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Program Verification in the presence of complex 
numbers, functions with branch cuts etc. 

J.H. Davenport — J.H.Davenport@bath.ac.uk 

September 24, 2012 

Abstract 

In considering the reliability of numerical programs, it is normal to “limit 
our study to the semantics dealing with numerical precision” (Martel, 
2005) [Mar05]. On the other hand, there is a great deal of work on the 
reliability of programs that essentially ignores the numerics. The thesis 
of this paper is that there is a class of problems that fall between these 
two, which could be described as “does the low-level arithmetic imple­
ment the high-level mathematics”. Many of these problems arise because 
mathematics, particularly the mathematics of the complex numbers, is 
more difficult than expected: for example the complex function log is 
not continuous, writing down a program to compute an inverse function 
is more complicated than just solving an equation, and many algebraic 
simplification rules are not universally valid. 

The good news is that these problems are theoretically capable of being 
solved, and are practically close to being solved, but not yet solved, in 
several real-world examples. However, there is still a long way to go 
before implementations match the theoretical possibilities. 

Introduction 

It is customary, even though not often explicitly stated, to think that program­
ming errors in numerical programs come in three distinct flavours, which we can 
categorise as follows. 

blunder (of the coding variety) This is the sort of error traditionally addressed 
in “program verification”: are all array elements properly initialised before 
use, “fence post” errors1, are array bounds always respected etc.? These 
problems are essentially independent of the numerics of the problem, and 
indeed are normally taught/described in integer contexts. 

1From the old puzzle “A farmer wishes to make a 100-metre fence with supporting posts 
every 10 metres — how many posts are needed”, to which the answer is 11, since each end 
needs a post. 
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parallelism Issues of deadlocks or races occurring due to the parallelism of an 
otherwise correct sequential program. Again, these problems are essen­
tially independent of the numerics of the problem. 

numerical Do truncation and round-off errors, individually or combined, mean 
that the program computes approximations to the “true” answers which 
are out of tolerance. This is the area traditionally addressed in Numerical 
Analysis. There are really two subquestions here: the rounding question, 
i.e. does RIEEE (or whatever other arithmetic we are using) approx­
imate R sufficiently well, and the truncation error question, e.g. is the �N
discretisation h small enough that it is the mathematical � or is equiv­� 1 
alent to ∞

1 . Unfortunately the two interact; for example reducing h in 

f �(x) ≈ f (x+h)−f (x) to reduce the truncation error increases the rounding h 
problems. 

We note that [CE05], taken as a specimen of the verification literature, contains 
30 papers, of which only [Mar05] deals with strictly numerical issues, four with 
parallelism issues, and the rest (83%) with the first kind. 

It is the thesis of this paper that there is a fourth kind of error, which we 
can describe as follows 

manipulation A piece of algebra, which is “obviously correct”, turns out not 
to be correct when interpreted, not as abstract algebra, but as the manip­
ulation of functions R R or C C.→ → 

Note: throughout this paper we take the standard definitions of the branch 
cuts of the elementary functions from [AS64, Nat10, as tightened in [CDJW00]]. 
Other definitions would have different, but not fewer, problems. We also use the 
Anglo-Saxon convention that log etc. (and √ 

) denote single-valued functions 

(log 1 = 0, 
√
4 = 2), whereas Log etc. denote multi-valued functions (Log(1) = 

{2kπi : k ∈ Z}, Sqrt(4) = {2, −2}). 
The author would like to thank Russell Bradford, Acyr Locatelli, Gregory 

Sankaran and David Wilson of the Bath Triangular Sets seminar for their input, 
and the referees for their comments, but the errors and omissions are all his. 

Examples 

The problems we are going to describe arise largely (though not entirely2) from 
complex numbers, and it is sometimes said “real programs don’t use complex 
numbers”, despite the fact that the introduction of COMPLEX into Fortran II 
was probably the first instance of a language data type that did not correspond 
to a machine data type. The author knows of several major uses of complex 
numbers and complex analysis, in particular many problems which arise in fluid 
dynamics, where two-dimensional real space R2 = {(x, y)} is viewed as the 
complex plane C = {z = x + iy}. It is then normal to map this copy of C 

2See section 2.4 for a counter-example. 
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to another (in which the variable is traditionally denoted w or ζ) where the 
problem is easier to solve. Such an analytic map z �→ w is termed a conformal 
map. 

2.1 Kahan’s example 

This example comes from [Kah87, pp. 187–189], and the ultimate motivation 
is fluid flow in a slotted strip (z space), which we wish to transform to a more 
convenient shape (w space). 

With the usual definitions, the necessary conformal map 

w = g(z) := 2 arccosh 

� 

1 + 
2z 
3 

� 

− arccosh 

� 
5z + 12 
3(z + 4) 

� 

(1) 

is only the same as the ostensibly more efficient � � � 

w 
? 
=q(z) := 2 arccosh 2(z + 3) 

z + 3 
27(z + 4) 

, (2) 

if we avoid the negative real axis and the area 

(x + 3)2(−2x − 9) 
z = x + iy : |y| ≤ 

2x + 5 
∧ −9/2 ≤ x ≤ −3 (3) 

In fact, most computer algebra systems will refuse, these days, to convert one 
into the other, but this does not constitute a proof of difference. 

Challenge 1 Demonstrate automatically that g and q are not equal, by produc­
ing a z at which they give different results. 

The technology described in [BBDP07] will isolate the curve y = ± (x+3)2(−2x−9) 
2x+5 

as a potential obstacle (it is the branch cut of q), but the geometry questions 
are too hard for a fully-automated solution at the moment. 

However, simplification is possible: g can legitimately be rewritten to 

1 
√
3 z + 12 

�√
z + 3 + 

√
z 
�2 

w = h(z) := 2 ln , (4)
3 2 

√
z + 3 + 

√
z 

The technology in [BBDP07] can show this, i.e. ∀z ∈ Cg(z) = h(z), but again 
the geometry questions are too hard for a fully-automated solution at the mo­
ment. Indeed Maple 16 currently gets this wrong: coulditbe(g<>h); returns 
true, which ought to indicate that there is a counter-example. 

Challenge 2 Demonstrate automatically that g and h are equal. 

The technology in [BBDP07], implemented in a mixture of Maple and QEPCAD, 
could in principle do this, but the geometry questions are too hard for a fully-
automated solution at the moment. In addition, we would be left with the 
problem of trusting the underlying demonstration code, so there is the additional 
problem of translating this methodology into a tool such as MetiTarski [Pau12]. 
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2.2 Joukowski (a) 

Consider the Joukowski map [Hen74, pp. 294–298]: 

1 1 
f : z �→ 

2 
z + 

z
. (5) 

Lemma 1 f is injective as a function from D := {z : |z| > 1}. 

If z �→ ζ then 1/z �→ ζ, and there are no other pre-images of ζ (since the 
algebraic inverse of (5) is the solution of a quadratic). If |z| > 1, then |1/z| < 1, 
so z is unique in D. 

In fact f is a bijection from D to C‡ := C\ [−1, 1], and hence has an inverse. 
Of course, (5) is the conformal map C C that equates to the map → 

1 1 x 1 1 y
fR : (x, y) �→ 

2 
x +

2 x2 + y2 
, 
2 
y − 

2 x2 + y2 
(6) 

R2 R2 . However, it is not obvious from (6) alone that fR is a bijection →
D C‡, i.e. that → 

∀x1∀x2∀y1∀y2 x1
2 + y1

2 > 1 ∧ x2
2 + y2

2 > 1 ∧ x1 + x1 = x2 + x2 ∧2
1

2
1 

2
2

2
2+y +yx x

y1 = y2y1 − y2 − x1 = x2 ∧ y1 = y2 . x2
1+y2

1 x2
2+y2

2
⇒ 

(7) 

Challenge 3 Demonstrate automatically the truth of (7). 

We have been unable to do this with either the QEPCAD [Bro03] implementa­
tion of Partial Cylindrical Algebraic Decomposition [CH91] or the Maple imple­
mentation of Cylindrical Algebraic Decomposition via triangular decomposition 
[CMMXY09]. 

However, Brown [Bro12] has been able to reformulate the problem (manu­
ally) to make it amenable to QEPCAD, and indeed solved it in under 12 seconds. 

Challenge 4 Automate these techniques and transforms. 

Having established (or not) that f is a bijection D C‡, we want its inverse. →
Formally, this is trivial, as one referee said 

The inverse of Joukowski is the solution of a quadratic with the usual 
sign ambiguity: 

if ζ = 1 z + 1 , then 2zζ = z2 + 1 and z = ζ ± ζ2 − 1. This is easily within 2 z 
the grasp of computer algebra, as seen in Figure 1. The only challenge might 
be the choice implicit in the ± symbol: which do we choose? 
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Figure 1: Maple’s solve on inverting Joukowski 

> [solve(zeta = 1/2*(z+1/z), z)]; 

ζ + ζ2 − 1, ζ − ζ2 − 1 

Figure 2: Maple’s actual solve on inverting injective Joukowski 

> [solve(zeta = 1/2*(z+1/z), z)] assuming abs(z) > 1 

ζ + ζ2 − 1, ζ − ζ2 − 1 

Unfortunately, the answer is “neither”, or at least “neither, uniformly”. The 
true answer is that, for f a bijection from {z : |z| > 1} to C \ [−1, 1], its inverse 
is ⎧ � ⎪⎪ +�ζ2 − 1 �(ζ) > 0 

f1(ζ) = ζ 
⎨ −�ζ2 − 1 �ζ) < 0 

(8)⎪⎪ + ζ2 �(ζ) = 0 ∧ �(ζ) > 1⎩ � − 1 
− ζ2 − 1 �(ζ) = 0 ∧ �(ζ) < −1 

In fact, a better (at least, free of case distinctions) definition is 

f2(ζ) = ζ + ζ − 1 ζ + 1. (9) 

The techniques of [BBDP07] are able to verify (9), in the sense of showing that 
f2(f(z)) − z is the zero function on {z : |z| > 1}. 

Challenge 5 Derive automatically, and demonstrate the validity of, either (8) 
or (9). In terms of Maple, we would want to see Figure 3, rather than the actual 
Figure 2. 

In terms of derivation, the techniques of [CJ96] seem worthy of investigation, 
but the author has been unable to do this derivation satisfactorily by this route. 

2.3 Joukowski (b) 

Here the function is again given by (5). 

Figure 3: Ideal Maple solve on inverting injective Joukowski 

> solve(zeta = 1/2*(z+1/z), z) assuming abs(z) > 1 

ζ + ζ − 1 ζ + 1 
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Lemma 2 f is injective as a function from H := {z : �z > 0}. 

As in Lemma 1, if z �→ ζ then 1/z �→ ζ, and there are no other pre-images of ζ. 
If �(z) > 0, �(1/z) < 0, and f in therefore injective from H. 

In fact, f is a bijection from H to C \ ((−∞, −1] ∪ [1, ∞)), and hence has 
an inverse. 

Again, it is not obvious from (6) alone that fR is a bijection, now from 
{(x, y)|y > 0}, i.e. that 

x1 = x2y1 > 0 ∧ y2 > 0 ∧ x1 + x2 +∀x1∀x2∀y1∀y2 ∧
x2
1+y2

1 x2
2+y2

2
(10) 

y1 = y2y1 − y2 − = x2 ∧ y1x1 = y2 . x2
1+y2

1 x2
2+y2

2
⇒ 

Challenge 6 Demonstrate automatically the truth of (10). 

It is likely that the ideas of [Bro12] can do this, but again these need automation. 
We have the same challenge over the inverse of f : again formally it is 

f−1=
? 
ζ ± ζ2 − 1, and the only challenge is the ± symbol: which do we choose? 

Here [Hen74, (5.1-13), p. 298] argues for 

f3(ζ) = ζ + ζ − 1 ζ + 1 . (11)� �� � � �� � 
arg∈(−π/2,π/2] arg∈(0,π] 

Challenge 7 Find a way to represent functions such as ζ + 1 

arg∈(0,π] 

Fortunately this one is soluble in this case3, we can write ζ + 1 = i −ζ − 1 ,� �� � � �� � 
arg∈(0,π] arg∈(−π/2,π/2] 

and the latter is the normal sqrt function of [AS64]. Hence we have an inverse 
function � � 

f4(ζ) = ζ + ζ − 1i −ζ − 1. (12) 

Challenge 8 Demonstrate automatically that this is an inverse to f on {z : 
�z > 0}. 

2.4 A Real Example 

Just in case the reader thinks that the real numbers are immune from these 
problems, consider the addition rule for the inverse tangent, quoted as 

x ± y
Arctan(x) ± Arctan(y) = Arctan 

1 � xy 
. [AS64, (4.4.34)][Nat10, (4.24.15)] 

3And is probably soluble more generally, but the author knows of no general work on 
“alternative formulations”. 
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Despite the caveat in [Nat10] that “The above equations are interpreted in the 
sense that every value of the left-hand side is a value of the right-hand side 
and vice versa”, it is in fact the case that the ‘obvious’ two equations are true 
separately, viz. 

x + y
Arctan(x) + Arctan(y) = Arctan	 (13)

1 − xy 

Arctan(x) − Arctan(y) = Arctan 
x − y 

(14)
1 + xy 

Consider (13): This is valid for the multi-valued Arctan, but for the single-
valued arctan only when |1 − xy| < 1, due to a “branch cut at infinity” of 
arctan. Nevertheless, the single-valued version of (13) is often cited as true: see 
for example [Ter12, (5.2.5)]. 

Over the reals, this is a non-challenge, the techniques of [BBDP07] do solve 
it easily, and produce a counterexample. 

3 So why are these challenges? 

3.1 Complex functions and branch cuts 

These are difficult subjects, which have tended to be brushed under the carpet. 
The first truly algorithmic approach is ten years old ([BCD+02], refined in 
[BBDP07]), and has various difficulties. 

1. At its core is the use of Cylindrical Algebraic Decomposition of RN to 
find the connected components of CN/2 \ {branch cuts}. The complexity 
of this is doubly exponential in N : upper bound of dO(2N ) [Hon91] and 
lower bounds of 22

(N−1)/3 
[BD07, DH88]. While better algorithms are 

in principle known ([BRSEDS12] is dO(N
√
N )), we do not know of any 

accessible implementations. 

Furthermore, we are clearly limited to small values of N , at which point 
looking at O(. . .) complexity is of limited use. We note that the cross­
over point between 2(N −1)/3 and N

√
N is at N = 21. A more detailed 

comparison is given in [Hon91]. Hence there is a need for practical research 
on low-N Cylindrical Algebraic Decomposition. 

2. While the fundamental branch cut of log is simple enough, being	 {z = 
x + iy|y = 0 ∧ x < 0}, actual branch cuts are messier. Part of the branch 
cut of (2) is 

2x 3 + 21x 2 + 72x + 2xy 2 + 5y 2 + 81 = 0 ∧ other conditions, (15) 

whose solution accounts for the curious expression in (3). While there has 
been some progress in manipulating such images of half-lines (described 
in [PBD10, Phi11]), there is almost certainly more to be done. 



3.2 Injectivity 

Lemmas 1 and 2 might seem to be statements about complex functions of one 
variable, so why do we need to handle (or fail to handle) statements about four 
real variables to prove them? There are three, rather distinct, reasons for this. 

1. The statements require the	 | · | function (Lemma 1) or the � function 
(Lemma 2), neither of which are complex analytic functions. Hence some 
recourse to real analysis (and therefore twice as many variables) seems 
inevitable, though it would be nice to have a more formal statement and 
proof of this. 

2. Equations (7) and (10) are the direct translations of the basic definition of 
injectivity. In practice, certainly if we were looking at functions R R,→
we would want to use the fact that the function concerned was continuous. 

Challenge 9 Find a better formulation of injectivity questions RN →
RN , making use of the properties of the functions concerned (certainly 
continuity, possibly rationality). 

3. While equations (7) and (10) are statements from the existential theory 
of the reals, and so the theoretically more efficient algorithms quoted in 
[Hon91] are in principle applicable, the more modern developments de­
scribed in [PJ09] do not seem to be directly applicable. However, we can 
transform then into a disjunction of statements to each of which the Weak 
Positivstellensatz [PJ09, Theorem 1] is applicable. 

Challenge 10 Solve these problems using the techniques of [PJ09], 

4 Conclusions 

The aim of this paper has been to demonstrate that translating mathematical 
problems into programs may require some algebraic manipulations whose accu­
racy is not as obvious as one might think, and whose verification is currently 
not as straightforward as we would like, despite the fact that their correctness 
is, in principle, decidable. A summary is given in Table 1. 
These are, largely, concrete challenges that, we hope, will spur practical ad­
vances in this domain. 
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