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Abstract 

Pathogenic bacteria secrete various virulence factors, including toxins, lipases and 

proteases that allow them to infect, breakdown and colonize host tissue. Among various 

modes of action that the pathogenic bacteria use to damage the host, pore formation (by 

pore forming toxins (PFTs)) and lipid hydrolysis (by phospholipases) modes are common 

in damaging the eukaryotic cell membrane. PFTs in their monomeric form are 

extracellular diffusible and able to form hydrophilic pores in cell membrane while 

phospholipases cleaves and hydrolyzes the ester bonds of most phospholipids in cell 

membrane. Both modes of action cause uncontrolled permeation of ions and molecules 

across cell membrane, leading to cell death by apoptosis or necrosis. In this work, the 

toxins secreted by two clinically important human pathogens, methicillin susceptible S. 

aureus (MSSA476) and Pseudomonas aeruginosa (PAO1) were studied via their 

interaction with a planar tethered bilayer lipid membrane (pTBLM) using surface 

plasmon resonance spectroscopy (SPR) and electrochemical impedance spectroscopy 

(EIS). Detection and discrimination is based on lipid-loss (lipid hydrolysis by 

phospholipases) or non lipid-loss (pore formation by PFTs) from pTBLM upon 

interaction with supernatant of pathogenic bacteria. Using EIS and SPR, it is 

demonstrated that major toxins of S. auerus are PFTs while most of toxin associated with 

P. aeruginosa are more lipid damaging lipolytic enzymes. Such a format might have 

future utility as a simple assay for measuring the presence membrane lytic virulence 

factors in clinical samples.  
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1. Introduction 

Pathogenic bacteria have various virulence factors and pathogenic modes. There is 

clinical utility in being able to identify quickly and easily primary modes of bacterial 

virulence in an infection by an unknown organism, since this can both help to 

approximately identify the species and may affect the choice of drug / procedure to treat a 

patient. For example, two common species of bacteria: S. aureus and P. aeruginosa both 

have rather different primary virulence factors, which can affect the clinical outcome of a 

patient infected with such bacteria [Bukowski et al. 2010, Liu 1974]. This paper suggests 

a putative sensor construct that rather than identifying specific bacteria, instead detects 

the way in which secreted toxins and enzymes  interact with a cell mimetic solid 

supported lipid membrane. 

Human pathogenic bacteria infect host cells in a variety of ways. Many bacteria secrete 

toxins and enzymes which damage the cell membrane [Geny and Popoff 2006]. 

Normally, with the exception of transport through specific ion channels, the cell 

membrane acts as an ion-impermeable barrier. Bacteria such as S. aureus secrete various 

virulence factors including α-toxins, δ-toxins and leukocidins which can bind to cell 

membranes and form pores [Song 1996, Szmigielski et al 1999, Mellor et al. 1988]. Such 

pore forming toxins (PFTs) are highly lethal to targeted cells as they disrupt the 

controlled permeability of the cell membrane barrier which is vital for cell homeostasis 

[Parker and Feil 2005]. Many PFTs secreted by common pathogenic bacteria such as 

Streptococcus, Listeria and Clostridium take advantage of the presence of cholesterol in 

cell membranes and are specifically able to bind to cholesterol to form relatively large 

pores [Gonzalez et al. 2008]. These large pore formers are called cholesterol binding 

toxins (CBTs) or cholesterol dependent cytolysins (CDCs) and kill the host cells by 

uncontrolled permeation of ions and molecules, leading to lysis of the cell by necrosis or 

apoptosis [Gilbert 2002]. Many toxins produced by common pathogens are lipases which 

specifically hydrolyze the ester bonds of phospholipids and sphingomyelins making up 

cell membranes [Songer 1997, Titball 1993, Murakami and Kudo 2002, McDermott et al. 
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2004]. Other toxins activate intracellular targets of the host cell and require complex 

transport of enzymatic toxin fragments through binding of toxin-subunit onto particular 

receptors at extracellular sites of the cell membrane. These toxins include those that 

inhibit the release of neurotransmitters, e.g. botulinum toxin; over-activate the immune 

system e.g. super-antigens such as toxic shock toxin 1 (TSST-1); disrupt intracellular 

signaling and inhibit intracellular protein synthesis, e.g. cholera toxin [Schmitt 1999].  

The aim of this work was to study membrane toxins from S. aureus and P. aeruginosa via 

their interaction with biomimetic planar lipid bilayer membranes on gold films; so-called 

planar tethered bilayer lipid membranes pTBLM. The change in electrochemical 

impedance of the pTBLM was measured when the hydrophobic seal created by the lipid 

bilayer was damaged or broken by PFTs and enzymatic lipases. Surface Plasmon 

Resonance (SPR) was used to gain information on the measured mass loss or mass gain at 

the bilayer interface which could be attributed to two primary modes of action: Pore 

formation by exotoxins such as α-hemolysin or direct loss of lipids via hydrolysis by 

enzymes such as phospholipase. The two modes of action are shown schematically in 

figure 1. 

 

Figure 1 

 

2. Materials and methods 

The thiolipids used for the self-assembly of mono-molecular layers on gold surfaces were 

2,3-di-O-phytanyl-glycerol-1-tetraethylene glycol-D,L-lipoic acid ester lipid (DPhyTL) 

and cholesterol-pentaethyleneglycol (CholPEG) [Schiller et al 2003]. A mixture of DPTL 

and CholPEG were used as the mixed-monolayer which served as the lower half of the 

surface-decoupled lipid bilayer. 1,2-di-O-phytanoyl-sn-glycero-2-phosphocholine 

(DPhyPC) and cholesterol are commercially available lipids, and were obtained from 

Avantis Polar Lipids. A mixture of DPhyPC and cholesterol were used to prepare vesicles 

which were fused onto the mixed-monolayer to form the upper half of lipid bilayer to 

complete the formation of pTBLM. For the purified toxins, α-hemolysin from S. aureus 
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in the form of lyophilized toxin powder (α-HL) and Phospholipase A2 from Bee Venom 

(PLA2) were directly purchased from Sigma Aldrich UK, and used without further 

purification. Bacterial growth was carried out in Lauria Broth (LB), which was obtained 

from Invitrogen. SPR measurements were performed using gold coated BK7 glass disks 

(25 mm in diameter, 50nm thick gold layer) supplied by Windsor Scientific, UK. All the 

solvents used in preparation of lipids and the salts for preparing electrolytes were 

analytical and high purity grades respectively. High purity water (>18.2 MΩ) from 

Millipore was used to prepare the lipid solution, electrolyte and nutrient solutions for 

bacterial growth. 50 nm diameter polycarbonate porous membranes from Avestin Europe 

GmbH, Germany were used to prepare the small unilamellar vesicles (SUVs) by 

extrusion using an Avestin mini-extruder.  

Preparation of pTBLM on gold surfaces has been previously described in previous 

communications [Thet and Jenkins 2010]. Briefly, 0.2 mg/ml of DPhyTL and CholPEG 

in 1:1 molar ratios was prepared in ethanol and the mixed monolayer was self-assembled 

onto gold surface of the BK7 glass disk for 24 hours. SUVs were prepared in MilliQ 

water with a lipid mixture of 67 mol% DPhyPC and 33 mol% cholesterol. The 2 mg/ml 

lipid and cholesterol mixture was first heated at 60°C for 30 minutes and then extruded 

through a 50 nm diameter nanoporous polycarbonate membrane 21 times. SUVs were 

directly fused onto the monolayer which was hydrated with a solution of 100 mmol/dm
3
 

NaCl + 10 mmol/dm
3
 CaCl2. Two hours later, the gold surface was rinsed with the same 

electrolyte and pTBLM formation was completed. pTBLM formation was characterized 

by measuring the electrical impedance of the bilayer with EIS and measuring the SPR 

resonance angle shift (not shown - figures S1 and S2 in supplementary section).  

Human pathogenic bacteria studied in this work were clinically isolated strains of S. 

aureus (MSSA476) and P. aeruginosa (PAO1) [Holden et al 2004, Winsor 2009]. All 

bacterial species were cultured in autoclaved LB medium at 37 °C for 16 hours in a 

temperature controlled shaker incubator. The bacterial concentration was estimated by 

measuring the optical density (600 nm) of overnight cultured medium which was around 

1.9 – 2A, absorbance in both MSSA476 and PAO1. Alternative plating and colony 

counting of overnight cultured bacterial growth LB medium gave approximately 10
9
 

colony forming unit per milliliter (CFU/mil). For SPR measurements with supernatant of 
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bacterial solution, the cultured bacterium was centrifuged at 12,000 rpm for 3 minutes. 

Then the supernatant was separated from bacterial pellet and filtered through a 0.22 µm 

diameter filter to eliminate cells from supernatant. All the LB media used for bacterial 

culture was pre-filtered and sterilized.  

A micro-Autolab with inbuilt frequency response analyzer (FRA module, Ecochemie, 

Netherlands) was used to apply a sinusoidal 10 mV amplitude waveform in the frequency 

range of 5 kHz to 20 mHz, and the current response was measured to determine the 

impedance of the pTBLM. The gold surface on the BK7 glass substrate was used as the 

working electrode while a coiled-platinum wire and an Ag/AgCl were used as the counter 

and reference electrodes respectively. The impedance was measured for a gold surface 

area of 0.28 cm
2
 which was defined by an O ring attached to a Teflon cell with an 

electrolyte capacity of 1 ml. The media used during the impedance measurement for 

purified toxins and bacterial supernatant were 100 mmol/dm
3
 NaCl + 10 mmol/dm

3
 

CaCl2 buffer and supernatant of overnight bacterial cultured LB medium respectively. 

Surface Plasmon Resonance (SPR) spectroscopy was done on an Autolab ESPRIT 

(Metrohm) with two separate flow channels in parallel. Each channel has a sample 

volume of 150 µl and the exchange of electrolyte was operated by peristaltic pumps. The 

temperature of the electrolyte in the measuring channels was controlled and maintained 

using a thermal bath with a circulator (HAAKE, Thermo Electron Cooperation, UK). For 

optimum interaction of bacterial toxins and pTBLM, the electrolyte temperature was 

maintained at 37±0.1 °C during the SPR measurement. In control SPR experiment, 100 

mmol/dm
3
 NaCl + 10 mmol/dm

3
 CaCl2 buffer was used as a medium to add purified 

toxins (figure 4). During experiment with supernatant, saline buffer was first exchanged 

with sterilized LB medium which was kept at 37°C (data not shown – figure S7 in 

supplementary section) until SPR signal was stabilized. Then the medium was replaced 

with LB supernatant and SPR data was recorded at 37°C (figure 6a and 6b). All 

experimental trends were qualitatively reproducible over multiple experiments, but due to 

the difficulty in making pTBLMs with identical impedances typical, rather than average 

quantitative data are provided. 
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3. Results and discussion     

3.1. Hemolytic action of test bacteria on blood agar     

The bacteria, S. aureus, P. aeruginosa and a non-pathogenic species of E. coli DH5α, 

used in this investigation were initially tested for their direct hemolytic activity on a 

blood-agar plate. A pale halo around the streaked pathogenic species, the P. aeruginosa 

and S. aureus, was clearly observed, but not around the non-pathogenic E. coli (figure 2). 

This measurement confirms that the pathogenic species secrete considerable quantities of 

hemolytic lysing agents. 

 

Figure 2 

 

3.2. Impedance and SPR study of the effect of key bacterial toxins: phospholipase A2 

and α-hemolysin on pTBLM 

The genome sequence of both S. aureus MSSA 476 and P. aeruginosa PAO1 has been 

published and genome mining for putative virulence factors reveals genes encoding for 

PFTs and membrane-lysing agents [Holden et al 2004, Winsor 2009].  The S. aureus 

MSSA 476 genome carries several genes that encode mostly the PFTs, hemolysin and 

leukocidin with a few lipases. The P. aeruginosa PAO1 genome carries genes for 

exotoxin A and hemolytic phospholipases. The only PFT is exotoxin A, which mainly 

acts as an inhibitor of intracellular protein synthesis. With this in mind, this study has 

looked at whether: 

(a) The mode of interaction of the two primary virulence factors with lipids in a pTBLM 

could be distinguished when measured both by impedance spectroscopy and Surface 

Plasmon Resonance. 

(b) Whether the bacterial supernatant of the two bacterial species growth media, 

containing impure toxins, could be seen to interact differently with lipids in the pTBLM. 

The details of the impedance analysis, including spectra and fitting have been described 

in an earlier communication [Rose and Jenkins 2007]. In control experiment, the 

impedance of pTBLM was stable at room temperature with no significant change in 

impedance (data not shown – figure S3 in supplementary section). In a separate 
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impedance measurement, the sensitivity and minimum concentration of purified α-HL 

was tested at 37°C. Toxin concentration from 0.12 to 500 nM was serially added and 

change in pTBLM resistance was observed the toxin concentration as low as 3 nM (data 

not shown – figure S4 in supplementary section). Figure 3 summarizes the key findings 

with pTBLM resistance and capacitance being measured before and after addition of the 

PFT, α-hemolysin (α-HL), and the lytic enzyme, phospholipase A2 (PLA2). A large effect 

on the pTBLM resistance was observed, with both PLA2 and α-HL giving an 80% 

reduction compared with the initial value. Both PLA2 and α-HL adversely interfered with 

lipid bilayer by lipid hydrolysis and pore-formation respectively. This resulted rapid 

increase in ion-permeability of membrane which in turn lower the pTBLM resistance. It 

should be noted that some differences in bilayer re-constitution give variations in pTBLM 

resistance between membranes made at different times, but otherwise (as far as possible) 

identical conditions were used. An increase in capacitance is seen in both cases, but with 

a significantly greater change for PLA2 than α-HL. This  is probably attributable to 

significant PLA2 catalyzed lipid hydrolysis and subsequent loss, while the α-HL forms 

pores in the membrane but has only a small effect on the bilayers dielectric properties. 

However, no information about the putative enzymatic binding is available from 

impedance measurements alone. 

 

Figure 3 

  

3.3. SPR studies of the stability of pTBLM at 37°C in LB and during toxin 

interaction 

In order to test the effect of elevated temperature (37°C) of the medium, SPR was used to 

measure the stability of pTBLM by varying the temperature of 100 mmol/dm
3
 NaCl + 10 

mmol/dm
3
 CaCl2 buffer from 24°C to 37°C and vice versa. Effect of temperature was 

reversible and SPR data were stable over time at two different temperatures (data not 

shown - figures S5 and S6 in supplementary section). Additionally the stability of the 

pTBLM in LB media at 37 °C as a control was examined. SPR was used to follow the 

membrane stability for up to 5 hours (data not shown - figure S7 in supplementary 
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section) and the membrane was stable over this time. Binding of 0.5 µg/ml α-HL into the 

pTBLM and subsequent formation of heptameric α-HL pore was observed as positive 

shift about 852 m° in resonance angle (figure 4). This infers that the pTBLM stayed intact 

physically and maintained a bilayer structure which supported the insertion of α-HL toxin 

and formation of pores. Moreover general membrane degradation was not seen upon 

addition of α-HL.   

 

Figure 4 

 

The binding of 0.5 µg/ml PLA2 was also measured and the data are presented in figure 4. 

These results show a very different change in SPR resonance angle, implying a very 

different mode of action. Initial binding of toxin appears to take place, as evidenced by an 

increase of around 200 m° in resonance angle in a very short time (20 seconds) followed 

by an almost instantaneous decrease in SPR resonance over the subsequent 900 seconds, 

giving a net decrease of 630 m°. A decrease in resonance angle is suggestive of a 

decrease in mass density at the surface. A reasonable interpretation of the data in figure 4 

is that the PLA2, after initially binding to the membrane surface, rapidly catalyses 

hydrolysis of the lipid head groups resulting in a large scale loss of material (lipids) from 

the gold surface.  

 

The initial binding of PLA2 to lipid membranes and delay before lysis is observed has 

been seen in previous studies which looked at the interaction of PLA2 with lipid vesicles 

[Sanchez 2002]. In a study by Williams et al 2006, the permeation of the bilayer was 

observed via the leakage of encapsulated fluorescent dye from solid supported lipid 

vesicles. Both studies showed a delay between PLA2 binding to a lipid membrane and 

lysis of around 8-10 minutes. This was longer than observed in this study, possibly due to 

this study deploying a planar bilayer rather than vesicles for detection, decreasing the 

mass-transport time required for a PLA2 enzyme to ‘locate’ the membrane and lyses it, or 

greater strain in planar bilayer systems, perhaps leading to a catalytic ‘unzipping’ of the 

bilayer by PLA2. 
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The binding of α-HL (figure 4) shows an increase in SPR resonance from the moment of 

applying the toxin. The binding curve resembles a standard Langmuir type binding 

isotherm, suggesting insertion of protein into or on the pTBLM but no lipid loss, in 

agreement with previous studies of the interaction of α-HL with planar bilayers by 

Vockenroth et al 2008. 

 

3.4. Interaction of bacteria supernatant with pTBLM 

Bacteria are living organisms, they respond to their environment in various ways – 

including down or up regulation of various biochemical processes which can lead to 

enzyme and toxin secretion, extra polysaccharide secretion, surface attachment, 

colonisation and biofilm formation. For this reason, in order to make analysis of the SPR 

data more straightforward, only the supernatant in which the bacteria had grown was 

studied. Bacteria secrete toxins either as they grow (in the case of S. aureus) or following 

growth in the stationary phase (for P. aeruginosa). Both bacteria were grown overnight 

and their optical density measured (see supplementary data). The bacteria took 

approximately 12 hours to reach their stationary phase, where they remained for a further 

4 hours. The filtered growth medium (LB broth) will contain enzymes from the bacteria 

secreted both as they grow and in their stationary phase. In comparison with the 

experiments which studied the interaction of pure toxin with pTBLMs, the response of 

pTBLM to bacterial supernatant creates a more complex situation.  

Non-specific toxins in the MSSA 476 genome include PFTs as α-hemolysins and 

leukocidins [Sanchez et al 2002]. Other toxins present in the supernatant of this strain of 

S. aureus include pyrogenic exotoxins which require the present of specific receptors on 

the cell surface to be able to activate. Although PFTS make up only a small part of the 

‘armory’ of S. aureus MSSA 476, it is likely that will dominate interactions with the 

bilayer. The lower shift in SPR resonance angle compared with pure α-HL suggests a 

fairly low expression level of membrane-interactive toxins in the supernatant. However, 

as shown in the summary of impedances in figure 5, the trend on addition of supernatant 

from the two bacterial overnight cultures is broadly similar to that observed for pure 

toxins (figure 2). 
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Figure 5 

 

The SPR experiments involved forming pTBLMs in standard lipid buffer and once 

bilayer formation had taken place exchanging the buffer for LB broth and warming the 

cuvette to 37 °C. The pTBLM films were left for at least 50 minutes to stabilise. On 

addition of supernatant from S. aureus MSSA 476, an increase in SPR resonance angle 

(figure 6a) of around 40 m° was observed, suggesting that material in the filtered 

supernatant was binding to the bilayer. In contrast, on addition of filtered supernatant 

from P. aeruginosa (figure 6b) a decrease in SPR resonance angle was observed of up to 

150 m° (over 5 hours) suggesting significant loss of lipid from the surface and little 

adsorption of material in the supernatant. The low adsorption is possibly due to the fatty 

acid hydrolysis products of the lytic enzymes present in the supernatant helping to 

solubilise proteins and material in the supernatant. It is known that many virulence 

factors associated with the gram-negative bacteria P. aeruginosa are endotoxins, lipases 

and lipopolysaccharides [Winsor 2009]. The results in figure 6b show an apparent 

similarity with the effect of PLA2 in figure 4, suggesting that the primary mode of 

virulence in the supernatant was lytic enzymes such as phospholipases. 

 

Figure 6 

 

4. Conclusions 

In conclusion, we have implemented a putative pTBLM based SPR sensor able to 

discriminate the clinically important human pathogenic bacteria by their common mode 

of action against host cell membranes. Discrimination was based on interaction of lipid 

bilayer with the supernatant of toxins secreted by Methicillin suspected S. aureus 

(MSSA476) and P. aeruginosa (PAO1) and the detection and discrimination mechanism 

was either lipid loss or non-lipid loss from the pTBLM following interaction with 

relevant but common PFTs and lipid damaging enzymes. SPR measurements with 
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purified α-HL and PLA2 clearly indicated the resonance angle shift due to pore formation 

and lipid lysis. Supernatant of bacterial growth medium of S. aureus (MSSA476) and P. 

aeruginosa (PAO1) were tested against the pTBLM system and it was found out that the 

toxins mostly associated by S. aureus (MSSA476) were PFTs while P. aeruginosa 

(PAO1) secreted more lipid damaging lipolytic enzymes and lipopolysaccharides. 
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Figures 

 

 

Figure 1. Schematic depictions of pTBLM with (a) the insertion of PFT monomers and 

subsequent pore formation, and (b) loss of lipids from the surface due to the hydrolysis of 

ester links phospholipases. 
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Figure 2. Direct observation of hemolysis of red blood cells on a blood agar plate by S. 

aureus MSSA 476 and P. aeruginosa PAO1. No activity was observed by the E. coli 

DH5α. 
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Figure 6a. SPR response on addition of filtered supernatant from overnight culture of S. 

aureus MSSA 476 
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Figure 6b. SPR response on addition of filtered overnight supernatant from overnight 

culture of P. aeruginosa PAO1. 

 

 

 


