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ABSTRACT 

The oral delivery of drugs is considered by decision-makers in the pharmaceutical 

industry to be the most appealing route of administration. This belief has led to the 

identification of many very successful drugs, but also to the downfall of some 

promising therapeutics that failed to meet criteria required for sufficient oral 

bioavailability. Efforts to correct these deficiencies have led to a plethora of creative 

strategies to overcome the physical, chemical, and biological barriers that limit the 

efficient and consistent delivery of drugs that are not readily absorbed following oral 

administration. The goal of this perspective is to describe these barriers to oral drug 

delivery in relation to some of the work currently being undertaken by the community 

of European scientists.  This perspective is not intended to be inclusive and the author 

apologizes in advance to the many scientists working in Europe whose recent work was 

not included.  

 

BACKGROUND 

It is unclear why people prefer taking a drug by the oral route over just about every 

other method; commonly these drugs are administered in a small- to moderate-sized 

pill or capsule form. Thinking about it, swallowing an object without mastication is 

contrary to all our default mechanisms for items that enter our mouth. Most mammals, 

other than canines that wolf their food, will examine a pill or capsule in their mouth 

and then reject it as something foreign and unacceptable. Indeed, pilling a cat can 

lead to a rather stressful outcome for the pet and lacerations for the owner. The cat, 

however, is merely following its natural survival instinct of first examining any 

material that enters its mouth prior to mastication and swallowing. While the 

reason(s) behind man’s willingness to so readily swallow unknown materials remain 

obscure and quite debatable, it leaves the pharmaceutical industry with a huge 

challenge of finding new therapeutic entities that can be delivered by this preferred 

route of administration.  

Successful oral delivery requires the selection of a drug that selectively hits a 

pharmaceutical target as well as the identification of a formulation for that drug 

which provides the required pharmacokinetic (PK) profile to result in a desired 

pharmacodynamic (PD) outcome. I have heard it said by several individuals associated 
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with the pharmaceutical industry that all the “low hanging fruit” of drug discovery is 

gone. What I believe these individuals are really saying is that most of the therapeutic 

targets where compound could be readily found with the required properties of high 

bioavailability, PK profile and safety window following oral administration have been 

identified and drugged (a term used by pharmaceutical executives to describe a 

commercially successful program). While the technologies that were used to prepare 

these successful oral formulations should not be trivialized, it has become clear that 

these previous technologies are insufficient to meet the challenges of potential drugs 

that are not readily absorbed following oral administration. Some of the challenges 

that must be addressed include instability in the gastrointestinal (GI) tract, poor 

uptake leading to low bioavailability, poor PK characteristics, insufficient target 

access, and off-target effects.  

I cannot definitively say whether those individuals predicting limited future 

opportunities for identifying promising oral drug candidates are right or wrong. There 

are some facts, however, that support their pessimism. Cumulatively, the 

pharmaceutical industry has spent billions searching for compounds with same 

properties of successful oral drugs [1]. Multiple, extensive, high-throughput screens 

(HTS) performed by the major pharmaceutical companies have looked at natural 

products as well as herbal and even traditional medicines [2]. Further, some of these 

HTS efforts were performed in combination with genomic, proteomic, kinomic, and 

metabalomic data [3-5]. These efforts have yielded a few molecules for the 

pharmaceutical industry to develop; the factor Xa inhibitor rivaroxaban being one of 

these few success stories [6]. There certainly has not been a tidal wave of new oral 

blockbusters, however, that some analysts had predicted when these new HTS 

technologies first identified [7].  

With the continued desire for new (and old) therapeutic agents to be administered by 

the oral route and the likelihood that HTS efforts and elaborate search methods will 

not identify as many new lead compounds as hoped [8], pharmaceutical scientists have 

logically focused on ways to improve the bioavailability of therapeutic agents that 

would not be otherwise considered appropriate for oral drug delivery. Previous studies 

to optimize the delivery of currently approved drugs have identified a wide range of 

creative methods to stabilize labile compounds that can deliver these materials to a 

specific segment of the GI tract. Building upon that previous knowledge base, more 
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recent efforts have focused on stability approaches and on strategies to improve the 

uptake of drugs that would otherwise not be absorbed following oral administration. 

Approaches currently being taken by European research groups to address some of 

these issues are the focus of this perspective.  

 

DRUGS DELIVERED BY THE ORAL ROUTE CONFRONT MULTIPLE CHALLENGES 

The complex digestive mechanisms of the GI tract are designed to safely, selectively, 

and effectively absorb as many nutrients as possible from our diet. Materials 

administered orally experience a very harsh environment in the stomach that is 

strongly acidic (pH 2-3) and contains a variety of enzymes that include lipases and 

proteases which normally function to initiate foodstuff digestion and destroy unwanted 

pathogens and toxins. Partly digested material (chyme) is then passed to the first 

segment of the small intestine (duodenum) where pancreatic enzymes, bicarbonate 

buffer, and bile salts are released from the common bile duct in coordination with the 

presence of chyme. This bolus of partly digested material then proceeds along the 

jejunum and ileum segments of the small intestine. During this transit the pH of the GI 

tract lumen rises from the acidic level in the stomach, to 5-6 in the duodenum, to 

neutrality (~pH 7) in the mid-to-distal jejunum; along the way large protein fragments 

are cut into small peptides, then processed further by peptidases at the apical surface 

of intestinal epithelial cells prior to selected uptake as amino acids as well as di- and 

tri-peptides [9]. Simultaneously, lipids in the GI tract have been solubilized by bile 

salts, broken down into free fatty acids and di- and tri-glycerides, and absorbed. 

Complex carbohydrates are cut into mono- and di-saccharides that are selectively 

taken in through specific transporters; similarly, vitamins and co-factors are also 

absorbed via specific uptake mechanisms. Poly-nucleic acids are extensively digested 

and taken up as nucleosides. Thus, the digestive processes of the GI tract are 

coordinated to sequentially breakdown complex nutrients into their elemental building 

blocks and then selectively absorb these nutritional elements in an organized fashion.  

In consideration of the many aspects of GI-mediated catabolic processes a variety of 

methods, such as those described above, can limit direct exposure of labile molecules 

to the most damaging aspects of these digestive events. Since the stomach, 

duodenum, and early jejunum are particularly harsh environments, many efforts have 
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focused on by-passing these regions and deliver poorly-absorbed drugs to the late 

jejunum and ileum. In essence, the goal is to allow passage of labile drugs through the 

stomach in a protective structure and then release them later in the GI tract to allow 

their absorption. Many poorly-absorbed drugs are not only labile but also are not 

readily transported across the intestinal epithelia once they reach the latter jejunum 

and ileum. Thus, acceptable methods to improve their uptake must also be identified 

[10]. In this perspective, some of the recent efforts taken by European scientists in 

these two areas of research are discussed. Additionally, I have tried to highlight some 

of the exceptional European expertise related to principles of oral drug delivery design 

and evaluation. I apologize in advance for omissions in this non-exhaustive and 

personal selection of recently published work.  

 

PROTECTION FROM THE HIGHLY ACIDIC ENVIRONMENT OF THE STOMACH 

It is not surprising that many drug candidate molecules can be altered or destroyed in 

the harsh, acidic, and enzymatically rich environments of the stomach, duodenum, 

and early jejunum. If these actions do not completely destroy the drug, its partial 

destruction or modification can lead to unacceptably low or inconsistent delivery 

profiles. The likelihood of destructive outcomes is further enhanced when the drug 

entity is retained in the stomach for extended periods of time which can occur due to 

diet and individual variations. One obvious way to address this situation is to isolate 

the drug from these harsh GI tract digestive environments as much as possible. There 

are well-established methods of coating capsules and tablets with polymers that are 

stable at the low pH of the stomach but dissolve in the more neutral pH experienced 

in the lumen of the late jejunum or ileum. Clearly, understanding the physiological 

characteristics of stomach retention and transit would be benefited by studies that 

examine parameters of how and why materials are retained by or pass through the 

stomach [11].  

Eudragit® (poly(meth)acrylate) polymers are an example of an acid-stable material 

that has been used to coat tablets and capsules to protect a drug compound against 

the low pH and enzymatic burden of the stomach and proximal small intestine. Hot-

melt extrusion technology has been applied to Eudragit 4155F and polyvinylpyrrolidone 

for the preparation of amorphous solid dispersions of drug/polymer systems with good 
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drug stability under conditions experienced in the stomach and characteristics that 

would target drug release in the colon [12]. Tannic acid combined with poly(N-

isopropylacrylamide) and poly(2-isopropyl-2-oxazoline) has been examined to provide 

hydrogen-bonded coating films with the promise of biocompatibility and lower critical 

solution temperature while still being pH-responsive at physiological temperatures 

[13]. Additionally, a food-grade lyotropic liquid crystal system composed of 

monolinolein and linoleic acid has been described that responds to pH variations as a 

reversible switch which results in changes of both structure and physical properties; 

characteristics that could facilitate targeted delivery to the small intestine or colon 

[14].  

Rather than a single capsule or tablet dosage form being protected during passage 

through the stomach, one could envisage coating individual particles. Solid pH-

dependent drug-releasing nanoparticles, prepared using hydroxypropyl-β-cyclodextrin 

and/or Eudragit® L100, have been described [15]. Evaluation of cationic liposomes 

coated with the pH-responsive anionic polymer Eudragit S100 suggests these materials 

could be used for delivery to the distal regions of the small intestine or to the colon 

[16]. With respect to colon targeting, Eudragit®-based drug delivery systems, 

prepared via hot melt extrusion, appear to work quite well for this task [17]. Another 

recently-described effort to produce enteric-coated microparticles for oral 

administration employed a water-in-oil-in-water solvent evaporation technique and 

used the pH-sensitive polymer cellulose acetate phthalate or poly(methyl 

methacrylate-acrylic acid) copolymer with varying amounts of polyvinyl alcohol as an 

emulsion stabilizer [18]. 

Due to the heterogeneity within some solid oral dosage systems it is difficult to obtain 

a precise prediction of the actual pH within the matrix microenvironment. Several 

strategies have been investigated to provide a more cohesive picture of conditions 

within such as system: integration of data from a pH indicator dye, fluorescence 

imaging and electron paramagnetic resonance (EPR) imaging [19]. While understanding 

pH changes that might be occurring within the dosage system is important, it is 

equally important to tune pH-regulated polymer coating systems for drug release with 

pH events occurring in the GI tract. Laboratory animals are the mainstay of preclinical 

testing for such oral drug delivery strategies with guinea pigs, rabbits, and pigs being 

commonly used species; each species has similarities and unique differences to man. A 
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recent evaluation of pH in the stomach, small intestine, and colon as well as water 

content in the same areas of these species has better defined some of these 

similarities and differences [20]. And finally, once a protective polymeric coating 

begins to dissolve, the material inside a coated capsule or tablet must leave the 

system quickly or it will be digested without ever reaching the epithelial surface for 

transmucosal uptake. Ordered mesoporous silica materials have been described as a 

promising material to produce immediate-release oral-dosage formulations [21].  

 

IMPROVING DRUG STABILITY IN THE GI TRACT  

Safe passage of labile therapeutic agents through the low pH environment of the 

stomach and duodenum does not ensure their stability against the exhaustive 

enzymatic burden of the small intestine. Polymeric structures offer one approach to 

shield labile materials until they can reach the mucosal surface (discussed below). A 

protective matrix, however, does not have to be in the nanoscale. For example, a 

biocompatible polymer such as ethylcellulose can be used to microencapsulate 

formulations to produce a liquid, sustained-release pharmaceutical for oral 

administration [22]. Similarly, a hydrogel system composed of methacrylic acid and 

poly(ethylene glycol) that releases entrapped drug with zero-order kinetics can be 

used [23]. Microparticles can also be produced by a spray congealing technology using 

Gelucire® 50/13 that would function as a hydrophilic carrier; data showed a 

significant improvement in the oral bioavailability of flavolignans found in Silybum 

Marianum dry extract [24].  

Alginate/chitosan microparticles containing a biopharmaceutical have been prepared 

by spray-drying an aqueous drug/alginate solution and subsequent cross-linking with 

Ca2+ and chitosan. These particles protect the incorporated biopharmaceutical until 

they are taken up by both M cells in Peyer's patches and into enterocytes; only M cell 

endocytosis appears to provide microparticle transport from the epithelium toward 

deeper sub-epithelial regions [25]. Promising gel-based emulsions for the preparation 

of self-microemulsifying drug delivery system (SMEDDS) were identified using 

molecular modeling and empirical force field calculations; the Flory-Huggins theory 

was used to study paired interactions of cyclosporine A with various types of 

surfactants to select a most promising candidate formulation for the oral delivery of 
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cyclosporine A [26]. Similarly, a system composed of poly(acrylic acid)-cysteine and 

reduced glutathione has been examined in vitro and in vivo as an oral drug delivery 

system and shown to improve the bioavailability of compounds that are P-gp and 

CYP450 substrates [27].  

All formulation excipients must be vetted by a variety of criteria to assess purity, 

stability, extent of systemic exposure, bio-distribution, elimination, etc. Excipients for 

oral drug formulations are typically selected from list of agents that have a long 

history of oral exposure, such as through food substances, and categorized as generally 

regarded as safe or GRAS. Some new stabilizing agents that are being examined as 

excipients to protect labile drugs fall into this GRAS list, others do not. Even GRAS 

molecules, however, might need further examination if they are delivered to a 

segment of the GI tract they normally would not reach. For example, gelatin would be 

considered as a GRAS material as it is found extensively in our diet where it is broken 

down in the upper GI tract. It is also the material used to make many capsules. Use of 

gelatin as an excipient in an oral delivery system that opens in the colon would place 

undigested gelatin in a segment of the GI tract inconsistent with its normal fate as a 

food substance or from a gelatin capsule. Here one might need to consider the 

potential actions of this GRAS excipient on the bacterial flora of the gut as well as its 

potential uptake into the systemic circulation at low levels. In this regard, a recent 

study has examined the uptake and distribution of a dextran derivative termed 

OTR4120 following oral administration and shown that this material is absorbed and 

metabolized with some accumulation in the spleen and kidney [28].   

Many new targets for specific cellular events are being validated by peptides that 

function to selectively disrupt protein/protein interfacial contacts. While peptides can 

be exquisitely specific and effective for in silico validation, their instability and poor 

bioavailability in the GI tract have limited their translation as drug candidates. Recent 

work to identify stable peptide forms as well as peptidomimetic approaches may allow 

for the oral delivery of peptide candidates that target selected protein-protein 

interactions implicated in disease pathogenesis [29]. Peptide modifications such as 

PEGylation, lipidisation, and multimerisation may help bring about these new peptide-

based therapeutic opportunities [30]. Another approach to protect peptides may come 

through an improved capacity to selectively inhibit specific intestinal peptidases. For 

example, studies examining high-resolution X-ray diffraction data of a 
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carboxypeptidase-Zn2+-citrate complex now provide an opportunity to design novel 

agents to regulate this enzyme [31].  

 

IMPROVING DRUG SOLUBILITY IN THE UPPER GI TRACT  

In other cases, poor solubility rather than poor stability is the cause of low oral 

bioavailability. The absorptive fate of lipophilic materials is dominated by entry into 

lacteals of the intestinal villi that drain into the lymphatic duct before entering into 

the systemic circulation. This route of entry avoids first-pass elimination events that 

can occur for drugs absorbed via the portal venous system that directly shunts to the 

liver and its extensive array of metabolic enzymes. Liposomes, a logical choice for the 

delivery of lipophilic drugs, were the first nanoparticles to be examined for oral drug 

delivery. Unfortunately, the instability of liposomes in the GI tract has been a serious 

problem for this application. 

Poorly soluble compounds identified in drug discovery are no longer immediately 

discarded and ways to solve the problems of delivery associated with these materials 

are being studied. Some of these efforts focus on identifying formulations that can 

enhance bioavailability and decrease variability typically that is frequently a concern 

of these materials. Lipid- and surfactant-based oral drug delivery systems can produce 

the desired formulations for the development of these compounds. A recent review of 

these approaches has provided a more cohesive picture of the physicochemical nature 

of suitable detergents and lipid excipients in relation to gastrointestinal digestion [32]. 

A thorough understanding of the physiological features of lymphatic-based uptake and 

metabolism is also critical in the design of successful lipid- or pro-drug-based drug 

delivery systems that could enhance lymphatic drug transport [33]. 

Cyclodextrins have been described as “an important tool in the formulator's 

armamentarium to improve drug solubility and dissolution rate for poorly water-

soluble drug candidates” and efforts have been made to predict whether cyclodextrins 

will be of benefit in creating a dosage form for a particular drug candidate [34]. 

Multiparticulate systems composed of α-cyclodextrin and soybean oil have also been 

described for the oral delivery of lipophilic drugs [35]. Such a system might also be 

used to target lymphatic uptake. Some nanomaterials, such as mesoporous silicon 

particles, function to improve the solubility of an otherwise poorly soluble drug as a 
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means to improve its uptake following oral delivery [36]. In this case, the particle 

itself does not appear to transport across epithelial barriers, but instead increased the 

permeation of the loaded poorly soluble drug. 

Other methods have been described to improve the oral delivery of lipophilic 

materials. Addition of the tetraether lipid glycerylcaldityl tetraether to liposomes 

prepared from egg phosphatidylcholine and cholesterol can stabilize these structures 

against the actions of bile salts; making them more promising carriers for oral drug 

delivery [37]. Nanostructured lipid carriers produced using a high pressure 

homogenization method and which can be loaded up to ~30% with drug have been 

shown to improve the oral delivery of testosterone undecanoate [38]. Tween 80-

coated polylactide-co-glycolide (PLGA) nanoparticles have been shown to effectively 

deliver the hydrophobic drug estradiol after an oral administration in a manner that 

was comparable to the injection of this hormone [39].  

The ability of liposomes to facilitate hydrophilic macromolecule delivery across 

polarized epithelial barriers can be improved by the incorporation of enhancing agents 

such as cholylsarcosine, cetylpyridinium chloride, and stearylamine [40]. Nanoparticles 

formed by Ca2+ nucleation of alginate and dextran sulfate bound to poloxamer were 

stabilized by chitosan and subsequently coated with albumin. These negatively 

charged nanoparticles improved the delivery of an incorporate macromolecule 

following oral administration [41]. A novel pulsatile release system for oral drug 

delivery has also been described that employs an enteric subcoating that eliminates 

drug diffusion through the gelled polymer coating layer prior to its erosion; the system 

incorporates varying ratios of a drug in the compression-coating layers in addition to 

the tablet core [42]. Thus, combinations of these new methodologies may offer novel 

approaches to facilitate the oral delivery of poorly soluble drug candidates that 

previously might have been rejected from oral screening.  

 

USING NANOSTRUCTURES IN ORAL DOSAGE FORMS 

While still unproven in clinical settings, nanostructures have been proposed to improve 

oral drug delivery efforts in several ways. One way is to protect labile materials prior 

to their presentation to the intestinal epithelial surface where they can then be 

absorbed. Since some animal data suggests nanostructure can are absorbed from the 
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intestinal lumen, these materials may help in the oral delivery of poorly-absorbed 

drugs. Such studies have shown that incorporated drugs have greater oral 

bioavailability compared to a solution form of the same drug. Finally, nanostructures 

are anticipated to provide a greater drug distribution at the apical surface of the 

intestinal epithelium when compared to other solid dosage forms; potentially 

improving the uptake outcome and/or absorption profile of the drug.  

A variety of new approaches to produce nanomaterials for the delivery of labile 

molecules have recently been described. Mannan is a plant polysaccharide composed 

of the sugar mannose. Nanogels made using an amphiphilic form of mannan can 

spontaneously incorporate proteins and other agents, potentially providing a new 

nanostructure oral delivery system [43]. Amphiphilic polyelectrolyte nanocomplexes 

prepared from polyallylamine grafted with palmitoyl chains and subsequently modified 

with quaternary ammonium moieties was shown to improve the uptake of incorporated 

insulin across Caco-2 cell monolayers in vitro [44]. The mechanism(s) by which these 

systems facilitate oral insulin uptake appear to be particularly complex as both active 

transport and reversible opening of tight junctions appeared to be involved [44].  

Nanoparticles, by themselves, are not necessarily prone to efficient transcytosis after 

contacting the apical surface of intestinal epithelial cells. It is therefore not surprising 

that recent studies with nanoparticles have demonstrated inclusion of hydroxypropyl-

β-cyclodextrin, an agent capable of modifying epithelial barrier function, can improve 

drug permeation across colonic pig mucosa. Nanoparticles made by coacervation of 

chitosan and DNA complexes which have a net positive zeta potential can protect an 

intercalated plasmid against nuclease degradation and improve transfection of M cells 

[45]. Importantly, these nanomaterials provided transfection with efficiency similar to 

polyethyleneimine-DNA complexes but without the cytotoxicity associated with this 

polymer. Related to delivery for oral immunization, targeting ligands have been 

described that increase antigen-particle uptake to intestinal antigen-presenting cells, 

including dendritic cells [46]. Silk fibroin matrices are biocompatible, slowly 

biodegradable, and endowed with excellent mechanical properties; they have been 

suggested for applications in oral drug delivery. In this regard, a recent review has 

examined the potential of using silk fibroin matrices to aid in the delivery of micro- or 

nanoparticles as a carrier or coating [47].   
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Nanoparticles, even in the absence of enhancing agents, have been touted as having 

the capacity to move across epithelial surfaces following oral delivery; some have 

even been described that can subsequently target selective sites within the body 

following mucosal transport. Recent studies using gold nanoparticles have suggested 

that particle size and surface properties can control the nature and extent of tissue 

distribution following oral uptake [48]. Another issue of using nanoparticles involves 

incorporation of a drug material, which can be an issue since some nanoparticle 

preparation techniques can damage labile drugs. Elements of two different techniques 

were used to prepare nanoparticles under less harsh conditions: hydrophobic ion 

pairing followed by encapsulation of an inter-polymer complex involving polyacrylic 

acid and a detergent. These particles were shown to increased oral bioavailability of 

leuprolide [49]. There are still many uncertainties regarding the production, fate, and 

safety of nanoparticles used for oral drug delivery with successful clinical applications 

likely requiring matching this technology with the right drug for the right indication. A 

study examining nanoparticle-mediated oral delivery of cyclosporine may have hit on 

one promising combination [50].  

 

INCREASING MUCOSAL ADHERANCE OF ORAL DOSAGE FORMS 

Efforts to orally deliver labile, poorly-absorbed drugs should benefit from bringing 

protective drug carriers into close proximity with the intestinal mucosa such that 

released drug can reach the epithelial cell surface before being destroyed in the 

intestinal lumen. Carriers with mucoadhesive properties could function to achieve this 

outcome. While the focus of this perspective is on drug delivery in the small intestine 

and colon, important advances in bioadhesive strategies for buccal administration [51, 

52] may provide important principles that could be applied to adhesion of materials to 

mucosal surfaces of the small intestine and colon. In this regard, β-limit dextrin (a 

starch derivative) was found to have significant mucoadhesive properties; similar to 

carbopol but superior to chitosan strategies [53].  

Chitosan is an important polymer for oral drug delivery because of its properties, 

safety, and availability; chitosan nanocapsules have shown promising results as 

carriers for oral peptide delivery. A recent study has examined the impact of 

molecular weight and degree of acetylation on chitosan nanocapsule production and 
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characteristics [54]. Further, chitosan treated Ca2+-alginate microparticles were 

screened to identify those having characteristics that would be consistent with 

improved delivery of naproxen to lower parts of GI tract [55]. Nanoparticles prepared 

from thiolated chitosan have mucoadhesive properties that can facilitate the oral 

delivery of labile drugs [56]. Modifications to chitosan, such a conjugation with 

mercaptonicotinic acid, can produce nanoparticles having strong mucoadhesive 

properties that make them useful for as vehicles for oral delivery of peptide drugs 

[57]. 

Incorporation of cyclodextrins in poly(anhydride) nanoparticles provides desirable 

bioadhesive properties and sufficient lipophilic drug loading to promote the oral 

bioavailability of (Class IV of the BCS) drugs displaying poor aqueous solubility and 

specific permeability characteristics [58]. Cyclodextrin-poly(anhydride) nanoparticles 

having bioadhesive properties can improve oral delivery of the lipophilic drug 

atovaquone [59]. Another approach to improve the proximity of an orally delivered 

drug to the mucosal surface is to place the drug in a patch that can be prepared using 

traditional microfabrication techniques and delivered by an orally-administered system 

[60, 61]. Overall, a variety of mucoadhesive materials are being studied to identify 

methods to bring labile, poorly-absorbed drugs to the epithelial surface where they 

have a greater chance of being absorbed than if they were released in the intestinal 

lumen.  

 

IMPROVING THE BIOAVAILABILITY OF POORLY ABSORBED DRUGS 

It is critical that the intestine functions as a selective barrier for it to function 

effectively in the absorption of nutrients in a safe manner. Non-self proteins in our 

diet cannot simply flood into our bodies for later catabolism or we would have massive 

immune responses to these dietary components and could not repeatedly eat the same 

food. The delicate but formidable permeability barrier established by intestinal 

epithelial cells limits uptake until these dietary elements are reduced to structures 

that are too small to load into major histocompatibility complex proteins involved in 

antigen presentation. Thus, despite excellent methods to safely guide materials 

through the stomach and early segments of the small intestine and deliver them to the 

apical surface of epithelial cells in the jejunum or ileum, these biotherapeutics cannot 
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be effectively absorbed at these distal sites until they are digested locally. This 

problem has been well-recognized and a large number of methods have been tested to 

improve epithelial permeability either through transcellular or paracellular routes.  

Enhancing agents used to date fall into several chemical categories: detergents, fatty 

acids, novel amino acids, lipid complexes, etc. While substantial uptake of protein and 

peptide therapeutics can be observed in animal models, only a few approaches have 

been translated to human clinical studies. The enhancing agents shown to be most 

successful to date for this clinical translation have been selected from a list of agents 

that are generally regarded as safe (GRAS). Since many poorly-absorbed compounds 

could be damaged by high concentrations of some GRAS agents, it is important to use 

enhancing agents that do not compromise these labile materials. For example, 

microemulsions composed of the surfactant didoceyldimethylammonium bromide, the 

co-surfactant propylene glycol, and triacetin have been shown to enhance the oral 

bioavailability of incorporated insulin [62].  

Salmon calcitonin, approved for the treatment of osteoporosis, has been examined in 

clinical studies as an oral dosage form that incorporates the permeation enhancer N-

(5-chlorosalicyloyl)-8-aminocaprylic acid [63]. Analysis of Phase III clinical trials have 

suggested that a tablet configuration of these materials can safely delivery, albeit at 

low levels of bioavailability, bioactive peptide [64]. Ways to improve the low 

bioavailability have been examined. Nanoparticles containing salmon calcitonin can be 

prepared by complexation of the peptide with the cationic amphiphilic polyelectrolyte 

poly(allyl)amine grafted with palmitoyl and quaternary ammonium moieties. The 

resulting positively-charged particle complexes can reduce free and serum calcium 

over 240 min following intra-jejunal administration demonstrating the oral delivery of 

biologically-active calcitonin [65]. 

The permeation enhancer N-[8-(2-hydroxybenzoyl) amino] caprylate, distinct from the 

enhancer described above, can increase the oral bioavailability of biologically-active 

glucagon-like peptide 1 or peptide YY 3-36 in healthy adults [66]. Thus, use of an 

enhancing agent can improve the oral delivery of poorly-absorbed drugs if they are 

kept sufficiently stabile in the intestinal lumen prior to uptake. In some ways, the 

complete strategy for a successful oral drug delivery would involve a system to deliver 

a labile drug in the presence of materials that inhibit destructive enzymes along with 

an absorption enhancer to facilitate uptake. This approach has been described using a 
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two-pulse colonic release system for insulin delivered with the protease inhibitor 

camostat mesilate and the absorption enhancer sodium glycocholate [67].  

For most individuals, oral drug delivery connotes systemic bioavailability. There are, 

however, important pharmaceutical targets associated with various cells of the GI 

tract itself and methods have been described to stabilize, protect, and deliver labile 

drugs locally in the intestine. One such example as been described in a study using 

mesoporous silica nanoparticles as a drug delivery system for the targeted inhibition of 

notch signaling in intestinal stem cells [68]. Another approach has been described 

where covalent modification of a therapeutic protein with glycosylphosphatidylinositol 

to would allow its association with lipid structures, allowing it to transfer from these 

structures to the membranes of target cells. It is proposed that these materials could 

also enable the transport of therapeutic proteins across the intestinal barrier and into 

the circulation [69].  

 

OPTIMIZATION OF ORAL DRUG DELIVERY SYSTEMS FOR THE FUTURE 

This perspective has focused on how European scientists are addressing the challenges 

of stabilizing labile drugs and finding ways to improve the oral bioavailability of 

poorly-absorbed drugs. The clinical impact of such work, however, may be optimized 

by methods that provide a defined pattern of drug delivery. These patterns could 

involve pulsatile/delayed delivery systems designed to elicit programmable lag phases 

preceding a prompt and quantitative, repeated or prolonged drug release. Formulation 

strategies behind delayed-release and pulsitile dosage forms intended for the 

pharmacological treatment of chronopathologies have recently been discussed [70]. 

Personalized medicine has been discussed for several years now as the way to 

optimally treat patients. Bringing that concept to a realistic outcome has many 

challenges. One such issue is being addressed by research examining the feasibility of 

solid systems that can enable flexible dosing such as dispensers for multiparticulate 

drug formulations, a solid dosage pen, and drug-loaded oral films which can be cut in 

individual sections [71]. Additionally, a device has been developed that allows for dose 

adjustment by the selected cutting of a monolithical drug carrier into defined 

individual doses [72].  
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Understanding the nature and characteristics of drug release from an oral delivery 

system is essential to predict the use of that system in that application and to project 

its potential use for other applications. A mathematical modeling approach to describe 

drug release and in vivo absorption has been described [73]. Such a study falls in line 

with research performed to identify dissolution methods that can be applied to 

correlate in vivo outcomes with in vitro performance assessments of oral drug delivery 

systems [74] with hydrodynamic events experienced by an extended release 

formulation being one parameter for consideration [75]. Similarly, simulations which 

includes pressure force exerted by GI motility, shear stress force generated during 

phases of GI transport and intermittent contact with intestinal fluids due to occasional 

encounters with intestinal air pockets have been described [76].  

Efforts have also been made to improve our understanding of the fate of oral delivery 

systems following their administration. European scientists have been at the forefront 

of establishing non-invasive methodologies of scintigraphy, magnetic tracking 

techniques like magnetic marker monitoring, magnetic moment imaging, AC 

biosusceptometry, and magnetic resonance imaging for this assessment [77]. 

Identification of optimal regions of the intestine for the delivery of a specific drug 

formulation can be determined using a remote-controlled capsule device that provides 

targeted drug delivery and is monitored for its location in the GI tract by scintigraphy 

[78]. Drugs designed to treat ulcerative colitis would obviously benefit from a delivery 

format directed to the colon. A pharmacoscintigraphic study in healthy volunteers 

using the MMX Multi Matrix System(®) (MMX™) to deliver propionyl-l-carnitine (PLC), a 

naturally occurring analogue of l-carnitine, demonstrated the colon to be the main site 

of PLC release and absorption [79].  

An issue that is not often appreciated early enough in oral formulation design is the 

potential impact that specific excipients used might have on the complex intestinal 

flora present in the GI tract. Thus, studies using the Simulator of the Human Intestinal 

Microbial Ecosystem (SHIME) to examine the impact of different ethylene vinyl acetate 

grades on the GI ecosystem following oral administration can anticipate and 

potentially mitigate expensive formulation changes at later stages of development 

[80]. Additionally, both regulatory agencies and pharmaceutical companies have 

become more appreciative that pediatric dosage forms must be designed to match 

unique issues associated with this patient population. Such concerns must be equally 
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considered when it comes to the identification of pediatric oral drug delivery 

strategies [81].  

 

OUTLOOK 

While the studies described in this perspective were authored by established European 

scientists, I cannot verify that that all of this work was performed in European 

laboratories. Clearly, scientific efforts have become more and more collaborative and 

many of these established European scientists work within international networks. One 

point that can be definitively stated, however, is that European pharmaceutical 

scientists have had tremendous impact on the successful development of therapeutics 

currently being administered by the oral route. Their ability to find innovative, 

elegant, and practical solutions to overcome the challenges to deliver materials to the 

GI tract has been impressive. With the inability of HTS efforts to find large numbers of 

obvious candidates that would be defined by current industry standards as promising 

lead compounds, new types of challenges now confront European pharmaceutical 

scientists. Unlike some other areas of the world, the European pharmaceutical 

community has enjoyed a fruitful collaborative arrangement between industrial and 

academic colleagues. I feel that continuation of this mutually-beneficial relationship 

will be critical to meet current challenges now faced by pharmaceutical companies to 

bring labile and/or poorly absorbed drug candidates through successful clinical 

development. With the ever-shrinking research budgets available to both academic 

and industrial scientists, success in the future for these programs may require not just 

creativity in the lab, but also new mechanisms and strategies to fund these essential 

studies. Some of these creative new mechanisms to bring academic and industrial 

groups together in multi-disciplinary, multi-regional efforts have included the FP-7 and 

IMI funding schemes. It is hoped that these approaches will prove fruitful and provide 

funding templates that can be expanded in the future.  
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