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Shigella sonnei is an important cause of bacterial dysentery in the developed 

world, and has also recently emerged in transitional countries. Phylogenetic 

analysis based on whole-genome sequencing of a global sample has detailed the 

recent evolutionary history of this pathogen, and shed light on the genetic 

changes associated with this epidemiological shift.   

 

Shigella are human associated pathogenic E. coli, transmitted by the fecal-oral 

route, and are responsible for at least 120 million cases of dysentery each year, with 

approximately 1 million fatalities
1
. On page xx of this issue, Nicholas Thomson and 

colleagues
2
 describe a detailed evolutionary analysis of a diverse collection of 

Shigella sonnei isolates. The work provides an exemplar of how next-generation 

sequencing has transformed our ability to reconstruct historical and contemporary 

patterns of transmission and genome divergence within bacterial pathogens
3
 

 

 Four Shigella serogroups have been described, each of which independently 

acquired a pINV plasmid conferring the ability to invade the gut mucosa
4
. These 

serogroups exhibit distinct epidemiological properties; for example, S. flexneri is 

waterborne and prevalent in the developing world, whereas S. sonnei, which is less 

diverse than other serogroups,  more typically causes disease in the developed world 

via person-to-person spread or contaminated food
5
. Improved sanitation over last few 

decades has led to a decrease in S. flexneri cases in the developing world, but has 

coincided with the emergence of S. sonnei.  

 

Sequencing and phylogenetic analysis 

 

Holt et al. assembled 132 S. sonnei strains isolated between 1943 and 2008 

from four continents. This diverse sample allowed the inference of long-range 

transmission events and local expansion, while the inclusion of older isolates enabled 

reliable temporal calibration of the tree. The whole genomes of pools of 11 or 12 

isolates were sequenced on the Illumina Genome Analyzer GAII, and the authors  

reconstructed robust maximum likelihood trees using RAxML with E. coli and 

Shigella outgroups. Given the tree topology and isolation dates it is possible to test for 

temporal signal in the data, and to date the major nodes in the tree.  Holt et al. 

estimated a mean  mutation rate of 6 x 10
-7

 site
-1

 year
-1

, approximately half the rate of 

S. aureus 
6
, but over twice as fast as the highly monomorphic Yersinia pestis

7
. This 

rate variation between taxa is most readily explained by longer generation times in 

more slowly evolving species.  

 

 Holt et al. estimate the most recent common ancestor of S. sonnei to have 

emerged under 500 years ago, far more recently than previously thought
8
. Four robust 

lineages are resolved from the data, one of which (lineage IV) is represented by a 

single isolate. These major divisions are consistent with S. sonnei biotypes , CRISPR 



types.and are likely to be resolved by IST, MLVA
9
 and PFGE, as these methods are 

broadly consistent with each other 
10

.  The authors used BEAST to infer that lineage I 

and II emerged in the early 19
th

 century, while lineage III is dated to the late 19
th

 

century. Isolates from Europe are dispersed throughout the tree, and different methods 

of analysis provided consistent evidence for a European origin for S. sonnei as whole, 

as well as for each of the individual lineages (Figure 1). 

 

 

 The stability of these four S. sonnei lineages points to ecological or 

epidemiological differences. Regression analysis of root-to-tip distance against 

isolation date suggests that lineage III mutates more quickly than I and II, which the 

authors claim might be owing to population level effects consistent with different 

niches. More direct evidence is provided by the non-random distribution of the non-

European isolates between the different lineages. Isolates from Asia, Africa and 

America are largely restricted to lineage III and in particular are rarely found in 

lineage I. The implication is that lineage III isolates are more capable of establishing 

local populations subsequent to inter-continental transmission.  Moreover, one 

particular lineage III cluster (named Global III), which emerged in the early 1970s, 

corresponds to almost half the isolates in the sample recovered after 1995, and is 

widely geographically distributed. This cluster contains even finer-scaled clusters 

associated with particular countries, pointing to local clonal expansion.  The inter-

continental transmission events out of Europe inferred by the authors are summarised 

in Figure 1. 

 

Spread and antibiotic resistance  

 

Holt et al examined the distribution of known S. sonnei antimicrobial 

resistance mutations within the phylogeny, and found that global dissemination is 

strongly associated with multiple drug resistance (MDR). The independent acquisition 

of mutations in the same resistance gene within different clusters suggests strong 

selective pressure. Although antimicrobial treatment has little effect on Shigella, Holt 

et al speculate that the advantage conferred by resistance may operate by increasing 

shedding (and transmissibility) of the bacteria
11

, rather than simply enhanced survival 

in the host. The acquisition of Class 2 integrons in biotype g (lineage III) has been 

implicated in increased spread of S. sonnei, and is known to have occurred in southern 

Italy by the late 1980s
12

. The data of Holt et al, reveal three independent acquisitions 

of these elements within lineage III isolates during the 1960s and 1970s, immediately 

prior to international dissemination. It remains unclear why class 2 integrons are not 

found in other lineages, one possibility being the presence of potentiating mutations 

specifc to lineage III.    

 

The key role of antibiotic resistance genes in the global dissemination of 

specific S. sonnei clusters is underscored by limited evidence for positive selection in 

other genes. However, the analysis excludes the 180Kb pINV B plasmid, key in S. 

sonnei pathogenesis.  This plasmid harbours the locus encoding O antigen 

biosynthesis, known to be under intense selection, and horizontally acquired by S. 

sonnei from Plesiomonas shigelloides
13

, a gastroenteritis causing Enterobacteria 

associated with poor water quality. Holt et al. argue that the cross-reactivity in O 

antigens between S. sonnei and P. shigelloides helps to explain the recent emergence 

of S. sonnei in transitional countries as improved sanitation would reduce 



environmental immunisation induced by P. shigelloides infection
14

. Although 

potentially a public health conundrum, the benefits of clean drinking water will likely 

be of greater significance.  

 

Next steps 

 

Holt et al. neatly illustrate how whole-genome sequencing of pathogens 

combined with phylogenetic analysis can be used to draw inferences over multiple 

scales, and that a small number of recently emerged clones are responsible for a 

disproportionately large share of the global public health burden resulting from S. 

sonnei infection. The acquisition of antibiotic resistance plays a key role in the spread 

of these clones, although the precise selective advantage conferred is unclear. To what 

degree the decline in environmental P. shigelloides has impacted on the spread of S. 

sonnei, and how this might possibly dovetail with the acquisition of antibiotic 

resistance, is also unknown. Finally, although Holt et al. raise the relevance for 

development of a vaccine, the implications for outbreak investigation are perhaps 

even more pertinent. Intercontinental travel and mass gatherings sharing a common 

food source
15

 present ongoing risks for S. sonnei infection, and currently PFGE is the 

standard tool for epidemiological investigation.  
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