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Abstract 

The τ -temperature is a measure of disorder of bipartite networks that is 
based on the total Manhattan distance of the adjacency matrix. Two proper
ties of this measure are that it does not depend on permutations of lines or 
columns that have the same connectivity and it is completely determined by 
connectivities of lines and columns. The normalisation of τ is done by an uni
form random matrix whose elements were previously sorted. τ shows no bias 
against uniform random matrices of several occupations, ρ, sizes, L, and shapes. 
The scaling of the total Manhattan distance of a random matrix is Drand ∝ L3ρ 
while the same scaling for a full nested matrix is Dnest ∝ L3ρ3/2 . We test τ 
for a large set of empirical matrices to verify these scalings. The index τ cor
relates better with the temperature of Atmar than with the NODF index of 
nestedness. We conclude this work by discussing differences between nestedness 
indices and order/disorder indices. 

Keywords: bipartite interaction networks, nestedness,order/disorder, ecology 
of communities, biogeography, NODF 

1. Introduction 

The concept of nestedness was initially proposed in biogeography to describe 
a pattern of species composition within sets of islands and was latter extended 
to species distribution along landscape fragments (Boecklen 1997; Darlington 
1957; Whittaker and Fernández-Palacios 2007). A nested pattern has a species 
composition such that small assemblages are formed by subsets of species of large 
assemblages. The same nestedness concept originating in biogeography studies 
was imported to the context of species interaction networks (Bascompte et al. 
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2003). In this new area nestedness is used to characterise how much generalist 
species are subsets of specialist species (Bascompte 2009). This measure has 
been so successful to characterise interaction networks that today the two most 
used tools to unveil their architectures are modularity and nestedness (Fontaine 
et al. 2011; Fortuna et al. 2011). 

In both contexts, biogeography and ecology of communities, the main math
ematical object of study is a bipartite network BN. If we use the example of 
island composition, the BN consists of a set of species and a set of islands, 
where the links between the two sets are established by species belonging to 
islands. In the context of ecology of comunities the two sets are group of species 
and links are established by interactions between species. The BN is a versatile 
object that can be represented by a graph, an adjacency matrix, or, in the case 
of a qualitative binary network, a lattice of empty or occupied sites. 

Ironically the nestedness concept became popular among ecologists after the 
theoretical work of Patterson and Atmar (Patterson and Atmar 1986), who 
introduced a temperature T which is supposed to be an indirect measure of 
nestedness. In that article the temperature is variously presented as an or
der/disorder, a pattern structure or an anti-nestedness measure. The index T 
is a measure of dispersion (temperature) of lattice elements relatively to the 
state of complete order (zero temperature). The zero temperature corresponds 
to the most organised possible state where all lattice elements are perfectly 
nested, an increase in the disorder (temperature) will create holes in the perfect 
nested structure and nestedness decreases. To quantify T the adjacency matrix 
is previously packed and a median line separating occupied from empty sites 
is drawn. The index T is a normalised measure of the standard deviation of 
sites respect to the median. We cite a further development of this algorithm 
(Rodŕıguez-Gironés and Santamaria 2006) that has improved the estimation of 
the median line and the bias that arises with the packing procedure. 

A proper index to quantify nestedness of a BN is the NODF which is an 
acronym for nestedness metric based on overlap and decreasing fill (Almeida-
Neto et al. 2008; Ulrich et al. 2009). Decreasing the fill of a matrix, or packing 
the matrix, means ranking it according to its connectivities. NODF estimates 
how much lines (or columns) with lower connectivies are actually subsets of 
lines (or columns) of higher connectivities. To be a subset means to overlap 
elements, and NODF is computed by counting overlapping elements among all 
pairs of columns (and lines) of the matrix. By construction NODF estimates 
independently nestedness along lines and columns and the normalisation of the 
index is always performed for all pairs of lines (or columns) of the matrix. 

The indices NODF and T follow different strategies, the first quantifies 
overlapping subsets, while the second is an order/disorder measure. In a wider 
context we call an order/disorder (temperature) index any one that is based on 
three statements: (i) it presents a state of maximal order, or zero temperature; 
(ii) it quantifies deviance relative to the state of maximal order using a metric 
procedure; (iii) it has an adequate normalization of this deviation. We cite three 
indices that fulfill these conditions: the Temperature of Atmar as presented in 
the previous paragraph, the τ -temperature that is the main subject of this 
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paper and the discrepancy of Brualdi (Brualdi and Sanderson 1999). Indeed, 
the discrepancy has a state of maximal order that corresponds to the case of 
all occupied sites of the matrix placed at the most to the left and to the top as 
possible; the discrepancy quantifies how many switches are necessary to drive 
the occupied matrix elements to this state of zero temperature. 

In this work we focus on the τ -temperature which is an estimator of or
der/disorder in the matrix (Araujo et al. 2010a,b). This index is closely related 
to T but it is simpler and has clearer mathematical properties (Corso et al. 
2011) because it does not use a median line that is a cumbersome quantity. We 
will compare the τ -temperature with T and NODF index. We remark that the 
original work of Atmar (Patterson and Atmar 1986) as well as the article that 
introduced NODF (Almeida-Neto et al. 2008) assume that the temperature 
index is a measure of anti-nestedness, and, as a consequence, that it is valid to 
define a generic nestedness index ν in association with a temperature index T 
in the following way: 

ν = 1 − T (1) 

This complementary relation between temperature and nestedness, as if they 
were alternative measures of the same phenomenon, is not proved. We shall 
not assume this hypothesis; we consider that NODF is indeed a measure of 
nestedness, because it counts overlapping of subsets, in opposition to the τ 
temperature and the T that are temperature-like indices. 

There is an epistemologic ambiguity connecting the concepts of nestedness 
and order/disorder in the literature of ecology. It is well accepted that it is eco
logically relevant to quantify how much sets of decreasing diversity are subsets 
of sets of larger diversity - the idea behind nestedness. But at the same time it 
is also reasonable to question how much communities of increasing diversity are 
ranked according to size (or other criterion), which is an concept related to or
der/disorder in the rank. Indeed, the concept of nestedness, in its simplest form, 
is a rank concept: a series of sets Ak are perfectly nested if A1 ⊂ A2 ⊂ ... ⊂ AN . 
If some Al do not fulfill this condition they are out of order and we could, in 
principle, quantify how much the complete set deviate of the state of perfect 
order (or perfect nestedness). However, despite the close semantic connection 
between these two ideas, we prefer not to identify them; we return to this point 
in the last section of the manuscript. 

Today there are two indices largely used in the characterisation of nested-
ness: the NODF using the algorithm of ANINHADO (Almeida-Neto et al. 
2008) and T in the version of algorithms BINMATNEST (Rodŕıguez-Gironés 
and Santamaria 2006) and ANINHADO. There are concerns about the mathe
matical foundations of these measures as well as their extension to quantitative 
networks (Araujo et al. 2010a; Galeano et al. 2009; Podani and Schmera 2012), 
and also (Almeida-Neto and Ulrich 2011). Therefore we believe in the neces
sity of deeper investigation about nestedness and order/disorder measures, in 
particular because it is necessary to clarify the differences between these two 
concepts. 

The τ -temperature was introduced previously in (Araujo et al. 2010a), but 
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in this article we improve the previous index in two points: the normalisation 
procedure no longer uses the nested pattern as a benchmark, and the random 
matrix used in the normalisation has a more realistic statistical distribution. 
In addition, in this paper we interpret the τ -temperature as a measure of order 
instead of (Araujo et al. 2010a) where it is regarded as an anti-nestedness index. 
Mainly, this paper discusses the mathematics behind τ -temperature and tests 
this index against null models. In section 2 we present in some detail the 
main properties of τ -temperature and discuss its best normalisation strategy. 
In section 3 we compare τ -temperature for an ensemble of networks with variable 
occupation, size and shape. Also we estimate τ -temperature for 288 matrices 
obtained in the literature and compare it with T and NODF indices. In section 
4 we present the most important properties of the τ -temperature and discuss 
differences between temperature-like and nestedness-like indices. 

2. Methodology 

We start the methodology presenting the adjacency matrix, the mathemat
ical object that resumes information of the BN. The adjacency matrix has a 
dimension L1 × L2 for L1 and L2 the number of elements in the two sets. The 
data of the BN is summarised in the matrix elements ai,j = 1 or 0 for the 
case of a binary (presence-absence or qualitative) networks, and ai,j = wi,j for 
a quantitative network. In the case of binary network, ai,j = 1 indicates the 
presence of a link between an element of the first set i and an element j of the 
other set, while the zero indicates the absence of a link. Otherwise, for quanti
tative networks wi,j is the frequency of the interaction between elements i and 
j. In addition, in both cases, we can project the information of the matrix into 
connectivities of S1 , γ1, or S2 , γ2, that means: 

L2 L1 

γi 
1 = ai,j and γj 

2 = ai,j (2) 
j=1 i=1 

The quantity γi 
1 gives the number of interactions of S1 elements i and γj 

2 the 

equivalent information for S2 species. 
The most simple measure of the matrix is its occupation, which is defined 

by 
N 

ρ = , (3) 
L1L2 

for N the total number of interactions of BN, or equivalently, using a lattice 
representation in the case of qualitative BN, the number of occupied sites in 
the lattice. From now on we shall direct our attention to binary networks due to 
their mathematical simplicity. An extension of the result of the present paper 
to quantitative networks should not lead to substantial differences since the 
adjacency matrix is a linear object. 
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2.1. The distances in the matrix 

The main ingredients of the mathematical description of the τ -temperature 
are show in figure 1. In this sketch is presented an adjacency matrix, with a 
couple of occupied sites that indicate the interactions between sets S1 and S2 . 
The first step in the determination of the distances of the matrix consists in 
packing the matrix, a process that is done by an adequate permutations of line 
and columns of the matrix. In this process we rank columns and lines of the 
matrix according to γ. In figure 1 the adjacency matrix is represented in a 
packed form, in addition we highlight the distances of two arbitrary sites. For 
any site ai,j , the Manhattan distance is done by di,j = i + j, this quantity is 
the simplest way to measure the distance of any site to the upper corner of the 
matrix. 

S
2

 S
1 

Figure 1: Sketch of a packed adjacency matrix of S1 = 4 and S2 = 6, the actual 
interactions correspond to the occupied sites of a lattice. We compute distances after 
the packing of the adjacency matrix; the Manhattan distances of sites a2,5, (d2,5 = 
2 + 5), and a3,2, (d3,2 = 3 + 2), are highlighted in the figure. The main idea behind 
τ -temperature consists in summing all di,j of the matrix. 

The τ -index is estimated using the total distance D corresponding to all 
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occupied sites of the adjacency matrix: 

N 

D = di,j = ai,j(i + j) (4) 
l=1 i,j 

where index l runs over occupied sites. The temperature τ follows directly from 
a normalisation of the total distance: 

τ = D/Drand (5) 

i.e. Drand is the total distance computed for an adequate random matrix. A 
detailed description of Drand is given in the next section. Before that we shall 
stress a mathematical property of D. For the sake of clarity we rewrite equation 
(4) in the following form: 

D = ai,ji + ai,jj = iγi 
1 + jγj 

2 = D1 + D2 , (6) 
i,j i,j i j 

where DX stands for the total distance of sets S1 and S2 . 
Equation (6) is interesting in two aspects. The first is that D can be split 

in two components that are related to sums over columns and lines. Indeed 
the Manhattan distance of each element has a horizontal (line) and a vertical 
(column) component. The expression of D as the sum of D1 and D2 stresses 
that it is possible to estimate independently distances along lines or columns. 
A similar property of independence measure over lines and columns is shared 
by the NODF index. 

The second point we might highlight is that equation (6) assures that the 
computed τ -index depends linearly on γ1 and γ2 . Therefore, the estimation of 
τ -index can be performed directly from network connectivities γ1 and γ2 . This 
property of the τ -index, which was first pointed out in (Corso et al. 2011), is 
not shared with any other nestedness index. In the discussion we shall return 
to this issue. 

The distance D is unique in the sense that it does not depend on the packing 
process. Indeed, D is not influenced by permutations of lines and columns that 
have the same γ. This fact can be verified with help of figure 2 where we plot the 
same matrix packed in two different ways, Ma and M b, these two representations 
permute columns 3 and 4 that have the same connectivities. To compute D of 
Ma and M b we can the sum of elements belonging to columns 1 and 2 and 
columns 3 and 4. The parcel corresponding to columns 1 and 2 is the same for 
D of Ma and M b, for the other two columns we have: (1 + 3) + (2 + 4) = 10 
in case of Ma and (2 + 3) + (1 + 4) = 10, for M b . A decrease in D computed 
along lines corresponds to an increase in D along columns. This rule implies 
that as long as connectivities are ranked any alternative packing has the same 
total Manhattan distance. 

2.2. The normalisation of D 

To define an adequate normalisation of the total distance D for τ -index is not 
a straightforward task, indeed several possible normalisations may be used and 
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Figure 2: Two representations of the same interaction matrix: the only difference is in 
the permutation of columns 3 and 4 that have equal connectivities. The total distance 
D is the same for both matrices which guarantees that measures based in D are unique 
and do not depend on the packing process. 

the choice for the best one should be considered with attention. In a previous 
work (Araujo et al. 2010a,b) they use a different normalised τ̄ from this article. 
The normalisation used there was 

τ̄ =	
D − Dnest 

, (7) 
D − Drand 

where Dnest accounts for the distance of a completely nested matrix. In this 
article we will define, in the following, a normalization τ different from τ̄ . The 
problem of normalisation (7) is that the completely nested matrix as defined in 
(Araujo et al. 2010a) does not take into account size differences, indeed the nest 
pattern is just a triangular pattern with equal sizes. In the case of accentuated 
size differences (L1 >> L2 or L1 << L2) the results for the normalisations are 
not realistic. In the same article the authors try to bypass this problem by 
using another metric that is not the Manhattan, but such approach loses the 
best properties of the Manhattan distance that is expressed by equation (6). 

The random network used in the normalisation of the τ̄ index is an ordinary 
homogeneous random matrix with uniform distribution. In (Araujo et al. 2010a) 
Drand is computed using the expected values of occupation along lines, µ1 = 
N/L1, and columns, µ2 = N/L2. However, the computation of a realistic 
Drand should take into account the packing procedure of the matrix which is a 
preliminary step in the estimation of D. Indeed, the distribution resulting after 
the packing, and Drand, depends on occupation and shape of the matrix. 

To illustrate differences between the uniform distribution and the same uni
form distribution after packing we show in figure 3 the distribution of occupation 
along lines. We use in this example a square matrix of size L = 50 of a matrix 
and ρ = 0.05. Three distributions are depicted: the uniform distribution model 
that represent the situation before the packing (dot points), a Monte Carlo 
distribution after packing (open squares) and the distribution that follow the 
binomial model (filled circles). 

The uniform distribution is done by a constant line of µ = N/L = ρL = 

7 



2.5, this distribution corresponds to the expected result without packing of the 
matrix. The Monte Carlo approximation of the data is generated using 50000 
random samples of a uniform distribution, but the statistic is performed after the 
packing. The result depicted in figure 3 corresponds to the ranked distribution 
of occupied sites in lines. As expected, the average value of this distribution fits 
to the uniform distribution. A similar analysis using columns instead of lines 
produces a similar result. 

In this work we use the binomial model to perform our statistical estimations. 
To compute the distribution of elements along lines (or columns) of a matrix we 
assume that the distribution of occupied elements of the random matrix follows 
a binomial distribution. The probability of having k occupied elements in a line 
(or a column) of size L is given by 

pk = Ck
Lρk(1 − ρ)(L−k), (8) 

where Ck
L is the binomial coefficient L choose k. With the help of equation 

(8) and a randomisation technique we compute Drand for the packed uniform 
distribution. The process of computing the actual Drand is done by running a 
large number of vectors of size L with probability ρ and sorting the result. The 
Drand is computed in the following way: 

Drand =< D1 + D2 >sort, (9) 

where <>sort represents an average of the distances over a large ensemble of 
matrices that have previously being sorted. 

3. Results 

In this section we explore the statistical proprieties of τ -temperature as 
defined by equations (6) and (9). We use two data sets to test the τ -temperature, 
the first is a set of uniformly random matrices and the second is a set of 288 
empirical matrices available at the site (Atmar and Patterson 2012). We focus 
our analysis on three major factors that may bias the interpretation of ecological 
results: lattice occupation, size and shape. 

3.1. Test on uniform random matrices 

The simplest test of a statistical index is against an ensemble of random 
matrices with uniform distribution what is known as the R0 null model (Gotelli 
and Graves 1996). We test the τ -temperature for random matrices with variable 
size, occupancy and shape, the results are shown in figure 4. In figures (a) to 
(c) we test shape, in this set we keep constant ρ and L1 and change L2; we use 
L1 = 50 and 20 ≤ L2 ≤ 200, three distinct ρ are shown inside the figures. In 
figures (d) to (f) we employ a square matrix of constant occupation and increase 
size; ρ is indicated in the graphic. In figures (g) to (i) we test matrix occupation; 
we use again a square lattice with three different lattice sizes as indicated in the 
figure. Each point in the graphic corresponds to the τ of a single random matrix. 
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Figure 3: The ranked number of elements in a line for a random matrix. The vertical 
axis shows the average number of occupied sites in lines and the horizontal corresponds 
to line index; the position 1 goes for the most occupied and while L for the less one. 
We plot the Monte Carlo result over 50000 random matrices, it is also shown the 
uniform distribution and the binomial model. 

To estimate Drand we use the procedure indicated in equation (9) employing 
5000 samples in the average. 

This pictures indicate that the index has no appreciable bias for occupation, 
size or shape. The values of τ oscillate around 1 as expected and fluctuations 
are larger for small N , the number of occupied lattices, which correspond to the 
sample size in our statistical experiment. The simplest prediction for deviation 
in τ is Δ(τ) ∝ 1 √

N 
. Indeed, fluctuations of τ diminish with increasing ρ, L and 

L1, the parameters that enlarge N . We can also increase sample size enlarging 
the number of matrices. A statistical analysis of these cases show that Δ(τ) 0→
increasing the number of matrices in all these situations. 

3.2. Test on empirical matrices 

We perform an empirical test of the τ -temperature, evaluating it for the set 
of 288 matrices of presence-absence of species in metacomunities. We choose all 
the matrices that satisfy the condition L1, L2 > 3. As in the previous section 
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Figure 4: The behaviour of τ for an ensemble of uniform random matrices with variable shape 
(a) - (c), L1 = 50; size (d) to (f) and occupation (g) to (i). Each point correspond to a 
single random simulation. The results oscillate around 1 indicating a good performance of the 
τ -temperature. 

we explore occupation ρ, matrix size and matrix shape. To quantify matrix size 
s we take the geometrical mean between the number of species: 

s = L1L2, (10) 

we use this definition because it resembles the square root of the area of the 
lattice which is an intuitive indicator of its size. The shape, δ, of the matrix is 
a measure of its size asymmetry, we employ the following normalised definition: 

δ = 
|L1 − L2|

. (11) 
L1 + L2 

In figure 5 we depict our results. In (a) we show matrix shape, in (b) 
occupation and in (c) size. We notice that τ shows no bias on matrix shape in 
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opposition to occupation and size. These figures show as well that τ increases 
with occupation and decreases with size. To clarify this point we plot in figures 
5 (b) and (c) the curves of τnest that corresponds to the τ -temperature of a 
matrix with same occupation but all elements packed in the corner of minimal 
distance. By construction τnest corresponds to the lower bound value of τ , that 
means: 

τnest = Dnest/Drand, (12) 

where Drand is a non-packed uniform random matrix approximation given by 
Drand = N(L1 + L2)/2 and Dnest is a distance of the full packed matrix. For a 
square matrix the expression of Drand as a function of occupancy is given by 

Drand = N(µx + µy) = N(L + L)/2 = ρL2L = ρL3 , (13) 

where we have used equation (3). To estimate Dnest we construct the pattern 
that is maximally packed which corresponds to an isosceles triangle of side Lo 

placed at the corner of the matrix. The artificial full nested pattern we use in 
this work consists of a matrix where all occupied sites are inside a triangle whose 
right angle is at the a1,1 matrix element. The area of this triangle is given by 
the total number of occupied sites: 

N = L2 
o/2 (14) 

Using equation (3) we can write Lo = L
√

2ρ. The calculus of Dnest follow from 
the computation of the distance on this triangle: 

� Lo 
� Lo−x 

Dnest = (x + y)dxdy =
1 
Lo 

3 =
2 
L3ρ 

� 
2ρ. (15) 

3 30 0 

Finally, putting together equations (12) and (15) we have 

2
√

2ρ 
τnest = , (16) 

3 

which is the equation shown in figure 5 (b). 
To compute a curve for the dependency of τnest versus s we use equations 

(12), (13) and (15): 

2L3ρ
√

2ρ 2� 2 N 
τnest = Dnest/Drand = = 2ρ = 2 . (17) 

3ρL3 3 3 L2 

This equation expresses τnest as a function of N and L; as the size is the geo
metrical mean of L1 and L2 we take for simplicity s ∝ L. To write equation (17) 
exclusively as function of size L we perform a log-regression over the empirical 
matrices to obtain a relation of the form N ∝ Lγ that is a expression of how 
the number of links scales with nodes. We obtained γ = 1.67 and a regression 
coefficient R = 0.875. In this way relation (17) become: 

2√
2L−0.167 τnest = (18) 

3 
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that is the relation plotted in 5 (c). Despite the crude estimations of Drand 

and Dnest, they reveal the scaling of D for size and occupation. In addition, 
relations (16) and (18) give a good estimation of the lower bound of τ versus 
occupation and size. 
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Figure 5: The τ -temperature for matrix shape (a), occupation (b) and size (c); the 
data correspond to empirical bipartite networks. The theoretical curves in (b) and (c) 
correspond to τ of a completely nested pattern, the lower bound τ . 

In figure 6 we explore the correlation between τ -temperature and two other 
indices: the temperature of Atmar in the matrix (a) and the NODF in (b). 
To compute these two indices we employ the algorithm present in the refer
ence (Guimarães Jr. and Guimarães 2007). As expected the two temperatures 
correlated positively while NODF is anticorrelated. The Pearson correlation 
test gives R = 0.577 for T and R = −0.330 for NODF ; the result for T and 
NODF is R = −0.499. Therefore τ correlates better with T than with NODF . 
We perform a similar analysis using the BITMATNEST algorithm (Rodŕıguez-
Gironés and Santamaria 2006) and found R = 0.409 for the correlation between 
τ and T and R = −0.454 between T and NODF . These results suggest that 
τ -temperature is a measure of disorder, NODF of nestedness and T an inter
mediate measure, in the discussion we return to this point. 
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Figure 6: The τ -temperature versus the T and NODF indices. The values inside the 
graphic correspond to the Pearson correlation coefficient. It is worth to note that τ 
correlates better with T than with NODF index. 

4. Discussion and Final Remarks 

The τ -temperature is an order/disorder index of bipartite networks, that has 
an intuitive appeal because it is based on elementary geometrical assumptions. 
This index is based on counting distances on the adjacency matrix, the most 
ordered pattern correspond to the occupied sites at the closest positions to a1,1 

corner. This index share two remarkable characteristics, the first is that, despite 
it requires that the matrix has to be packed before counting the total Manhattan 
distance, τ -temperature does not depend on the packing procedure. In this way 
we claim that τ does not depend of permutation of lines or columns. The second 
aspect is that the τ -index depends only on the total marginals to be completely 
defined, equation (6). There is no information in connectivities γi 

1 and γj 
2 that is 

not in the τ -index. The metric statement of τ -temperature allows the derivation 
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of exact scaling expressions for occupation and size, equations (16) and (18). 
In this paper we perform a statistical analysis of τ -temperature for a set of 

uniform random matrices and a set of empirical matrices. As τ -temperature 
is normalised by random matrices it is not unexpected that there is no bias in 
the behaviour of τ against matrix size, shape or occupancy. On the other hand 
τ shows a marked influence on matrix occupation and size. This phenomenon 
is related to scaling differences for D of random and perfectly nested matrices. 
The scaling for a random matrix is Drand ∝ L3ρ, equation (13), while for a full 
nested matrix is Dnest ∝ L3ρ3/2, equation (15). As these two distances do not 
scale in the same way, and empirical matrices, are nested to some extent, this 
fact explains the dependency of τ with occupancy and size. 

A couple of works have explored the connectivity distribution in BN (Mon
toya et al. 2006; Saiz and Alados 2011). In the work (Montoya et al. 2006) 
was explored the truncated power-law behaviour of the distribution of γ in con
nection with dynamical network models. However, a further work (Okuyama 
2008) did not find tangible power-law or truncated power-law distributions in 
the same data set. This discussion is marked by difficulties of obtained a best 
fitting curve of γ which is not the focus of this manuscript. The point we stress 
here is that there is no attempt in the literature to put in a common framework 
nestedness and connectivity distribution. The τ -temperature, by its turn, has 
a clear answer to this issue: these two quantities are intimately related, the 
τ -temperature, following equation (6), is completely determined by the connec
tivity distribution. This result is roughly intuitive since steeper distributions of 
γ should imply in nested patterns while flat distributions do not. 

The temperature of Atmar is not defined analytically as the τ -temperature, 
neither has a clear algorithm as NODF . In this way it is easier to do theoretical 
inferences about NODF and τ -temperature. A comparison between NODF 
and τ -temperature shows that these two quantities do not follow equation (1), 
that means, NODF 1 does not imply τ 0 or vice-versa. We take as → →
an example the pattern of minimal filling which is composed by one filled row 
and one filled column. For this pattern NODF is almost zero because lines 
(or columns) are not sub-sets of other lines (or columns) since they have the 
same connectivity. Otherwise τ -temperature is the minimal possible for this 
matrix. The pattern of minimal filling shows clearly that low temperature does 
not imply in nested structure. 

An analysis of the correlation among a set of empirical matrices shows that τ 
temperature is more related to T than to NODF index. This result brings new 
light to the seminal paper of Atmar and Patterson that used an order/disorder 
approach to quantify nestedness (Patterson and Atmar 1986). Perhaps the 
confusion in the literature that follows that paper and goes to the development 
of several nestedness indices is rooted in the fact that nestedness is not properly 
an order/disorder-like phenomenon and, in this way, an equation like (1) is 
not valid. However, the Atmar temperature has been largely used in ecology 
of communities and metapopulation studies as a valuable index. Nestedness 
indices have proved to be usefull in the characterisation of pollinator networks 
(Bascompte et al. 2003; Guimarães Jr. et al. 2006), but it is not conclusive 
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if pollinator networks are really nested (in the sense of NODF ) or if they are 
more ordered (as an order/disorder approach would suggest). To conclude, 
nestedness is a fruitful and problematic idea that arises in biogeography studies 
and ecology of communities, and we hope this paper will contribute to clarify a 
concept which is one of the major points in theoretical ecology (Loehle 2011). 

Acknowledgements Financial support to Gilberto Corso from CNPq (Con
selho Nacional de Desenvolvimento Cient́ıfico e Tecnológico) is acknowledged. 

References 
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