

Citation for published version:
Davenport, J 2012, 'Program Verification in the presence of complex numbers, functions with branch cuts etc'
Paper presented at SYNASC 2012: 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Timisoara, Romania, 25/09/12 - 28/09/12, .

Publication date:
2012

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/161910735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/program-verification-in-the-presence-of-complex-numbers-functions-with-branch-cuts-etc(30083e09-958a-42ff-bdcb-e044b2fadf52).html

1

Program Verification in the presence of complex
numbers, functions with branch cuts etc.

J.H. Davenport — J.H.Davenport@bath.ac.uk

September 24, 2012

Abstract

In considering the reliability of numerical programs, it is normal to “limit
our study to the semantics dealing with numerical precision” (Martel,
2005) [Mar05]. On the other hand, there is a great deal of work on the
reliability of programs that essentially ignores the numerics. The thesis
of this paper is that there is a class of problems that fall between these
two, which could be described as “does the low-level arithmetic imple­
ment the high-level mathematics”. Many of these problems arise because
mathematics, particularly the mathematics of the complex numbers, is
more difficult than expected: for example the complex function log is
not continuous, writing down a program to compute an inverse function
is more complicated than just solving an equation, and many algebraic
simplification rules are not universally valid.

The good news is that these problems are theoretically capable of being
solved, and are practically close to being solved, but not yet solved, in
several real-world examples. However, there is still a long way to go
before implementations match the theoretical possibilities.

Introduction

It is customary, even though not often explicitly stated, to think that program­
ming errors in numerical programs come in three distinct flavours, which we can
categorise as follows.

blunder (of the coding variety) This is the sort of error traditionally addressed
in “program verification”: are all array elements properly initialised before
use, “fence post” errors1, are array bounds always respected etc.? These
problems are essentially independent of the numerics of the problem, and
indeed are normally taught/described in integer contexts.

1From the old puzzle “A farmer wishes to make a 100-metre fence with supporting posts
every 10 metres — how many posts are needed”, to which the answer is 11, since each end
needs a post.

1

2

parallelism Issues of deadlocks or races occurring due to the parallelism of an
otherwise correct sequential program. Again, these problems are essen­
tially independent of the numerics of the problem.

numerical Do truncation and round-off errors, individually or combined, mean
that the program computes approximations to the “true” answers which
are out of tolerance. This is the area traditionally addressed in Numerical
Analysis. There are really two subquestions here: the rounding question,
i.e. does RIEEE (or whatever other arithmetic we are using) approx­
imate R sufficiently well, and the truncation error question, e.g. is the �N
discretisation h small enough that it is the mathematical � or is equiv­� 1
alent to ∞

1 . Unfortunately the two interact; for example reducing h in

f �(x) ≈ f (x+h)−f (x) to reduce the truncation error increases the rounding h
problems.

We note that [CE05], taken as a specimen of the verification literature, contains
30 papers, of which only [Mar05] deals with strictly numerical issues, four with
parallelism issues, and the rest (83%) with the first kind.

It is the thesis of this paper that there is a fourth kind of error, which we
can describe as follows

manipulation A piece of algebra, which is “obviously correct”, turns out not
to be correct when interpreted, not as abstract algebra, but as the manip­
ulation of functions R R or C C.→ →

Note: throughout this paper we take the standard definitions of the branch
cuts of the elementary functions from [AS64, Nat10, as tightened in [CDJW00]].
Other definitions would have different, but not fewer, problems. We also use the
Anglo-Saxon convention that log etc. (and √

) denote single-valued functions

(log 1 = 0,
√
4 = 2), whereas Log etc. denote multi-valued functions (Log(1) =

{2kπi : k ∈ Z}, Sqrt(4) = {2, −2}).
The author would like to thank Russell Bradford, Acyr Locatelli, Gregory

Sankaran and David Wilson of the Bath Triangular Sets seminar for their input,
and the referees for their comments, but the errors and omissions are all his.

Examples

The problems we are going to describe arise largely (though not entirely2) from
complex numbers, and it is sometimes said “real programs don’t use complex
numbers”, despite the fact that the introduction of COMPLEX into Fortran II
was probably the first instance of a language data type that did not correspond
to a machine data type. The author knows of several major uses of complex
numbers and complex analysis, in particular many problems which arise in fluid
dynamics, where two-dimensional real space R2 = {(x, y)} is viewed as the
complex plane C = {z = x + iy}. It is then normal to map this copy of C

2See section 2.4 for a counter-example.

� � �

�

� �

to another (in which the variable is traditionally denoted w or ζ) where the
problem is easier to solve. Such an analytic map z �→ w is termed a conformal
map.

2.1 Kahan’s example

This example comes from [Kah87, pp. 187–189], and the ultimate motivation
is fluid flow in a slotted strip (z space), which we wish to transform to a more
convenient shape (w space).

With the usual definitions, the necessary conformal map

w = g(z) := 2 arccosh

�

1 +
2z
3

�

− arccosh

�
5z + 12
3(z + 4)

�

(1)

is only the same as the ostensibly more efficient � � �

w
?
=q(z) := 2 arccosh 2(z + 3)

z + 3
27(z + 4)

, (2)

if we avoid the negative real axis and the area

(x + 3)2(−2x − 9)
z = x + iy : |y| ≤

2x + 5
∧ −9/2 ≤ x ≤ −3 (3)

In fact, most computer algebra systems will refuse, these days, to convert one
into the other, but this does not constitute a proof of difference.

Challenge 1 Demonstrate automatically that g and q are not equal, by produc­
ing a z at which they give different results.

The technology described in [BBDP07] will isolate the curve y = ± (x+3)2(−2x−9)
2x+5

as a potential obstacle (it is the branch cut of q), but the geometry questions
are too hard for a fully-automated solution at the moment.

However, simplification is possible: g can legitimately be rewritten to

1
√
3 z + 12

�√
z + 3 +

√
z
�2

w = h(z) := 2 ln , (4)
3 2

√
z + 3 +

√
z

The technology in [BBDP07] can show this, i.e. ∀z ∈ Cg(z) = h(z), but again
the geometry questions are too hard for a fully-automated solution at the mo­
ment. Indeed Maple 16 currently gets this wrong: coulditbe(g<>h); returns
true, which ought to indicate that there is a counter-example.

Challenge 2 Demonstrate automatically that g and h are equal.

The technology in [BBDP07], implemented in a mixture of Maple and QEPCAD,
could in principle do this, but the geometry questions are too hard for a fully-
automated solution at the moment. In addition, we would be left with the
problem of trusting the underlying demonstration code, so there is the additional
problem of translating this methodology into a tool such as MetiTarski [Pau12].

� �

� �

�

� � �

� � �

2.2 Joukowski (a)

Consider the Joukowski map [Hen74, pp. 294–298]:

1 1
f : z �→

2
z +

z
. (5)

Lemma 1 f is injective as a function from D := {z : |z| > 1}.

If z �→ ζ then 1/z �→ ζ, and there are no other pre-images of ζ (since the
algebraic inverse of (5) is the solution of a quadratic). If |z| > 1, then |1/z| < 1,
so z is unique in D.

In fact f is a bijection from D to C‡ := C\ [−1, 1], and hence has an inverse.
Of course, (5) is the conformal map C C that equates to the map →

1 1 x 1 1 y
fR : (x, y) �→

2
x +

2 x2 + y2
,
2
y −

2 x2 + y2
(6)

R2 R2 . However, it is not obvious from (6) alone that fR is a bijection →
D C‡, i.e. that →

∀x1∀x2∀y1∀y2 x1
2 + y1

2 > 1 ∧ x2
2 + y2

2 > 1 ∧ x1 + x1 = x2 + x2 ∧2
1

2
1

2
2

2
2+y +yx x

y1 = y2y1 − y2 − x1 = x2 ∧ y1 = y2 . x2
1+y2

1 x2
2+y2

2
⇒

(7)

Challenge 3 Demonstrate automatically the truth of (7).

We have been unable to do this with either the QEPCAD [Bro03] implementa­
tion of Partial Cylindrical Algebraic Decomposition [CH91] or the Maple imple­
mentation of Cylindrical Algebraic Decomposition via triangular decomposition
[CMMXY09].

However, Brown [Bro12] has been able to reformulate the problem (manu­
ally) to make it amenable to QEPCAD, and indeed solved it in under 12 seconds.

Challenge 4 Automate these techniques and transforms.

Having established (or not) that f is a bijection D C‡, we want its inverse. →
Formally, this is trivial, as one referee said

The inverse of Joukowski is the solution of a quadratic with the usual
sign ambiguity:

if ζ = 1 z + 1 , then 2zζ = z2 + 1 and z = ζ ± ζ2 − 1. This is easily within 2 z
the grasp of computer algebra, as seen in Figure 1. The only challenge might
be the choice implicit in the ± symbol: which do we choose?

� � � �

� � � �

� �

� �

Figure 1: Maple’s solve on inverting Joukowski

> [solve(zeta = 1/2*(z+1/z), z)];

ζ + ζ2 − 1, ζ − ζ2 − 1

Figure 2: Maple’s actual solve on inverting injective Joukowski

> [solve(zeta = 1/2*(z+1/z), z)] assuming abs(z) > 1

ζ + ζ2 − 1, ζ − ζ2 − 1

Unfortunately, the answer is “neither”, or at least “neither, uniformly”. The
true answer is that, for f a bijection from {z : |z| > 1} to C \ [−1, 1], its inverse
is ⎧ � ⎪⎪ +�ζ2 − 1 �(ζ) > 0

f1(ζ) = ζ
⎨ −�ζ2 − 1 �ζ) < 0

(8)⎪⎪ + ζ2 �(ζ) = 0 ∧ �(ζ) > 1⎩ � − 1
− ζ2 − 1 �(ζ) = 0 ∧ �(ζ) < −1

In fact, a better (at least, free of case distinctions) definition is

f2(ζ) = ζ + ζ − 1 ζ + 1. (9)

The techniques of [BBDP07] are able to verify (9), in the sense of showing that
f2(f(z)) − z is the zero function on {z : |z| > 1}.

Challenge 5 Derive automatically, and demonstrate the validity of, either (8)
or (9). In terms of Maple, we would want to see Figure 3, rather than the actual
Figure 2.

In terms of derivation, the techniques of [CJ96] seem worthy of investigation,
but the author has been unable to do this derivation satisfactorily by this route.

2.3 Joukowski (b)

Here the function is again given by (5).

Figure 3: Ideal Maple solve on inverting injective Joukowski

> solve(zeta = 1/2*(z+1/z), z) assuming abs(z) > 1

ζ + ζ − 1 ζ + 1

�

� � �

�

� �

� � �� �
� �

� �

Lemma 2 f is injective as a function from H := {z : �z > 0}.

As in Lemma 1, if z �→ ζ then 1/z �→ ζ, and there are no other pre-images of ζ.
If �(z) > 0, �(1/z) < 0, and f in therefore injective from H.

In fact, f is a bijection from H to C \ ((−∞, −1] ∪ [1, ∞)), and hence has
an inverse.

Again, it is not obvious from (6) alone that fR is a bijection, now from
{(x, y)|y > 0}, i.e. that

x1 = x2y1 > 0 ∧ y2 > 0 ∧ x1 + x2 +∀x1∀x2∀y1∀y2 ∧
x2
1+y2

1 x2
2+y2

2
(10)

y1 = y2y1 − y2 − = x2 ∧ y1x1 = y2 . x2
1+y2

1 x2
2+y2

2
⇒

Challenge 6 Demonstrate automatically the truth of (10).

It is likely that the ideas of [Bro12] can do this, but again these need automation.
We have the same challenge over the inverse of f : again formally it is

f−1=
?
ζ ± ζ2 − 1, and the only challenge is the ± symbol: which do we choose?

Here [Hen74, (5.1-13), p. 298] argues for

f3(ζ) = ζ + ζ − 1 ζ + 1 . (11)� �� � � �� �
arg∈(−π/2,π/2] arg∈(0,π]

Challenge 7 Find a way to represent functions such as ζ + 1

arg∈(0,π]

Fortunately this one is soluble in this case3, we can write ζ + 1 = i −ζ − 1 ,� �� � � �� �
arg∈(0,π] arg∈(−π/2,π/2]

and the latter is the normal sqrt function of [AS64]. Hence we have an inverse
function � �

f4(ζ) = ζ + ζ − 1i −ζ − 1. (12)

Challenge 8 Demonstrate automatically that this is an inverse to f on {z :
�z > 0}.

2.4 A Real Example

Just in case the reader thinks that the real numbers are immune from these
problems, consider the addition rule for the inverse tangent, quoted as

x ± y
Arctan(x) ± Arctan(y) = Arctan

1 � xy
. [AS64, (4.4.34)][Nat10, (4.24.15)]

3And is probably soluble more generally, but the author knows of no general work on
“alternative formulations”.

� �

� �

Despite the caveat in [Nat10] that “The above equations are interpreted in the
sense that every value of the left-hand side is a value of the right-hand side
and vice versa”, it is in fact the case that the ‘obvious’ two equations are true
separately, viz.

x + y
Arctan(x) + Arctan(y) = Arctan	 (13)

1 − xy

Arctan(x) − Arctan(y) = Arctan
x − y

(14)
1 + xy

Consider (13): This is valid for the multi-valued Arctan, but for the single-
valued arctan only when |1 − xy| < 1, due to a “branch cut at infinity” of
arctan. Nevertheless, the single-valued version of (13) is often cited as true: see
for example [Ter12, (5.2.5)].

Over the reals, this is a non-challenge, the techniques of [BBDP07] do solve
it easily, and produce a counterexample.

3 So why are these challenges?

3.1 Complex functions and branch cuts

These are difficult subjects, which have tended to be brushed under the carpet.
The first truly algorithmic approach is ten years old ([BCD+02], refined in
[BBDP07]), and has various difficulties.

1. At its core is the use of Cylindrical Algebraic Decomposition of RN to
find the connected components of CN/2 \ {branch cuts}. The complexity
of this is doubly exponential in N : upper bound of dO(2N) [Hon91] and
lower bounds of 22

(N−1)/3
[BD07, DH88]. While better algorithms are

in principle known ([BRSEDS12] is dO(N
√
N)), we do not know of any

accessible implementations.

Furthermore, we are clearly limited to small values of N , at which point
looking at O(. . .) complexity is of limited use. We note that the cross­
over point between 2(N −1)/3 and N

√
N is at N = 21. A more detailed

comparison is given in [Hon91]. Hence there is a need for practical research
on low-N Cylindrical Algebraic Decomposition.

2. While the fundamental branch cut of log is simple enough, being	 {z =
x + iy|y = 0 ∧ x < 0}, actual branch cuts are messier. Part of the branch
cut of (2) is

2x 3 + 21x 2 + 72x + 2xy 2 + 5y 2 + 81 = 0 ∧ other conditions, (15)

whose solution accounts for the curious expression in (3). While there has
been some progress in manipulating such images of half-lines (described
in [PBD10, Phi11]), there is almost certainly more to be done.

3.2 Injectivity

Lemmas 1 and 2 might seem to be statements about complex functions of one
variable, so why do we need to handle (or fail to handle) statements about four
real variables to prove them? There are three, rather distinct, reasons for this.

1. The statements require the	 | · | function (Lemma 1) or the � function
(Lemma 2), neither of which are complex analytic functions. Hence some
recourse to real analysis (and therefore twice as many variables) seems
inevitable, though it would be nice to have a more formal statement and
proof of this.

2. Equations (7) and (10) are the direct translations of the basic definition of
injectivity. In practice, certainly if we were looking at functions R R,→
we would want to use the fact that the function concerned was continuous.

Challenge 9 Find a better formulation of injectivity questions RN →
RN , making use of the properties of the functions concerned (certainly
continuity, possibly rationality).

3. While equations (7) and (10) are statements from the existential theory
of the reals, and so the theoretically more efficient algorithms quoted in
[Hon91] are in principle applicable, the more modern developments de­
scribed in [PJ09] do not seem to be directly applicable. However, we can
transform then into a disjunction of statements to each of which the Weak
Positivstellensatz [PJ09, Theorem 1] is applicable.

Challenge 10 Solve these problems using the techniques of [PJ09],

4 Conclusions

The aim of this paper has been to demonstrate that translating mathematical
problems into programs may require some algebraic manipulations whose accu­
racy is not as obvious as one might think, and whose verification is currently
not as straightforward as we would like, despite the fact that their correctness
is, in principle, decidable. A summary is given in Table 1.
These are, largely, concrete challenges that, we hope, will spur practical ad­
vances in this domain.

References

[AS64]	 M. Abramowitz and I. Stegun. Handbook of Mathematical Func­
tions with Formulas, Graphs, and Mathematical Tables, 9th print­
ing. US Government Printing Office, 1964.

Table 1: Current state of these challenges
Challenge State
1/2 Mathematically solved [BBDP07], geometry defeats current solvers.
3/6 Mathematically solved [Col75, etc.], geometry defeats current solvers.
4 Under development.
5/8 Mathematically solved [BBDP07], geometry defeats current solvers,

and is probably significantly harder than the previous ones.
7 unknown: probably straightforward research project
9 unknown: research project
10 unknown: project for the authors of [PJ09].

[BBDP07]	 J.C. Beaumont, R.J. Bradford, J.H. Davenport, and N. Phisan­
but. Testing Elementary Function Identities Using CAD.
AAECC, 18:513–543, 2007.

[BCD+02]	 R.J. Bradford, R.M. Corless, J.H. Davenport, D.J. Jeffrey, and
S.M. Watt. Reasoning about the Elementary Functions of Com­
plex Analysis. Annals of Mathematics and Artificial Intelligence,
36:303–318, 2002.

[BD07]	 C.W. Brown and J.H. Davenport. The Complexity of Quantifier
Elimination and Cylindrical Algebraic Decomposition. In C.W.
Brown, editor, Proceedings ISSAC 2007, pages 54–60, 2007.

[Bro03]	 C.W. Brown. QEPCAD B: a program for computing with semi-
algebraic sets using CADs. ACM SIGSAM Bulletin 4, 37:97–108,
2003.

[Bro12]	 C.W. Brown. Re: Query about QEPCAD. Personal Commnica­
tion to David Wilson, 2012.

´ [BRSEDS12]	 S. Basu, M.-F. Roy, M. Safey El Din, and E. Schost. A baby step-
giant step roadmap algorithm for general algebraic sets. http:
//arxiv.org/abs/1201.6439, 2012.

[CDJW00]	 R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt. Ac­
cording to Abramowitz and Stegun, or arccoth needn’t be un­
couth. SIGSAM Bulletin 2, 34:58–65, 2000.

[CE05]	 R. Cousot (Ed.). Verification, Model Checking, and Abstract In­
terpretation. Springer Lecture Notes in Computer Science 3385,
2005.

[CH91]	 G.E. Collins and H. Hong. Partial Cylindrical Algebraic Decom­
position for Quantifier Elimination. J. Symbolic Comp., 12:299–
328, 1991.

http://arxiv.org/abs/1201.6439
http://arxiv.org/abs/1201.6439

[CJ96]	 R.M. Corless and D.J. Jeffrey. The Unwinding Number. SIGSAM
Bulletin 2, 30:28–35, 1996.

[CMMXY09] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing
Cylindrical Algebraic Decomposition via Triangular Decomposi­
tion. In J. May, editor, Proceedings ISSAC 2009, pages 95–102,
2009.

[Col75] G.E. Collins. Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition. In Proceedings 2nd. GI
Conference Automata Theory & Formal Languages, pages 134–
183, 1975.

[DH88] J.H. Davenport and J. Heintz. Real Quantifier Elimination is
Doubly Exponential. J. Symbolic Comp., 5:29–35, 1988.

[Hen74] P. Henrici. Applied and Computational Complex Analysis I. Wi­
ley, 1974.

[Hon91] H. Hong. Comparison of several decision algorithms for the exis­
tential theory of the reals. Technical Report 91-41, 1991.

[Kah87] W. Kahan. Branch Cuts for Complex Elementary Functions. In
A. Iserles and M.J.D. Powell, editors, Proceedings The State of
Art in Numerical Analysis, pages 165–211, 1987.

[Mar05] M. Martel. An Overview of Semantics for the Validation of Nu­
merical Programs. In Proceedings Verification Model Checking
and Abstract Interpretation. Springer Lecture Notes in Computer
Science 3385, pages 59–77, 2005.

[Nat10] National Institute for Standards and Technology. The NIST Dig­
ital Library of Mathematical Functions. http://dlmf.nist.gov,
2010.

[Pau12] L.C. Paulson. MetiTarski: Past and Future.
teractive Theorem Proving, pages 1–10, 2012.

In Proceedings In­

[PBD10] N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of
Branch Cuts. Communications in Computer Algebra, 44:132–135,
2010.

[Phi11] N. Phisanbut. Practical Simplification of Elementary Functions
using Cylindrical Algebraic Decomposition. PhD thesis, University
of Bath, 2011.

[PJ09] G.O. Passmore and P.B. Jackson. Combined Decision Techniques
for the Existential Theory of the Reals. In J. Carette et al., ed­
itor, Proceedings Intelligent Computer Mathematics, pages 122–
137, 2009.

http://dlmf.nist.gov

[Ter12]	 D. Terr. Math is Amazingly Powerful. http:
//www.mathamazement.com/Lessons/Pre-Calculus/05_
Analytic-Trigonometry/sum-and-difference-formulas.
html, 2012.

http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html

	Introduction
	Examples
	Kahan's example
	Joukowski (a)
	Joukowski (b)
	A Real Example

	So why are these challenges?
	Complex functions and branch cuts
	Injectivity

	Conclusions

