be asked to give up so much probability of their favorite alternative that 

this probability would become negative. Thus, although ex ante budget balance is necessary, 

it is not sufficient for a rule fB to be part of an incentive compatible decision rule in our 

setting.4 

In this section we begin by presenting some numerical results about second-best decision 

rules, focusing on the case of equal welfare weights: λ = 0.5 and uniform type distribution 

G. For this case, we also provide some analytical results that back up some of our numerical 

findings. In the next section we provide numerical results for other cases. For our numerical 

work we discretize the type space and postulate 80 equally spaced types.5 For finite type 

spaces the problem of finding a second-best decision rule is a linear programming problem. 

The choice variables are the probabilities of the three alternatives for each possible pair of 

types. The objective function as well as the constraints are linear in these probabilities. For 

the computations reported in this section we used the implementation of the interior point 

4We could seek to introduce further conditions on fB so that ex post budget balance can be achieved. 
For a simpler setting than ours, Border [1] has found such conditions. However, generalizing his results to 
our context seems hard. 

5We have chosen the discretization as fine as was possible with the computing facilities available to us. 

18




1
!!!!!!!!!!
160

159
!!!!!!!!!!
160

t1

1
!!!!!!!!!!
160

159
!!!!!!!!!!
160

t
2

1
!!!!!!!!!!
160

159
!!!!!!!!!!
160

1
!!!!!!!!!!
160

159
!!!!!!!!!!
160

Figure 1: Probability of the compromise under the second-best rule for uniform type distri­
bution and equal welfare weights 

algorithm for linear programming that is available in Mathematica 6.0 for Linux x86. 

Our computations take account only of “local” incentive constraints: No type can gain from 

pretending to be a neighboring type. As in other standard models, local incentive constraints 

imply global incentive constraints. This is, for example, the logic behind Lemma 2. 

Figure 1 shows the probability of the compromise B under the second-best rule. The 

figure shows a grid representing the possible 80×80 type pairs. Each grid point is associated 

with a square whose color represents the probability with which the compromise is chosen 

by the second-best rule. If the square is white, the probability of B is 0. If the square is 

black, the probability of B is 1. If the color is grey, the probability is between 0 and 1. A 

darker shade of grey implies a larger probability of B. 6 

A surprising aspect of Figure 1 is how similar the second-best and the first-best rules 

are. First-best decision rules assign probability 1 to the compromise B if the types are above 

the diagonal connecting the points (1, 0) and (0, 1), and they assign probability zero to B if 

the types are below this diagonal. The second-best rule is identical to this rule except that 

the area in which the compromise is implemented is cut off in the extreme corners of the 

unit square. Our calculations suggest that the compromise is implemented with very small 

probability only if the type of one of the agents is 13/160, and it is not implemented at all 

6Gridlines have been suppressed in Figure 1, as well as in all other figures below. 
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Figure 2: The probability of alternative A under the second-best rule for uniform type 
distribution and equal welfare weights 

if the type of one agent is less than or equal to 11/160. A consequence is that the ex ante 

welfare loss under the second-best rule, relative to the first-best, is very small, approximately 

0.015%. 

It is instructive to compare Figure 1 to the second-best mechanism in the public goods 

problem that corresponds to the compromise problem. In this case, the second-best rule can 

easily be analytically determined. It implements production of the public good if and only if 

the sum of types is above 1.25. Geometrically, instead of cutting off corners as in Figure 1, 

the diagonal is shifted to the North East in the second-best public good rule. The associated 

relative welfare loss is approximately 2.23%. Thus, numerically, it appears that the interim 

individual rationality constraint in the public goods problem is a more restrictive constraint 

than the ex post liquidity constraint in the compromise problem. 

In Figure 2 we report the probabilities of alternative A under the second-best rule. The 

method that we use for the graphical representation of these probabilities is the same as in 

Figure 1. In the first-best, the allocation of probabilities to alternatives A and C below the 

diagonal is not relevant for welfare. In the second-best rule, this probability is chosen by the 

optimization routine to provide at the interim stage incentives for agents 1 and 2 to report 

their true valuations of the compromise. The probability assigned to A by the second-best 

rule for type pairs below the diagonal does not seem to follow any particular pattern. 
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Figure 3: Cropped Triangle Rules 

We now complement the numerical results of Figures 1 and 2 by some analytical insights. 

To make the problem analytically tractable we consider a subclass of decision rules with only 

two parameters. We choose this subclass so that it includes a rule that is very close to the 

one shown in Figure 1, and so that it includes the rule that would be second-best in the 

public goods setting that corresponds to our model. The subclass of decision rules to which 

we restrict attention is described in Definition 6. 

Definition 6 A decision rule f is called a cropped triangle rule if the probability of the 

compromise is of the form: 

fB(t1, t2) = 

⎧ ⎪⎨ ⎪⎩


1 if t1 ≥ c, t2 ≥ c and t1 + t2 ≥ 1 + a, 

0 otherwise,


where a ∈ [0, 1] and c ∈ [a, 1+a ].
2 

The function fB for a typical two-parameter rule is illustrated in Figure 3, where fB (t1, t2) = 

1 in the shaded area. 

In Appendix A, contained in a supplementary document archived in the “Supplementary 

Materials” section of the J. Econ. Theory web site, we show that among all incentive compat­

ible cropped triangle rules those that maximize expected welfare with equal welfare weights 

have parameters a = 0 and c = c∗ where c∗ is the unique c that solves −1+12c−6c2 −4c3 = 0 

in the interval [0, 1] (c∗ ≈ 0.0874). Note how similar this solution is to the rule of Figure 1 
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where corners are cut at approximately 13/160 ≈ 0.0813. For the optimal cropped triangle 

rule the welfare loss relative to first-best is 2(c∗)3/7, which is approximately 0.0191%. 

In Appendix B, contained in the supplementary material available from the J. Econ. Theory 

web site, we also show that the class of cropped triangle rules includes a rule that can be an­

alytically shown to be second-best in the public goods problem not just among all incentive 

compatible cropped triangle rules, but among all rules, and even if one neglects that fA and 

fB need to be between zero and one. This rule has a = 1.25 and c = 0. We show in Appendix 

B that this rule can be implemented with probabilities fA and fC that are between zero and 

one. In other words, in the public goods problem that corresponds to our problem, if one 

determines second-best taking into account only interim individual rationality, but not the 

ex post liquidity constraints, then one obtains an optimal solution that also satisfies the ex 

post liquidity constraints. In this sense, the interim individual rationality constraints are 

more restrictive than the ex post liquidity constraints. This explains why the welfare loss is 

larger in the public goods problem than in the compromise problem. 

7. Second-Best Rules: The General Case 

In this section we explore the robustness of our insights into second-best decision rules that 

we obtained in Section 6 for uniformly distributed types and equal welfare weights. The 

first step in our robustness check is to consider changes in the type distribution G while 

maintaining the assumption of equal welfare weights. We shall focus on the case that the 

types follow a discretized Beta-distribution. We vary separately each of the two shape-

parameters of the Beta-distribution from 0.5 to 5 in increments of 0.5. We thus obtain 100 

different type distributions. The uniform distribution corresponds to the case that both 

shape parameters are equal to 1. 

We first attempt to give some insight into how the second-best decision rule varies with the 

type distribution when welfare weights are equal. To this end we have computed numerically 

the second-best decision rule for all 100 type distributions. We report in Figure 4 for each 

pair of types the average deviation of the second-best decision rule from the first-best rule, 

where the average is taken across our 100 type distributions. For grid points marked by white 
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Figure 4: Average deviations from first-best for 100 type distributions 

squares the average deviation from first-best is zero. For grid points marked in black the 

average deviation is 1. If the average deviation is between zero and 1, we have indicated the 

value by choosing an appropriate level of grey, where darker grey implies a larger deviation. 

Figure 4 suggests that the observation made in the case of the uniform distribution that 

deviations from first-best occur only in the extreme corners of the unit square seems to hold 

regardless of the type distribution. The different shades of grey in Figure 4 indicate that 

the 100 second-best rules differ from each other only with regard to the threshold at which 

the extreme corners of the first-best decision rule have been cropped. The magnitude of the 

threshold appears to be related to the type distribution. 

Next, we describe how the magnitude of the welfare loss under the second-best decision 

rule varies with the type distribution. For each of our 100 second-best rules we have cal­

culated the associated ex ante welfare loss, relative to the first-best. Figure 5 displays a 

histogram of these welfare losses. The main point to notice is that in all cases the ex ante 

welfare loss is less than 0.025%. Thus, the observation made in the case of the uniform 

distribution that the ex ante welfare loss is very small seems to hold quite generally. 

To provide a standard of comparison for evaluating these very small welfare losses we 

have computed numerically the second-best public good rule, and the relative welfare loss 

associated with it, for all 100 type distributions.7 We find that in all 100 cases the relative 

7To reduce computing time, the comparison of the second-best in the compromise and the public good 
settings is based on a discretization of 20 types. 
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Figure 5: Frequency distribution of ex ante welfare losses for 100 type distributions 

welfare loss associated with the second-best public goods rule is strictly larger than the 

relative welfare loss under the second-best in the compromise setting. This suggests that 

also for distributions other than the uniform distribution the participation constraints are 

more restrictive than the ex post liquidity constraints. To explore this observation further, 

we have calculated numerically, for all 100 type distributions, the second-best decision rule 

when both participation constraints and ex post liquidity constraints are imposed. Our 

computations yield the same level of ex ante social welfare in the second-best of the public 

good setting and in the second-best of the setting with participation constraints and liquidity 

constraints. This indicates that, just as with uniformly distributed types, the participation 

constraints are more restrictive than the ex post liquidity constraints in the sense that the 

latter constraints will not be binding if participation constraints are imposed. 

The second part of our robustness check is to study, for the case of uniformly distributed 

types, the effect of a change in agent 1’s welfare weight λ. We have computed the second-

best decision rule and the relative welfare loss associated with it for 52 different values of λ 

equally spaced between 0.5 and approximately 0.99. We first study the effect of a change in 

agent 1’s welfare weight on the shape of the second-best decision rule. We display in Figures 

6 and 7 our results for two examples of asymmetric welfare weights: λ ≈ 0.505 and λ = 0.6. 

Figures 6 and 7 illustrate the second-best decision rules by displaying the probability of 

alternative A on the left hand side and the probability of the compromise B on the right hand 

side. Both figures show, in addition to the diagonal that connects points (0, 1) and (1, 0), a 

steeper line that represents all type-pairs for which the λ-weighted sum of the agents’ types 
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Figure 6: Probabilities of A and B, resp., under the second-best rule for uniform type 
distribution and λ ≈ 0.505 

equals agent 1’s welfare weight λ. For type-pairs above this line the first-best rule selects 

the compromise B with probability 1. Below this line it selects alternative A. 

The second-best probabilities of the compromise in Figures 6 and 7 involve two types of 

distortions relative to the first-best: First, a distortion of the slope of the line above which 

the first-best decision rule implements the compromise B. This type of distortion is absent 

in the case of equal welfare weights. Second, the area in which the second-best rule selects 

the compromise appears to be cropped at the top left corner of the unit square. Figure 7 

suggests furthermore that the area in which the second-best rule selects the compromise is 

also cropped in the bottom right corner of the unit square once agent 1’s welfare weight 

becomes sufficiently large. These second distortions are reminiscent of the distortions that 

we found in the case of equal welfare weights. The second-best probabilities of alternative A 

in Figures 6 and 7 show that under asymmetric welfare weights the second-best rule differs 

from first-best also in that agent 1’s favorite alternative A is not always chosen when the 

compromise is not selected, but instead alternative C is sometimes chosen. This is necessary 

to provide incentives to agent 1 to reveal his type. 

We finally describe how the magnitude of the relative welfare loss under the second-best 

decision rule varies with agent 1’s welfare weight. The relation is non-monotone. Welfare 

loss increases for λ close to, but above 0.5, and then decreases. The maximum welfare 

loss is approximately 5%. Two opposing forces cause the non-monotonicity. To provide 
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Figure 7: Probabilities of A and B, resp., under the second-best rule for uniform type 
distribution and λ = 0.6 

incentives the second-best decision rule must choose alternative C with positive probability. 

The relative importance of this deviation from first-best increases as λ gets larger. On the 

other hand, for large λ, first-best and second-best implement the compromise less frequently, 

and therefore the need to provide incentives decreases, and with it the deviation of second-

best from first-best. 

8. Interim Efficient Rules 

So far we have evaluated decision rules using welfare weights that do not depend on types. 

In this section we consider briefly the case that welfare weights are allowed to depend on 

types. There are thus two functions λi : [0, 1] R+ for i = 1, 2, and the welfare associated → 

with a decision rule f is: 

� 1 � 1 

λ1(t1)U1(t1)g(t1)dt1 + λ2(t2)U2(t2)g(t2)dt2. 
0 0 

We revisit with this specification of welfare weights the question addressed in Section 

5 whether first-best rules are incentive compatible. We give two examples. Suppose that 

weights are given by: λi(ti) = ti for i = 1, 2. The first-best rule is then uniquely determined 

except for a set of pairs (t1, t2) of measure zero. The rule is shown in Figure 8. Clearly, 

this rule is not incentive compatible for any distribution G of types. As each agent’s type 
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Figure 8: First best rule when λi(ti) = ti for i = 1, 2. 

increases from 0 to 0.5, both the interim probability of B and the interim probability of the 

agent’s most preferred alternative increase. Therefore, each agent has an incentive to report 

their type as ti = 0.5 even if the true type is ti < 0.5. 

In Figure 8, as agents report a higher type, the first-best mechanism not only infers that 

agents have a higher valuation of the compromise, but it also attaches higher weights to 

agents. It might be argued that this effect generates the incentive to distort preferences for 

agents with low types. We next consider an example in which agents’ weights are decreasing 

in their types: λi(ti) = 1 − ti for i = 1, 2. The first-best rule for these weights is shown 

in Figure 9. Once again it is obvious that this rule is not incentive compatible for any 

distribution G of types. As each agent’s type increases from 0 to 0.5, the probability of the 

most preferred alternative of that agent decreases, while the probability of the compromise 

is zero. Therefore, each agent will have an incentive to report their type as ti = 0 even if 

the true type is ti ∈ (0, 0.5]. The decreasing weight creates an incentive to understate one’s 

type. The two examples that we have given suggest that for most λi functions the first-best 

will not be incentive compatible. For given λi functions, the first-best choice will be uniquely 

determined for almost all (t1, t2), and there is no reason why in general the first-best rule 

should provide adequate incentives to truthfully reveal one’s type.8 

8We have not proved a formal version of the intuition developed in the text, nor have we analyzed second-
best rules in the case of type-dependent weights. It seems that a further investigation of these issues would 
not add much further insight beyond what we have obtained so far. 
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Figure 9: First best rule when λi(ti) = 1 − ti for i = 1, 2. 

9. Conclusion 

For a simple compromise problem with non-transferrable utility we have shown the im­

possibility of implementing the first-best, and we have determined some characteristics of 

second-best decision rules. In future research we plan to extend our work to a scenario in 

which agents’ rankings of the alternatives as well as their von Neumann Morgenstern util­

ities are privately observed. We suspect that in this setting second-best decision rules can 

only be determined numerically. We also plan to examine in more detail the robustness 

of the decision rules that we obtain in our simple Bayesian setting, and to compare these 

decision rules to decision rules which are optimal if informationally less demanding concepts 

of implementation are considered. 
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Online Supplement to: “Efficient Compromising” 

by Tilman Börgers1 and Peter Postl2 

published in the Journal of Economic Theory 

In this online appendix we prove the analytical results mentioned in Section 6 of the main 

paper. The structure of this appendix is as follows: In Appendix A we characterize the 

optimal cropped triangle rule. In Appendix B we show that the second-best in the public 

goods problem can be implemented using an incentive compatible cropped triangle rule. 

Appendix A: Welfare Maximization Among Incentive Compatible Cropped 

Triangle Rules 

The claim that we prove in this appendix concerns the maximization of expected welfare 

with weight λ = 0.5 among all incentive compatible cropped triangle rules. To maximize 

expected welfare among all these rules we shall restrict attention to cropped triangle rules 

that satisfy the following symmetry condition: fA(t, t�) = fC (t
�, t) and fB(t, t�) = fB (t

�, t) 

for all (t, t�) ∈ [0, 1]2 . To see that this is without loss of generality consider any incentive 

compatible decision rule (fA, fB , fC ), and define a new, symmetric decision rule by swapping 

the roles of players 1 and 2 and alternatives A and C with probability 0.5. Thus, with 

probability 0.5 the original rule is applied, and with probability 0.5 player 1 finds himself in 

the role of player 2 in the original rule. But since the original rule was incentive compatible 

for players 1 and 2, so is the new rule. Moreover, with equal welfare weights, expected 

welfare remains unchanged. Note that the argument is not restricted to cropped triangle 

rules but is general. For cropped triangle rules, moreover, the function fB is symmetric 

by construction. The above argument only establishes that for cropped triangle rules it is 

without loss of generality to assume that also the functions fA and fC satisfy the symmetry 

condition. 
1Department of Economics, University of Michigan, 611 Tappan Street, 337 Lorch Hall, Ann Arbor, MI 

48109-1220, U.S.A., tborgers@umich.edu. 
2Department of Economics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United King­

dom, p.postl@bham.ac.uk. 
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The structure of our argument will be as follows. First, we establish a necessary condition 

that all functions fB that are part of a symmetric, incentive compatible cropped triangle 

rule have to satisfy. Then we determine the welfare maximizing choice of fB where fB is 

as in Figure 3 of the main paper and satisfies the necessary conditions. Thus, we solve a 

relaxed optimization problem. Finally, we show that the solution satisfies the constraints of 

the original optimization problem, that is, that we can construct functions fA and fC that 

make the rule fB incentive compatible. 

If a function fB is part of a symmetric, incentive compatible cropped triangle rule, then 

there must be interim probability functions pi mapping types into interim probabilities of 

preferred outcomes that make the rule fB incentive compatible. For given fB the functions 

pi are determined by Lemma 3, part (ii) (see main paper), once we have fixed the boundary 

values pi(1). By the symmetry assumption, pi(1) will be the same for both i, and we denote 

it for simplicity by p. Our necessary condition will be that it must be possible to find 

some p ∈ [0, 1] such that, if we substitute this p for pi(1) in Lemma 3, part (ii), we obtain 

functions pi(ti) that satisfy together with fB the “ex ante adding up” constraint, i.e. the ex 

ante expected probability of the compromise and the ex ante expected values of p1(t1) and 

p2(t2) add up to one. 

To work out the necessary condition in detail, we first note that for cropped triangle 

rules, the interim probability of the compromise is: 

qi(ti) = 

⎧
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩


0 if 0 ≤ ti ≤ c, 

ti − a if c ≤ ti ≤ 1 + a − c, 

1 − c if 1 + a − c ≤ ti ≤ 1. 

The ex ante probability of the compromise, that is the ex ante expected value of qi (for i 

either 1 or 2) can most easily be calculated as the size of the shaded area in Figure 3 of the 

main paper, which is: 
1 
(1 − a)2 − (c − a)2 

2

where the size of the shaded area in Figure 3 of the main paper was determined as the size


2




� 

of a rectangular triangle with two sides of length 1 − a minus the size of the two smaller 

triangles that are “cropped” in Figure 3 of the main paper, and that are rectangular with 

two sides of length c − a. 

Next, we infer, using Lemma 3 of the main paper, the interim probabilities of the most 

preferred alternatives pi. Obviously, if 1 + a − c ≤ ti ≤ 1, incentive compatibility requires: 

pi(ti) = pi(1) 

= p. 

If c ≤ ti ≤ 1 + a − c we have 

� 1 

pi(ti) = pi(1) + qi(1) − qi(ti)ti − qi(si)dsi 
ti 

= p + (1 − c) − (ti − a)ti 
1+a−c 

− 
ti 

(si − a)dsi − (1 − (1 + a − c))(1 − c) 

where the integral was calculated in two parts, and the second part equals the size of a 

rectangle with sides of length 1 − (1 + a − c) and 1 − c. We continue the calculation as 

follows: 

= p + (1 − c) − (ti − a)ti �
1 2 

�1+a−c 

− 
2

(si) − asi

ti 

− (c − a)(1 − c) 

= p + (1 − c) − (ti − a)ti 

1 −
2
(1 + a − c)2 + a(1 + a − c) 

1 2 + (ti) − ati − (c − a)(1 − c)
2 

= p + 
2

1
(1 + a − c)2 − 

2

1 
(ti)

2 

3




For 0 ≤ ti ≤ c we have: 

�	 1 

pi(ti) = pi(1) + qi(1) − qi(ti)ti − qi(si)dsi 
ti 

1 
= p + (1 − c) − (1 − a)2 + (c − a)2 

2

where the integral was calculated as the size of a rectangular triangle with two sides of length 

1 − a minus the size of the two smaller triangles that are “cropped” in Figure 3 of the main 

paper. 

Now we are in a position to determine the ex ante expected value of pi: 

�
1	

� 

p + c (1 − c) − (1 − a)2 + (c − a)2

2

+ 
� 

c 

1+a−c 1
(1 + a − c)2 − 

1
(ti)

2 dti
2 2 �

1 
� 

= p + c (1 − c) − (1 − a)2 + (c − a)2

2

+(1 + a − 2c)
2

1
(1 + a − c)2 − 

6

1 �
(ti)

3�1+a−c 

c �
1	

� 

= p + c (1 − c) − (1 − a)2 + (c − a)2

2
1 1 1 

+(1 + a − 2c)
2
(1 + a − c)2 − 

6
(1 + a − c)3 +

6 
c 3 

1 2 1 3 2 1 3 2 = + p − c + c + c + a + a + a − 2ac − a c 
3	 3 3 

where the last step was verified by Mathematica. 

The necessary condition with which we shall work is now that twice this value, plus the 

ex ante expected value of qi must equal 1: 

2 
+ 2p − 2c + 2c 2 +

2 
c 3 + 2a + 2a 2 +

2 
a 3 − 4ac − 2a 2 c 

3 3 3

1


+	 (1 − a)2 − (c − a)2 = 1 
2

⇔ 

1 1 3 2 1 3 2 1 2 1 3 −
12 
− 

2 
a − 

4 
a − 

3 
a + c + ac + a c − 

2 
c − 

3 
c = p 

where the last step was again verified by Mathematica. The constraint that we shall work


with when maximizing expected welfare is now that there must be some p ∈ [0, 1] such that


4




2 

the above equation holds. This is the same as the requirement that the left hand side of the 

above equation is contained in [0, 1]. In the following, we denote this expression by E(a, c). 

We seek to determine the welfare-maximizing choice of a and c subject to the condition 

1+aE(a, c) ∈ [0, 1]. We proceed in two steps. We first ask which choices, if any, of c ∈ 
�
a, 

� 

are optimal for given a ∈ [0, 1]. Then we ask which choice of a is best. 

Note that for given a welfare is maximized by choosing c as small as possible. The 

smallest admissible value of c is c = a. If for this choice of c we have E(a, c) ∈ [0, 1], then it 

is the optimal choice. 

E(a, a) [0, 1]∈ ⇔ 

1 1 3 1 1 1 −
12 
− 

2 
a − 

4 
a 2 − 

3 
a 3 + a + a 2 + a 3 − 

2 
a 2 − 

3 
a 3 ∈ [0, 1] ⇔ 

1 1 1 1 −
12 

+ 
2 
a − 

4 
a 2 +

3 
a 3 ∈ [0, 1]. 

Numerically, we can determine using Mathematica that this is the case if and only if 

a ≥ 0.178846. 

For smaller values of a Mathematica shows that we have: E(a, a) < 0. On the other 

hand, E(a, 1+
2 
a ) > 0 where c = 1+

2 
a is the largest admissible value of c. The proof is as 

follows: 

1 + a 1 1 3 2 1 3 1 + a 1 + a 
E(a, 

2 
) = −

12 
− 

2 
a − 

4 
a − 

3 
a +

2
+ a 

2 
1 + a 1 

�
1 + a

�2 
1 

�
1 + a

�3 
2+a 

2 
− 

2 2 
− 

3 2 

=
1 �

2 + a + 12a 2 + 13a 3
� 

> 0 
8 

where the simplification in the last step was obtained using Mathematica. By the con­

tinuity of E(a, c) in c we can now conclude that there is a smallest c ∈ [a, 1+a ] such that 
2 

E(a, c) = 0. This c is the optimal choice, given a. 

5 



To determine the optimal choice of a, we first prove that the optimal choice of c increases 

in a. This is obvious for a ≥ 0.178846. For smaller values of a it follows from the fact that 

the value of E(a, c) decreases in a. To show this we calculate: 

∂E 1 3 2 

∂a 
= −

2 
− 

2 
a − a + c + 2ac 

1 3 2 1 + a 1 + a ≤ −
2 
− 

2 
a − a + 

2 
+ 2a 

2 

= 0. 

As the optimal c is increasing in a, it follows immediately that expected welfare is de­

creasing in a, assuming that for each a the optimal c is chosen. Therefore, the optimal choice 

of a is a = 0. The corresponding choice of c is the smallest c for which E(0, c) = 0. This 

equation is equivalent to: 
1 1 2 1 −
12 

+ c − 
2 
c − 

3 
c 3 = 0. 

Mathematica shows that there is a unique solution c∗ in [0, 1] of this equation, and that 

it is: c∗ ≈ 0.087373. 

We have now solved the relaxed maximization problem, and we complete the argument 

by constructing functions fA and fC that make the optimal fB incentive compatible. We 

define fA as follows: 

fA(t1, t2) = 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


1 if t1 ≤ c∗ and t2 ≤ c∗,
2


1 − (1−c∗−
2
t2
c∗ 
)(t2−c∗) if t1 ≤ c∗ and c∗ ≤ t2 ≤ 1 − c∗


1 if t1 ≤ c∗ and t2 > 1 − c∗


(1−c∗−t1)(t1−c∗) if c∗ < t1 ≤ 1 − c∗ and t2 ≤ c∗,
2c∗ 

1 if c∗ < t1 ≤ 1 − c∗ and c∗ < t2 ≤ 1 − t1,2 

0 otherwise. 

The function fC is defined symmetrically, and we omit the formal definition. The construc­

tion of fA is shown in Figure 1. In Figure 1 we refer to a function h. We define for every 

t ∈ [0, 1]: 

h(t) ≡ 
(1 − c∗ − t)(t − c∗) 

2c∗ 
. 
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Figure 1: The probability of alternative A under the optimal cropped triangle rule 

To check that what we have defined are actually probabilities we need to verify that 

h(t) ∈ [0, 1] for all t ∈ [c∗, 1 − c∗]. 

It is obvious that h(t) is non-negative for all relevant t. Plotting it in Mathematica one 

can verify that it is never more than 1. We also need to check that the probabilities that we 

have defined add up to 1 for every type vector. This is obvious. 

It remains to verify that these probabilities give rise to the interim probabilities pi(ti) 

that make the decision rule incentive compatible. Clearly, the implied interim probabilities 

of the compromise qi(ti) are monotonically increasing in type ti. It remains to verify that the 

interim probabilities of the preferred alternatives are those required by part (ii) of Lemma 3 

in the main paper. We have: 

pi(ti) = p = 0 when 1 − c∗ ≤ ti ≤ 1. 

1 
pi(ti) = c∗h(ti) + (1 − c∗ − ti)

2

= 
(1 − c∗ − ti)(ti − c∗) 

+ 
1
(1 − c∗ − ti)

2 2
(1 − c∗ − ti)(1 − c∗ + ti) 

= 
2 

= 
2

1
(1 − c∗)2 − 

2

1 
(ti)

2 when c∗ ≤ ti ≤ 1 − c∗. 

In these first two cases we thus obtain the expressions that are required by incentive com­
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� 

�


patibility and that were derived above. For the remaining, third, case: 0 ≤ ti ≤ c∗, no 

calculation is needed. The conclusion can be derived from two observations. First, the total 

probability of the preferred alternative that is assigned by our rule in this case is ex ante the 

same as required by incentive compatibility. This is because our mechanism clearly has the 

property that ex ante probabilities add up to 1. Indeed, it also has this property ex post. 

Thus, the probability assigned to the preferred alternative ex ante if 0 ≤ ti ≤ c∗ is 1 minus 

the probability assigned to the preferred alternative if t > c∗. Moreover, the probabilities 

assigned to the preferred alternative and that are required by incentive compatibility add 

up to 1. This is indeed the constraint under which we determined the optimal mechanism. 

Because for ti > c∗ our mechanism assigns the correct probabilities to the preferred alterna­

tive, the same must be true ex ante if 0 ≤ ti ≤ c∗. The second observation is that incentive 

compatibility requires the probability assigned to the preferred alternative to be constant 

for 0 ≤ ti ≤ c∗. Our mechanism has this property. Therefore, it must assign exactly the 

probabilities required by incentive compatibility to the preferred alternative for 0 ≤ ti ≤ c∗. 

Appendix B: The Second Best Public Goods Rule as a Cropped Triangle Rule 

In this appendix we prove the claim in Section 6 of the main paper that the function fB 

that corresponds to the second-best in the public goods problem with equal welfare weights 

and uniform type distribution can be implemented as an incentive compatible cropped trian­

gle rule. Recall that the second-best public goods decision rule corresponds to a function fB 

of the type described in Figure 3 of the main paper with parameters a = c = 0.25. Clearly, 

this rule implies that qi is increasing in ti for i = 1, 2. By Lemma 3 we therefore have an 

incentive compatible decision rule if and only if the interim probabilities of the preferred 

alternatives satisfy: 

⎧

⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪

� −

1

ti 

�
si − 1 

4

� 
dsi

�
ti −pi(1) 3 

4
1 
2

− ti 

21 1⎨ = pi(1) + (ti) if ti ≥ 0.25−

2 2

pi(ti) = ⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪
pi(1) + ·
 1 

4

�21 1−

2 2

⎩ = pi(1) + 15 if ti < 0.25
32 

8 



�


� 

We can achieve incentive compatibility by defining fA by: 

fA(t1, t2) = 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

0.5 if t1, t2 < 0.25 

⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

1 
8 − 2 (t1)

2 + 2t1 

7 2 + 2 (t2) − 2t28 

0.5 

if t1 ≥ 0.25, t2 < 0.25 

if t1 < 0.25, t2 ≥ 0.25 

if t1, t2 ≥ 0.25, t1 + t2 

⎩ 0 if t1 + t2 ≥ 1.25 

< 1.25 

and defining fC analogously. It is trivial to verify that fA(t1, t2) ∈ [0, 1], fB(t1, t2) ∈ [0, 1] 

and fA(t1, t2) + fB(t1, t2) + fC (t1, t2) = 1 for all (t1, t2) ∈ [0, 1]2 . It remains to check the 

incentive compatibility constraint. Note first that 

1 
pi(1) = 

32 

for i = 1, 2. Therefore, for ti ≥ 0.25, we need to check that: 

17 
pi(ti) = 

32 
− 0.5 (ti)

2 . 

We calculate: 

1 
�

1
 1
2 =
8 
− 2 (ti)

17 1 2 = (ti) . 
32 
− 

2 

For ti < 0.25 we need to check: 
1 

pi(ti) = . 
2 

We calculate: 

pi(ti) + 2ti + (1.25 − ti − 0.25)
4
 2


1 1
 7

pi(ti) 

1

= + 
4 
· 
2 8 

1 
4 

1 
= . 

2 
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+ 2 (tj ) 2 − 2tj dtj 
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