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Abstract. Influenza has been responsible for human suffering and economic burden worldwide. 
Isolation is one of the most effective means to control the disease spread. In this work, we 
incorporate isolation into a two-strain model of influenza. We find that whether strains of 
influenza die out or coexist, or only one of them persists, it depends on the basic reproductive 
number of each influenza strain, cross-immunity between strains, and isolation rate. We propose 
criteria that may be useful for controlling influenza. Furthermore, we investigate how effective 
isolation is by considering the host’s mean age at infection and the invasion rate of a novel 
strain. Our results suggest that isolation may help to extend the host’s mean age at infection 
and reduce the invasion rate of a new strain. When there is a delay in isolation, we show that 
it may lead to more serious outbreaks as compared to no delay. 

Keywords and phrases: isolation, influenza, strain dynamics 

Mathematics Subject Classification: 92B05 

1. Introduction 

The emergence and reemergence of multi-strain infectious diseases driven by mutations has been known 
as a cause of death worldwide. Pathogen mutations are found commonly in many infectious diseases 
such as: 1) measles [1], 2) hepatitis B [2–4], 3) HIV [5], 4) West Nile virus [6], 5) pertussis [7, 8], 6) 
malaria [9], and 7) influenza [10, 11]. In this work, we are particularly interested in the dynamics of 
influenza. Influenza is an RNA virus which is separated into three types A, B, and C. Influenza A is the 
most common one in human and animal populations. On the influenza surface, there are two important 
proteins, hemagglutinin (HA) and neuraminidase (NA), that change significantly over time. 

Two mechanisms of influenza viruses, shift and drift processes, allow them to escape the recogni
tion of the host immune system. Antigenic shift generates a new subtype by drastically changing protein 
molecules (HA and NA) on a viral surface, while antigenic drift continually changes the protein molecules 
by point mutations to generate a new strain. In host, cross-immunity plays an important role against 
the escape mutant [12, 13]. Cross-immunity is high between similar strains and very low when they are 
genetically different, two strains from different subtypes for instance [14, 15]. Cross-immunity may act 
in different ways such as reducing susceptibility when hosts get infected with one strain and become 
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less susceptible to other related strains, reducing transmissibility during subsequent infections with sim
ilar strains from previous infection, and polarizing immunity when only some individuals acquire total 
immunity to related strains from previous infection while others gain no immunity. 

Mathematical models of multi-strain diseases have fruitfully been used to study the dynamics of the 
pathogens in a host population [16–29]. By considering the models relating to cross-immunity, they can 
be separated into many types, for instance a moving frame in immunity spaces [30,31], a season-to-season 
drift [25, 26], a history-based framework [18], and a status-based framework [21, 22]. This work is based 
on the latter type, where susceptible individuals are categorized by their current immune status instead 
of their immune memory. 

Controlling diseases is an important means for public health to reduce the cost arising from the spread 
of the diseases. Several control strategies are available for influenza such as isolation, vaccination, and 
the use of treatments. Here, we only concentrate on isolation. Isolation is applied to infected individuals 
so as to prevent them from further contacts and subsequent transmissions to other individuals. It is 
primarily used for controlling the disease when it suddenly emerges or reemerges. A successful example is 
the isolation of those infected with SARS during 2003-2004. However, the disadvantages of this strategy 
are the difficulty of detecting infected individuals and the cost of isolation. Although many models for 
multiple-strain diseases have been fruitfully developed, models including isolation are very limited [32,33]. 

In this work, we study the dynamics of a host population when two strains of influenza are co
circulating. Inspired by the current use of isolation, we propose a new model to investigate how isolation 
may help to control influenza by considering threshold conditions, the host’s mean age at infection, the 
invasion rate of a new strain, and delay in isolation. 

2. Model formulation 

We here propose a model of isolation. The model is based on a status-based framework by [22]. The 
model assumes polarized susceptibility, i.e. each individual is either completely immune or completely 
susceptible to each strain of a disease. Immediately on infection with a strain of a disease, an individual 
is assumed to become immune to that strain with probability 1 and immune to related strains with 
reduced probabilities. For a disease with two co-circulating strains, each individual, whether infected or 
not, has one of four possible immune repertoires ∅, {1}, {2}, {1, 2}. We assume that an individual with 
immune repertoire ∅ has probability σ of acquiring immunity to strain 2 (as well as strain 1) on infection 
with strain 1, and the same probability σ of acquiring immunity to strain 1 on infection with strain 2. 
Following [22], we assume further that an individual with immune repertoire {1} also has probability σ of 
acquiring immunity to strain 2 on contact with an individual infected with strain 1 even though infection 
with strain 1 is impossible, and similarly when an individual with immune repertoire {2} comes into 
contact with an individual infected with strain 2. These assumptions allow us to write down a system of 
four equations for four classes of hosts: susceptible to strain 1, S1 (whether with immune repertoire ∅ or 
{2} and whether or not infected with strain 2); infected with strain 1, I1; susceptible to strain 2, S2; and 
infected with strain 2, I2. Note that these classes are not mutually exclusive, and that some individuals 
do not belong to any of them. We assume that the a recovery rate from each strain is the same and 
denote it by ν0, but that each strain has a different rate of transmission denoted by β1 and β2. 

Because of similar symptoms and the difficulty of clinically distinguishing a viral strain, we assume 
that rate at which infected individuals are detected and removed to isolation (q0) is the same for strain 1 
and strain 2. Removing such individuals to isolation does not change their immune status and they return 
to the same Si class after recovery, so (on the assumption that there are few individuals in isolation at 
any one time) the equations for S1 and S2 are unchanged. We assume that individuals leave the isolation 
class when they recover, hence, at rate ν0. 
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The model takes the following form: 

S1
′ (t) = µ0N − µ0S1 − β1S1I1 − σβ2S1I2, 
′ I1(t) = β1S1I1 − (ν0 + µ0 + q0)I1,


S2
′ (t) = µ0N − µ0S2 − β2S2I2 − σβ1S2I1, (2.1)

′ I2(t) = β2S2I2 − (ν0 + µ0 + q0)I2, 

Q ′ (t) = q0(I1 + I2)− ν0Q. 

Note that this model can be derived from the status-based model presented by [21] and simplified by the 
assumptions in [22]. We consider the status-based model with isolation for two strains of influenza as 
follows: 

Ṡ  φ = µN − µSφ − C(φ, {1}, 1)Λ1Sφ − C(φ, {1, 2}, 1)Λ1Sφ− 
C(φ, {2}, 2)Λ2Sφ − C(φ, {1, 2}, 2)Λ2Sφ, 

Ṡ{1} = C(φ, {1}, 1)Λ1Sφ − C({1}, {1, 2}, 2)Λ2S{1}− 
C({1}, {1, 2}, 1)Λ1S{1} − µS{1}, 

Ṡ{2} = C(φ, {2}, 2)Λ2Sφ − C({2}, {1, 2}, 1)Λ1S{2}− 
C({2}, {1, 2}, 2)Λ2S{2} − µS{2}, 

Ṡ{1,2} = C(φ, {1, 2}, 1)Λ1Sφ + C(φ, {1, 2}, 2)Λ2Sφ+ 
(2.2) 

C({1}, {1, 2}, 2)Λ2S{1} + C({2}, {1, 2}, 1)Λ1S{2} − µS{1,2}, 

İ1 = Λ1(Sφ + S{2})− (µ+ ν1 + q1)I1, 

İ2 = Λ2(Sφ + S{1})− (µ+ ν2 + q2)I2, 

Q̇1 = q1I1 − κ1Q1, 

Q̇2 = q2I2 − κ2Q2, 

where J ⊆ {1, 2}, Λi = βiIi, SJ represents the number of hosts that are completely immune to the strains 
in the set J , Ii the number of infectious individuals to strain i, Qi the number of isolated individuals, 
previously infected with strain i, and C(L,J , i) the probability that hosts recover to a state J , having 
started in state L and been infected by strain i. A flow diagram is shown in Figure 2 and other parameters 
can be found in Table 1. 

In this model, we assume that rates at which individuals infected with strain 1 and strain 2 are detected 
and removed to isolation are q1 and q2, respectively. We assume that isolated individuals are removed 
at rate κ1 for strain 1 and κ2 for strain 2, whenever they recover [34]. Note that removing individuals 
to isolation does not change their immune status, so they return to the same Si class after recovery (see 
Figure 2). For simplicity, we now assume that rates of detecting individuals infected with strain 1 and 
2 are equivalent (q1 = q2 = q0). Also, individuals have the same rate of recovery from both strains 
(ν1 = ν2 = ν0) and rate of removing individuals from isolation equals rate of recovery (κ1 = κ2 = ν0). 

The polarized immunity is assumed which means that cross-immunity acts to render some hosts totally 
immune while other hosts gain nothing from infections. Also, the reduced-transmission of cross-immunity 
is assumed. By assuming that cross-immunity is conferred by exposure even if immunity prevents the 
full disease from developing, this allows all hosts to have the same chance of gaining immunity to a strain 
whatever their current immune status is. The system (2.2) can be reduced such that only one variable is 
needed to explain the host with respect to each strain. Since S{1,2} does not appear in other equations, 
it can be omitted from the system. We introduce a new variable Q as the total number of isolated 
individuals previously infected with both strains of influenza, Q = Q1 + Q2. Let S1 = Sφ + S{2} and 
S2 = Sφ + S{1}. Hence, by the fact that J C(K,J , i) = 1: 

Ṡ1 = µN − µS1 − Λ1S1 − C(φ, {1, 2}, 2)Λ2Sφ − C({2}, {1, 2}, 2)Λ2S{2} 

Define C(φ, {1, 2}, 2) = C({2}, {1, 2}, 2) = σ12, which is the chance that an infection by strain 2 gives 
immunity to strain 1. Hence, 

Ṡ1 = µN − µS1 − Λ1S1 − σ12Λ2S1. 

The equations for S2 can be obtained in the similar way. We further assume that σ12 = σ21, for simplicity. 
Therefore, the system (2.2) becomes the system (2.1) 
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3. Analysis 

We normalise the system (2.1) by introducing the new variables and parameters as follows: 

S1 I1 S2 I2 Q 
s1 = , i1 = , s2 = , i2 = , q = ,

N N N N N

µ0 q0 ν0
T = (µ0 + ν0 + q0)t, µ = , θ = , ν = , 

µ0 + ν0 + q0 µ0 + ν0 + q0 µ0 + ν0 + q0 

and the basic reproductive numbers for strain 1 and strain 2 in both interventions are 

β1N β2N 
R1q = and R2q = . 

µ0 + ν0 + q0 µ0 + ν0 + q0 

Note that, for strain i, a single infectious individual introduced to an entirely susceptible population makes 
βiN contacts in unit time with susceptible individuals during its infectious period, which is 1/(µ0+ν0+q0). 
We also remark here that R1q and R2q can be written in terms of R1(β1N/(µ0 + ν0)) and R2(β2N/(µ0 + 
ν0)), the basic reproductive numbers of strain 1 and 2 when isolation is absent as 

R1q = (1− θ)R1 and R2q = (1− θ)R2. 

The model is now in the following form: 

′ s1(T ) = µ(1− s1)−R1qs1i1 − σR2qs1i2, 
i ′ 1(T ) = R1qs1i1 − i1, 
′ s2(T ) = µ(1− s2)−R2qs2i2 − σR1qs2i1, (3.1)

i ′ 2(T ) = R2qs2i2 − i2,

q ′ (T ) = θ(i1 + i2)− νq.


3.1. Steady states 

By setting the right-hand sides of the system (3.1), we have four steady states: 

1. The disease-free steady state 

Pq 
0 = (s 01q, i1

0 
q, s 

0
2q, i2

0 
q, q q

0) = (1, 0, 1, 0, 0). 

2. The single-strain steady state of strain 1 

P 1 = (s 1 , i1 , s 1 , i1 , q 1) = 
1 µ 1 θµ 

q 1q 1q 2q 2q q R1q 
,
R1q 

(R1q − 1), 
1 + σ(R1q − 1)

, 0, 
νR1q 

(R1q − 1) 

which is positive if and only if 
R1q > 1. (3.2) 

3. The single-strain steady state of strain 2 

Pq 
2 = (s1

2 
q, i

2
1q, s 2

2 
q, i

2
2q, q q

2) = 
1 

, 0, 
1 µ θµ 

, (R2q − 1), (R2q − 1) 
1 + σ(R2q − 1) R2q R2q νR2q 

which is positive if and only if 
R2q > 1. (3.3) 

4. The coexistent steady state 
Pq 

∗ = (s1
∗ 
q, i 

∗ 
1q, s 2

∗ 
q, i 

∗ 
2q, q q

∗ ) 

where 
∗ 1 µ 
s1q = , i ∗ 1q = [(R1q − 1)− σ(R2q − 1)] ,

R1q (1− σ2)R1q 
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s2q = ∗ 

R

1 

2q 
, i ∗ 2q = (1− σ

µ 
2)R2q 

[(R2q − 1)− σ(R1q − 1)] , 

and 

∗ θµ 
qq =	 [R2q(R1q − 1) +R1q(R2q − 1)− σ [R1q(R1q − 1) +R2q(R2q − 1)]] ,

(1− σ2)νR1qR2q 

which is positive if and only if both of the following conditions hold 

(R1q − 1)− σ(R2q − 1) > 0	 (3.4) 

and 
(R2q − 1)− σ(R1q − 1) > 0. (3.5) 

∗Note that from these two conditions, qq is consequently positive. Also note that the steady states when 
there is no isolation can be found by setting θ equaling to zero and they are parallel to the steady 
states here. 

3.2. Stability analysis


Theorem 3.1. Stability conditions for each steady state are as follows:


1.	 The disease-free steady state is stable if and only if R1q < 1 and R2q < 1, or θ > 1−
R
1 
1 
and θ > 1−

R
1 
2 
. 

2.	 The single-strain steady state of strain 1 is stable if and only if R1q > 1 and R2q − 1−σ(R1q − 1) < 0, 
or θ < 1− 

R
1 
1 
and (R2 − 1)− σ(R1 − 1) < (R2 − σR1)θ. 

3.	 The single-strain steady state of strain 2 is stable if and only if R2q > 1 and R1q − 1−σ(R2q − 1) < 0, 
or θ < 1− 

R
1 
2 
and (R1 − 1)− σ(R2 − 1) < (R1 − σR2)θ. 

4.	 The coexistent steady state is stable if and only if R2q−1−σ(R1q−1) > 0 and R1q−1−σ(R2q−1) > 0, 
or (R2 − 1)− σ(R1 − 1) > (R2 − σR1)θ and (R1 − 1)− σ(R2 − 1) > (R1 − σR2)θ. 

Proof. The stability conditions can be derived by considering the Jacobian matrix of the system (3.1) and 
using the Routh-Hurwitz criteria. Each steady state is stable if and only if all eigenvalues of the Jacobian 
matrix at the steady state have negative real parts. In case we cannot determine the eigenvalues of the 
Jacobian matrix explicitly, we consider whether the coefficients of the characteristic equation satisfy the 
Routh-Hurwitz criteria [35]. If the characteristic polynomial is of order 4, 

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, 

the steady state is stable if and only if 

a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a3
2 + a1

2 a4. 

Since Q does not appear in other differential equations in (3.1), it can be omitted from the system. 
The Jacobian matrix of the system (3.1) is 

	 

−µ−R1qi1 − σR2qi2 −R1qs1 0 −σR2qs1 

 R1qi1 R1qs1 − 1 0 0
J = 

 0 −σR1qs2 −µ−R2qi2 − σR1qi1 −R2qs2 
 
. (3.6) 

0 0 R2qi2 R2qs2 − 1 

At the disease-free steady state, four eigenvalues of the Jacobian matrix are 

−µ,−µ,R1q − 1, R2q − 1. 

All eigenvalues are negative if R1q < 1 and R2q < 1. Whenever R1q > 1 or R2q > 1, the steady state 
becomes unstable. Hence, the disease-free steady state is stable if and only if 

R1q < 1 and R2q < 1. 
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At the single-strain steady state of strain 1, the eigenvalues of the Jacobian matrix are 

−(µ+ R1qi
1
1q)± (µ+ R1qi11q)

2 + 4R1
2 
q s

1
1q i

1
1q 

−µ− σR1qi
1
1q, , and R2qS2

1 
q − 1. 

2 

We see that all of these eigenvalues are negative if R1q > 1 and (R2q − 1) − σ(R1q − 1) < 0. Since the 
steady state is unstable if at least (R2q − 1)− σ(R1q − 1) > 0, the single-strain steady state of strain 1 is 
stable if and only if 

R1q > 1 and (R2q − 1)− σ(R1q − 1) < 0. 

At the single-strain steady state of strain 2, the stability conditions can be found in the similar way. 
At the coexistent steady state, we use the Routh-Hurwitz criteria to derive stability conditions. We 

consider the characteristic equation of the Jacobian matrix as follows: 

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, 

where 
∗i σR i+ 21 2qq q

∗ ∗ ∗ = (µ+ R1q ) + (µ+ R2qi + σR1qi ),a1 2q 1q
∗i σR i+ 21 2qq q

∗ ∗ ∗ ) + (R2
1q 

∗ ∗ + R2
2 
q 

∗ ∗ = (µ+ R1q )(µ+ R2qi + σR1qi i i ),a2 s s2q 1q 1q 1q 2q 2q

= R1
2 
qs 

∗ ∗ ∗ ∗ ) +R2
2 
q

∗ ∗ ∗ ∗i (µ+ R2qi + σR1qi i (µ+ R1qi + σR2qi )a3 s1q 1q 2q 1q 2q 2q 1q 2q

= (1− σ2)R2
1q R2

2 
q 

∗ ∗ ∗ s2q i
∗ia4 s .1q 1q 2q 

∗ ∗Obviously, a1 > 0, a3 > 0, and a4 > 0, when i > 0 and i > 0. After comparing and canceling similar 1q 2q 

terms of a1a2a3 and a3
2 + a1

2a4, we have two terms left to be compared: 

LHS: (R1
2 
qs 

∗ 
1qi 

∗ 
1q −R2

2 
qs 

∗ 
2qi 

∗ 
2q)

2(µ+ R1qi 
∗ 
1q + σR2qi 

∗ 
2q)(µ+ R2qi 

∗ 
2q + σR1qi 

∗ 
1q) from a1a2a3, 

and 

RHS: − 2σ2R1
2 
qR2

2 
q

∗∗∗∗∗∗∗∗ 2 2 
1qi1qs2qi2q(µ+ R1qi1q + σR2qi2q)(µ+ R2qi2q + σR1qi1q) from a3 + a1a4.s 

∗ ∗Whenever i and i are both positive, the LHS term is positive while the RHS term is negative. Hence, 1q 2q 

2 2 a1a2a3 > a3 + a1a4. 

∗ ∗ ∗ ∗ ∗In case i and i have different signs, a4 < 0. When i and i are negative, a3 < 0 if (µ + R1qi +1q 2q 1q 2q 1q 
∗ ∗ ∗σR2qi ) and (µ + R2qi + σR1qi ) are positive; a1 < 0 if both of them are negative; and a1a2a3 <2q 2q 1q

2 2 
3 + a1a4 if they have different signs. Consequently, either i

∗ ∗ or i is negative, the coexistent steady a 1q 2q 
∗ ∗state is unstable. Therefore, the coexistent steady state is stable if and only if i > 0 and i > 0, or 1q 2q 

R2q − 1− σ(R1q − 1) > 0 and R1q − 1− σ(R2q − 1) > 0. 

Relating to the stability conditions in Theorem 3.1, Figure 2 shows the competition between two strains 
of influenza as functions of the basic reproductive numbers. 

3.3. The mean age at infection 

The mean age at infection or the mean time that a human remains susceptible is an important indicator 
of the disease prevalence [34]. Here, we study the mean age at infection of strain 1 by fixing the basic 
reproductive number of strain 2, varying the basic reproductive number of strain 1, and ignoring the 
small natural-death term in (2.1) when time is not rescaled. The mean age at infection of strain 2 can 
be studied in the similar way. We separate the mean age at infection into two cases: 

1. in the absence of strain 2 
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2. in the presence of strain 2 

Proposition 3.2. Assume that R1q > 1 and R2q > 1. 

1. The mean age at infection to strain 1 is absent when strain 2 persists (R1q < σ(R2q − 1) + 1). 
2. The mean age at infection to strain 1 is 

1 (1− σ2)
A2q = = , (3.7) 

β1i∗ 1q N µ0[(R1q − 1)− σ(R2q − 1)]

when both strains exist or σ(R2q − 1) + 1 < R1q < (R2q − 1)/σ + 1. 
3. The mean age at infection to strain 1 is 

1 1 
A1q = = , (3.8) 

β1i11q N µ0(R1q − 1)

when strain 1 outcompetes strain 2 or R1q > (R2q − 1)/σ + 1. 

Proof. This follows the stability conditions and the definition of the mean age at infection. � 

3.4. Rate of invasion of the novel strain 

In this section instead of assuming that we have two strains of influenza co-circulating in the host 
population to study the long-term dynamics, we consider the situation that strain 1 is endemic first 
while strain 2 is absent in order to examine the invasion rate of strain 2 to invade a resident strain (strain 
1). 

Proposition 3.3. Assume that individuals are at the single-strain steady state of strain 1. The invasion 
rate of strain 2 is 

(R2q − 1)− σ(R1q − 1) 
kq = . (3.9) 

(1 + σ(R1q − 1))) 

Proof. In the presence of isolation, the invasion dynamics of strain 2 at the beginning of invasion can be 
approximated by linearisation about the resident-strain steady state. Because i ′ 2(t) = R2qs2i2 − i2, 

i2(t) = C2e
(R2q s2−1)t = C2e 

kq t 

where C2 is a positive constant. Hence, kq = R2qs
1 
2q − 1. � 

4. Numerical Studies 

We choose to show the numerical results when R1 > R2. Parameter values can be found in Table 1. 
If R1 = 3.5, R2 = 3, and σ = 0.75, both strains coexist when θ < 0.3333; only strain 1 persists when 
0.3333 < θ < 0.7143; and both strains die out when θ > 0.7143. Figure 3(a) shows the numerical result 
when θ = 0.2, so we have the coexistence of the strains. In Figure 3(b), θ = 0.5, strain 2 is driven out by 
strain 1. In Figure 3(c), we have θ = 0.85, so both strains die out from the host population. 

In addition, we assume that the delay in isolation occurs for one month. Instead of starting the isolation 
at the beginning (t = 0), we introduce it one month later and compare it with the situation that the delay 
does not occur. We run the simulation with θ = 0 until one month and then continue running it but with 
θ = 0.5 after that and compare it with the result that we run the simulation with θ = 0.5 constantly from 
the beginning. The sample case that we further study here is from the previous result (see Figure 3(b)) 
where strain 1 is endemic and when R1 = 3.5, R2 = 3, and σ = 0.75. The simulations were run until 
t = 5000 in years but we only choose to show the results in some time intervals that the difference between 
the models are distinguished because the models are synchronized when time becomes very large. By 
starting with the same number of infectious individuals, we simulate the model in the situation that we 
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have the delay in isolation to compare it with the situation that we start isolation at the beginning of 
the disease (see Figure 4). In Figure 4(a), we show the number of infectious individuals to strain 1 at the 
beginning of the disease. We can see that with the delay in isolation a high jump appears (or an outbreak) 
while the model without the delay produces the lower jumps. The high jumps continually appears but 
with the lower height when time increases (see Figure 4(b)) and finally the number of infectious diseases 
in both cases tends to i11q N or I1. For strain 2, it dies out quickly in the absence of isolation delay while 
it leads to one outbreak (a high jump) and then dies out in the presence of isolation delay (see Figure 
4(c)). From the result, we conclude that the delay in isolation leads to serious outbreaks. 

By fixing the basic reproductive ratio of strain 2, R2q = 3, and σ = 0.8, Figure 5(a) shows that the 
host’s mean age of infection is A2q in (3.7) when 2.6 < R1q < 3.5 or A1q in (3.8) when R1q > 3.5. 
In Figure 5(b), isolation extends the host’s mean age of infection comparing with the system without 
intervention. Hence, isolation helps to increase the host’s mean age of infection to the strain. 

We consider the invasion rate of strain 2 by fixing R1 = 3, σ = 0.8, and q0 = 365.3. Figure 6 shows the 
comparison of the invasion rate between with and without isolation. The results suggest that isolation 
helps to reduce the invasion rate of a new strain. 

5. Conclusion and discussion 

In this work, we introduce an isolation model for two co-circulating strains of influenza. The model is 
based on a status-based framework by [22] that individuals are categorized according to their immune 
status. 

Based on this study, whether both strains of influenza die out or coexist, or only one strain of them 
persists, it depends on the basic reproductive number of each strain of influenza, cross-immunity between 
strains, and isolation rate (see Table 2). When isolation is delayed, our results suggest that the delay 
leads to higher jumps of the number of infectious individuals which represent more serious outbreaks than 
when there is no delay in isolation. Hence, launching isolation as soon as possible may help to control 
influenza effectively. 

We study the mean age of infection to strain 1 when strain 2 is either absent or present. We show that 
the host’s mean age of infection to strain 1 is extended (so hosts are unlikely to get infected) by isolation. 
By assuming that strain 1 is endemic in the host population, we study the invasion rate of a new strain. 
The model predicts that isolation helps to reduce the invasion rate of a new strain. 

All in all, we hope that this study may help to understand the strain dynamics of influenza when a 
control strategy like isolation is applied. 

Appendix 

Table 1. Lists of parameters 

Parameter Description Value References 

µ0 birth or death rate 1/70 (estimated) 
ν0 recovery rate 365/7 [22] 
βi transmission rate of strain i R0(µ0 + ν0)/N 
σ cross-immunity coefficient (induced by infection) 0.75-0.8 [22] 
q0 rate of removing infectious individuals to isolation 365/3 (or varies) (estimated) 
R0 the basic reproductive number 3 (or varies) [31] 
N the total size of population 10000000 (estimated) 
Si the number of susceptible individuals to strain i 
Ii the number of individuals infected with strain i 
Q the total number of isolated individuals 
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Table 2. Steady state chart for the isolation model. 

∗Basic reproductive numbers P 0 P 1 P 2 Pq q q q 

R1q , R2q < 1 stable undefined undefined undefined 

R1q > 1, unstable stable unstable or undefined 
R2q < 1 + σ(R1q − 1) undefined 

R2q > 1, unstable unstable or stable undefined 
R1q < 1 + σ(R2q − 1) undefined 

R1q > 1 + σ(R2q − 1), unstable unstable unstable stable 
R2q > 1 + σ(R1q − 1) 
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Figure 1. A flow diagram for the status-based model with isolation. 
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