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The formation of fluorine-vacancy (FV) complexes in strained Si-SiGe-Si multilayer structures and 
relaxed SiGe layers of varying Ge content has been investigated using variable-energy positron 
annihilation spectroscopy, including Doppler-broadened spectra ratio curves. It has been found that 
in all sample types there are two distinct regions defined only by the damage created by the 
implanted F ions. The first, shallower region (from the surface to a depth of �200 nm) was found 
to contain a mixture of undecorated vacancies and FV complexes; there is no correlation between 
the vacancy or F concentration in this region and the Ge content. The multi-layer samples may also 
have O contamination that is not present in the relaxed samples. The second region (at depths 
�200–440 nm) contains primarily FV complexes in all samples. In the multi-layer samples 
secondary ion mass spectrometry (SIMS) results show peaks of F accumulating in, or at the 
interfaces of, each SiGe multi-layer; the FV complexes, however, are distributed over depths 
similar to those in the relaxed samples, with some localization at the SiGe layer located within the 
second region. The positron response is primarily to FV complexes formed by the F implant in all 
samples. The F: FV ratios are approximately 3–7: 1 in the relaxed samples. Positrons appear to be 
relatively insensitive to the largest of the F SIMS peaks which lies beyond the second region. This 
is probably because the F has filled all the open volume at the SiGe layer, leaving no positron 
trapping sites. V 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699314]C 

I. INTRODUCTION	 extended and VEPAS is used to investigate the effect of F in 
multiple strained Si-SiGe layers and relaxed SiGe. 

The effect of fluorine on the behavior of vacancies (V) 
and interstitials (I) in Si has been of great interest to 

II. EXPERIMENT AND ANALYSIS 
researchers in the past1 due its effectiveness in reducing 
transient-enhanced diffusion of dopants such as boron. For Relaxed SiGe layers, 1 lm thick, having Ge fractions of 
example, limiting B diffusion would allow the formation of 10%, 20% or 30% were deposited by reduced pressure chem

ultra-shallow junctions. This can be achieved via the forma- ical vapor deposition onto a graded SiGe layer with linearly 
tion of fluorine-vacancy (FV) and fluorine-interstitial (FI) decreasing Ge% (10% per lm) on a p-type Si (100) sub-

complexes.2 strate. Compressively strained Si-SiGe-Si multi-layers with 
Recently, strained SiGe layers have been a subject of in- Ge fractions of 10% (50 nm), 20% (30 nm), and 30% (10 nm) 

terest as they have been shown to produce high electron mo- with �100 nm of Si in between each layer. The different 
bility transistors, much higher than in relaxed materials.3 layer widths shown in brackets were used to retain strain in 
Kögler et al. reported on the behavior of V and I in SiGe, the SiGe. F ions were implanted into the samples at room 
showing that ion-induced damage in SiGe is higher than in temperature with an energy of 185 keV at a fluence of 
Si and increases with increasing Ge content.4 It was found 2.3 � 1015 cm�2. The samples were rapid thermal annealed 
that in SiGe the Ge content impedes vacancy-interstitial in a N atmosphere for 20 s at 800 �C. 
defect recombination. However, not much is known about In VEPAS positrons are implanted into a sample with 
the effect of F on the behavior of V and I in SiGe. Positron energies E between 0.25 and 30 keV. These energies dictate 
annihilation spectroscopy (PAS) has been used to investigate the positron implantation profile enabling depth profiling 
vacancy-dopants complexes in SiGe,5 which concluded that from the surface to a depth dependent principally on the 
the presence of Ge around a vacancy is not enough to make material’s density. Implanted positrons rapidly thermalize 
divacancy defects stable at room temperature. In our previ- and diffuse to either annihilate free electrons or become 
ous report,6 the effect of F in a layered HBT-type structure trapped in vacancy-type defects and interfaces finally annihi

of Si-SiGe-Si was investigated using variable-energy PAS lating with two approximately anti-collinear 511 keV c-rays. 
(VEPAS) with the main result showing that F4nVn complexes Momentum of the electrons at the annihilation site causes 
are associated with the SiGe layer and that they preferen- the 511 keV line to broaden; this broadening is measured 
tially accumulate at the Si/SiGe interfaces. Here this work is using a high-purity Ge detector and characterized using the S 

parameter7 defined as the fraction of the annihilation line in 
a)Author to whom correspondence should be addressed. Electronic mail: the central region. The S parameter has a characteristic value 

c.j.edwardson@bath.ac.uk. for each type of annihilation site including vacancy-type 
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defects. Analysis of S as a function on energy, S(E), can pro

vide depth-dependent information. VEPFIT (Ref. 8) is a fit

ting program which takes the raw S(E) data and solves the 
positron diffusion equation to calculate the characteristic S 
parameter for each region within the sample. 

The ratio curve technique measures – also with a single 
Ge detector – the annihilation line, or spectrum, peaked at 
511 keV with high precision to extract further information 
from the higher momentum components contained in its 
wings. Core electrons have a characteristic momentum asso

ciated with their atom enabling chemical analysis of the spe

cies that surround the annihilation site.9 Positrons are 
implanted at a single energy where the response is the great

est for the region of interest. The spectrum, collected typi

cally for �48 h, is normalized to an area of 1.5 � 108 counts 
between 491 and 531 keV and divided by the reference spec

trum of undefected Si to reveal any differences in the high 
momentum content between 511 and 531 keV. This differ

ence is the response to the chemical composition of the envi

ronment surrounding a positron-trapping defect, such as a 
vacancy. The response can be due to the presence of one 
type of atom or defect type but in more complex systems it 
can be formed from combinations of all the pure states that 
lie within the region of the implantation profile, e.g., F, V2 in 
Si, Ge, and O. By fitting combinations of these pure states, 
each with its own unique signature, a more detailed picture 
of the vacancy complexes in the region of interest can be 
found. 

Initial F implantation and Si and Ge defect profiles were 
simulated with the program SRIM (Stopping and Range of 
Ions in Matter).10 A concentration depth profile of F after 
annealing was measured using secondary ion mass spectrom

etry (SIMS). 

III. RESULTS AND DISCUSSION 

A. Positron affinity for Si and Ge 

To investigate the chemical composition of the defect 
environment created by ion implantation and annealing the 
relative positron affinity for Ge and Si first needed to be 
known. The unimplanted samples were etched in hydro

fluoric acid to remove any surface oxide response and spec

tra were taken at a single energy where the mean 
implantation depth of the positrons was within the first 
micron. The spectra were normalized to Si. It was found that 
after removing a percentage of a Ge/Si peak equal to the Ge 
content of each sample the ratios are �1 overall energies, 
meaning that only a response to Si remained, as seen in 
Fig. 1. This result indicates that there is essentially the same 
relative positron affinity for both Si and Ge and that this 
technique can be used to obtain quantitative information, as 
discussed in Ref. 11. 

B. As-implanted samples 

After implantation the S(E) results (Fig. 2, only 10% 
and 30%Ge samples shown for clarity) for the relaxed SiGe 
samples show that as the percentage of Ge increases the av

erage S parameter in the saturated region (3–10 keV) 

J. Appl. Phys. 111, 073510 (2012) 

FIG. 1. Ratios of the unimplanted samples of relaxed 10% and 30%Ge and 
multi-layer 30%Ge, before and after removal of Ge ratio response. (Multi

layer 30%Ge is not shown before Ge removal for clarity.) The ratio for Ge/ 
Si is shown for reference. All spectra are divided by a Si spectrum. 

decreases slightly. This was as expected because Ge has a 
lower S parameter than Si. However, the multi-layer samples 
(again only 10% and 30%Ge samples shown for clarity) 
show that as the percentage of Ge increases, the average S 
parameter in the saturated region (3–10 keV) increases 
slightly. It is believed this is due to the width of the Ge 
layers, where the 30%Ge sample had the narrowest SiGe 
layers and the widest Si layers and therefore would have the 
lowest response to Ge. 

All the fits to the data for the as-implanted samples, 
obtained using VEPFIT, were similar, with only slight var

iations in the V-rich defected region S parameter, as sug

gested by the raw data in Fig. 2. The saturated region has a 
normalized S parameter below that for both di-vacancies in 
Si (S � 1.04) and amorphous Si (A-Si) (S � 1.03). An S 
parameter of �1.04 has been shown to be the characteristic 
S of an isolated di-vacancy in Ge (normalized to bulk Ge), 
which is reduced to �1.02 if normalized to bulk Si (previ

ous measurements of the ratio of bulk Ge to bulk Si S 

FIG. 2. Normalized S(E) plot for as-implanted relaxed and multi-layer sam

ples of 10% and 30%Ge. 
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parameters have been �0.98).12 It is extremely unlikely 
that there is just this single type of defect when the largest 
proportion of the sample is Si; therefore, a mixture of 
defect types are instead contributing to the S parameter. 

To determine what these defect types could be, combi

nations of likely elements and states were compared to the 
measured spectral ratio data in order to gain a best fit. In this 
case amorphous Ge (A-Ge), Ge, Si, V2 in Si and A-Si were 
considered. Examples can be seen in Fig. 3. Data for the 
relaxed 10%Ge, relaxed 30%Ge, and 30%Ge multi-layer 
samples at 6 keV had best fits of [15%Ge þ 85%A-Si], 
[30%Ge þ 70%A-Si], and [5%Ge þ 95%A-Si], respectively. 
The uncertainties in these percentages can be up to 6 5%, as 
fits are assessed by eye. The use of spectra ratio data for 
A-Si does not necessarily imply that the Si was amorphized 
by the implant, but rather that the Si structure was disordered 
– possibly containing Vn for which spectral data was not 
available. The positron sensitivity to Ge seems to remain 
unchanged and still looks like a Ge response rather than 
A-Ge. These fits imply an even distribution of vacancy 
defects within the material and are consistent with the S(E) 
data, which can be reproduced using the fitted percentages 
and the characteristic S values for Ge and A-Si. The fits to 
the spectra for multi-layer samples have much lower Ge per

centages because of the smaller overlap in the positron im

plantation profile with the thin SiGe layers. 

C. Annealed samples 

After annealing the remaining damage can be seen as 
peaks (vacancy-rich defects) and dips (FV complexes),2 at 3 
and 6 keV, respectively, in the example S(E) data in Fig. 4. 
This pattern can be seen in all samples, although there are 
slightly different apparent depths corresponding to the peaks 
and dips due to differences in sample density affecting the 
positron implantation profile. There appears to be little corre

lation between the peak/dip S parameters and the Ge content 
in all samples, so ratio curves were taken at each peak and 
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FIG. 4. Normalized S(E) plot for annealed relaxed and multi-layer samples 
of 10%–30%Ge. 

dip to try to determine the nature of the defects and the rea

sons for the differences between samples. It is important to 
recognize that since ratio curves are taken at one implanta

tion energy their response will be due to annihilations over 
the whole of the implantation profile, not just at the depth of 
interest, so the following fits can only give an idea of the 
defects’ chemical composition. 

Reference spectra for Ge, F, V2 in Si, Si and implanted 
SiO2 (for an O response) were used to fit the lower energy 
peaks seen in Fig. 5. The relaxed samples had good fits with a 
large % of F and V2 with the remaining contributions being 
from free positron annihilation in Ge and Si in their original 
ratios. For example, the 10%Ge sample could be fit well with 
[5%Ge þ 45%Si þ 23%F þ 27%V2] and the 30%Ge sample 
with [20%Ge þ 40%Si þ 10%F þ 30%V2]. The heights of the 
peaks in S(E) seem to depend on the F content, i.e., there are 
FV complexes as well as divacancy defects in this region. The 
multi-layer samples, however, could not be fit well with the 
expected F, Si, and V2 curves; instead fits were found 

FIG. 3. Ratios of the as-implanted samples of relaxed 10% and 30%Ge and 
multi-layer 30%Ge at 6 keV. Best fits are shown on top of the data. Ratios of 
Ge/Si and A-Si are shown for reference. All spectra are divided by a Si 
spectrum. 

FIG. 5. Ratios of the annealed samples of relaxed 10% and 30%Ge and 
multi-layer 30%Ge at �2 keV. Best fits are shown on top of data. Ratios of 
implanted SiO2/Si, F/Si, Ge/Si, and V2 in Si/Si are shown for reference. All 
spectra are divided by a Si spectrum. 
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containing F, Si, and O. For example the spectrum for the 
30%Ge sample was fit well with [10%F þ 64%Si þ 26%O] 
(there is no Ge response since the first SiGe layer is deeper 
than the low-energy peak). The multi-layer samples appear to 
have an O response in this damaged region whereas the 
relaxed samples did not. The SIMS analysis did not include 
oxygen. 

The spectra ratios for the higher-energy dips seen in Fig. 6 
were fit with Ge, F, and Si. This region is thought to be mainly 
populated by FV complexes. These spectra were successfully 
fit in both the relaxed and the multi-layer samples. Relaxed 
10%Ge, for example, was fit by [10%Ge þ 65%F þ 25%Si] 
and 30%Ge by [30%Ge þ 42%F þ 28%Si]. These fits do not 
follow the same pattern as those for the lower-energy vacancy-

rich peaks in that the Ge/Si ratio has changed. The fitted Ge% 
matches that of the as-grown samples, suggesting that, in this 
case, the F could be preferentially combining with vacancies in 
Si, since the positron response to Ge remains the same while 
some of the response to Si is replaced by F. The multi-layer 
samples were fit in the same way - e.g., 30%Ge had 
[10%Ge þ 84%F þ 6%Si]. All three multi-layer samples had 
this 10%Ge response with only the F content varying and 
changing the S parameter. 

D. Comparison with SRIM and SIMS results 

The positron data can be further interpreted using infor

mation gained from SIMS. Figures 7(a) and 7(b) show exam

ples of VEPAS (with VEPFIT fits), SRIM and SIMS results 
plotted together. The VEPAS depths are mean positron im

plantation depths, and at each depth the FWHM of the posi

tron depth profile is approximately equal to the mean depth. 
Therefore, the response becomes progressively smeared as 
the depth increases. However, the fitting code VEPFIT takes 
this into account. 

The following summarizes the main elements of Figs. 
7(a) and 7(b), which are common to both relaxed and multi

layer samples. 

FIG. 6. Ratios of the annealed samples of relaxed 10 and 30%Ge and multi

layer 30%Ge at �7 keV. Ratios of implanted F/Si and Ge/Si are shown for 
reference. All spectra are divided by a Si spectrum. 

J. Appl. Phys. 111, 073510 (2012) 

FIG. 7. All depth dependent data are shown for the annealed relaxed sample 
of 10%Ge (a) and the multi-layer sample of 30%Ge (b). The left-hand axis 
corresponds to the normalized S(E) plot and the right-hand axis corresponds 
to the SIMS F concentration data. Other plots include the two VEPFIT 
regions of F complexes and vacancy-rich defects and the initial Si and Ge 
vacancy and F ion profiles. 

VEPAS data (left-hand axis) are fit by VEPFIT into 
three distinct regions: the topmost region having a short posi

tron diffusion length but high S parameter, suggesting a 
vacancy-rich region, most probably a mixture of undecorated 
vacancies and FV complexes. The second region has a short 
positron diffusion length and low S, suggesting a FV-rich 
region. The third region is the Si substrate. 

SRIM simulations show the initial F implantation profile 
and the resulting Si and Ge vacancy profiles before anneal

ing. SIMS intensity plots (right-hand axes) are shown for F 
after annealing. The double F-peak feature seen in the 
relaxed samples had similar profiles, an example of one can 
be seen in Fig. 7(a). Originally a 9-region model was used in 
VEPFIT for the strained multi-layer samples, on the assump

tion that all the FV complexes were confined to the SiGe 
layers (as suggested by the SIMS F peaks). The model 
assumed zero diffusion in the SiGe layers, i.e., saturated 
positron trapping because of the high concentration of FV in 
these layers. However, the fitted S parameter for these layers 
was considerably higher (i.e., >0.91) than that expected for 
100% trapping in F complexes.13 Also, the third SiGe layer 
from the surface always had the greatest SIMS F concentra

tion but there was no response to it in any of the S(E) plots, 
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as is demonstrated by the example data in Fig. 7(b). An alter- TABLE I. Concentrations of F, FV, and V2 in the top region of relaxed 

native VEPFIT model was therefore required in which the samples. 

vacancies created by the implanted F form complexes with F 
in a similar region in each sample. The dip in the S parameter Sample CF from SIMS CFV CV2 %F in F4nVn 
caused by the F is always seen in the middle of this region; 
this depth is that of the peak of Ge and Si vacancies caused 

(Relaxed) (1018 cm�3) (1016 cm�3) (1017 cm�3) n ¼ 1/2 

by the initial F implantation damage as calculated by SRIM. 
The F SIMS for each of the multi-layer samples had very 
similar profiles, an example of one can be seen in Fig. 7(b). 

10%Ge 1.7 7 1 15/30% 
20%Ge 5.3 16 0.8 12/24% 
30%Ge 6.3 2.5 1.4 2/4% 

In the first SiGe layer at �150 nm there was almost no pile

up of F, the average concentration was similar to that in the 
surrounding Si. The second SiGe layer at �300 nm always 
lay close to the center of the dip in the S(E) plots. The con-

of oxygen complexes (CO) was calculated assuming the trap

ping rate was the same as that used for FV complexes. The 

centration of F in this layer was significantly higher than in results are shown in Table II. 

the first and similar to that seen in the relaxed samples at the F is possibly being displaced by the presence of more 

same depth (see Fig. 7(a)). Extra disorder in the SiGe layer oxygen in the 20% and 30% multi-layer samples causing 

may be trapping and localizing F but it is the initial implanta fewer F to complex with vacancies. 

tion damage causing the formation of FV complexes. The The ratio curve fits cannot be used to find CFV in the sec

third SiGe layer at �500 nm contained the greatest concen

tration of F, this layer becomes saturated with F atoms leav

ond region since the fraction trapped is in the region of the 
implantation profile, not just the second region. They can 

ing few open volume defects effectively becoming invisible however be used to find S for FV complexes (SD). Knowing 

to VEPAS thereby showing a similar depth response to that the S parameter for Ge (0.98) and Si (1) and finding the total 

in the relaxed SiGe samples. S from the S(E) data at the energy measured the S parameter 

A 3-region VEPFIT model was thus used for both the for the FV complexes in all samples was found to be 

strained multi-layer and relaxed samples, fitting a region of 0.91 6 0.01. 

vacancy defects �200 nm wide followed by a �240 nm wide 
FV complex region and bulk Si for all samples. 

Using SIMS and VEPFIT data the 3-region model was 

Analyzing the second region in the relaxed samples 
again required the CF for the region (�200–440 nm) to be 
found from SIMS. The CF in the multi-layer samples also 

further analyzed to obtain average concentrations of V2 
includes the whole region, including the peak, as the two 

(CV2) and FV (CFV) in the top region, and the ratio of F to contributions cannot be distinguished is the present samples. 

V in the second region. To analyze the top region To do so would require samples with SiGe layers outside the 

(�0–200 nm) the average concentration of F (CF) was found 
from SIMS data in the same region. The average CFV and 

region of ion damage. The CFV was derived using the S pa

rameter fitted for the region, rather than using the ratio fits as 

CV2 were found using the ratio curve fits, from the fraction the implantation profile now extends beyond the limits for 

trapped in F and V2, respectively. These can be used for the the region and there is only one type of trapping defect 

top region as the implantation profile lies completely within thought to be in this region. Using 

it. Both concentrations were derived using 
CD ¼ 5 � 1022½kBðS � SBÞ=vðSD � SÞ� cm�3; (2) 

C ¼ 5 � 1022½f kB =vð1 � f Þ�cm�3 (1) 
where � is the specific trapping rate for positrons in a FV 

since there are multiple types of trapping defect, where f is 
the trapped fraction found from the ratio curves, kB is the 
positron annihilation rate in perfect Si (4.54 � 109 s�1),14 

and � is the specific trapping rate for positrons in a trapping 
defect which was assumed to be 1015 s�1 for the FV com

defect which again was assumed to be 1015 s�1 , SB is the 
bulk S parameter (�1) and SD is assumed to be 0.91. To find 
the S parameter for the second region VEPFIT was used to 
fit the S with the constraint that it was consistent with the 
positron diffusion length L fitted for the same region. A sum

plexes and 7 � 1014 s�1 for divacancies. If the FV complexes 
were F4nVn (where n is most likely to be 1 or 2) then for 
example in the relaxed 10%Ge sample 15%–30% of the total 
F, according to SIMS, is in complexes, with the rest left as 
isolated F, agglomerates or precipitates, as seen before.6 A 

mary of results for the second region of each sample is given 
in Table III. 

The ratios of F per FV complex for the relaxed samples 
and the 10%Ge multi-layer sample are consistent with F4nVn 

(where n ¼ 1 and/or 2). The 20% and 30% multi-layer 

summary of results for the relaxed samples’ top region can 
be seen in Table I. TABLE II. Concentrations of F, FV, and O in the top region of multi-layer 

samples. 
There appears to be little correlation between the Ge 

content and vacancy concentration. The low percentage of F Sample CF from SIMS CFV CO %F in F4nVn 

in complexes in the relaxed 30%Ge sample is due to the low (Multi-Layer) (1018 cm�3) (1016 cm�3) (1016 cm�3) n ¼ 1/2 

CFV in the sample derived from the high S parameter. 
The top region for the multi-layer samples was analyzed 

10%Ge 2.1 7 4 13/26% 
20%Ge 2.4 2.5 8 4/8% 

in the same way but only CFV was deduced as any V2 30%Ge 2.7 2.5 8 4/8% 
response was masked by the O response. The concentration 
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TABLE III. Concentrations of F and FV in the second region of all samples. 

CF from SIMS CFV 

Sample (1019 cm�3) (1018 cm�3)  F: FV  

10%Ge (Relaxed) 1.8 7 3: 1 
20%Ge (Relaxed) 3.0 5 6: 1 
30%Ge (Relaxed) 1.3 2 7: 1 
10%Ge (Multi-Layer) 1.0 6.5 2: 1 
20%Ge (Multi-Layer) 1.1 41 1: 4 
30%Ge (Multi-Layer) 1.3 41 1: 3 

samples, however, have unrealistic ratios. It is believed this 
is caused by the increased uncertainty in the fitted SD with 
high concentrations of CFV – L can vary significantly with 
small changes in S when close to saturation. 

IV. CONCLUSION 

The positron results presented here suggest that for all 
samples, both relaxed and multi-layer, there exist two 
regions defined by the depth profile of the implanted F ions. 
The first, shallower region (from the surface to �200 nm) 
contains a mixture of undecorated vacancies (possibly V2) 
and FV complexes; there is no correlation between the va

cancy or F concentrations in this region and the %Ge. The 
multi-layer samples may have an O contamination that is not 
present in the relaxed samples. The second region (from �
200 to 440 nm) contains primarily FV complexes. Interest

ingly, the positrons appear to be relatively insensitive to the 
highest concentrations of F in the third SiGe layers, i.e., the 
FV complexes do not reside primarily in this layer, but 
instead are distributed over depths similar to those in the 
relaxed samples as it is the initial damage caused by the F 
implant that facilitates the formation of FV rather than the 
SiGe layers as previously thought. The F: FV ratios are 
approximately 3–7: 1 in the relaxed samples, and 2: 1 in the 
10%Ge multi-layer sample, consistent with F4nVn (where 

J. Appl. Phys. 111, 073510 (2012) 

n ¼ 1 and/or 2) as has been seen before. However, ratios can

not be calculated with precision for the 20% and 30%Ge 
multi-layer samples due to large uncertainties in CFV close to 
saturation. 

ACKNOWLEDGMENTS 

Dr. H. A. W. El Mubarek would like to acknowledge 
The Royal Academy of Engineering and EPSRC for funding 
her Research Fellowship. Dr. El Mubarek also acknowledges 
EPSRC for funding this research through an EPSRC First 
Grant No. EP/G0162332/1. She would also like to acknowl

edge Dr. Andy Smith at the University of Surrey Ion Beam 
Centre for the Ion Implantation and Rapid Thermal Anneal

ing Processing of the samples studied in this work. 

1H. A. W. El Mubarek and P. Ashburn, Appl. Phys. Lett. 83, 4134 (2003). 
2X. D. Pi, C. P. Burrows, and P. G. Coleman, Phys. Rev. Lett. 90, 155901 
(2003). 
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