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Abstract

Universal algebra is often known within computer science in the guise of algebraic specification
or equational logic. In 1963, it was given a category theoretic characterisation in terms of what
are now called Lawvere theories. Unlike operations and equations, a Lawvere theory is uniquely
determined by its category of models. Except for a caveat about nullary operations, the notion
of Lawvere theory is equivalent to the universal algebraist’s notion of an abstract clone. Lawvere
theories were soon followed by a further characterisation of universal algebra in terms of monads,
the latter quickly becoming preferred by category theorists but not by universal algebraists. In the
1990’s began a systematic attempt to dualise the situation. The notion of monad dualises to that
of comonad, providing a framework for studying transition systems in particular. Constructs in
universal algebra have begun to be dualised too, with different leading examples. But there is not
yet a definitive dual of the concept of Lawvere theory, or that of abstract clone, or even a definitive
dual of operations and equations. We explore the situation here.

Keywords: Universal algebra, Lawvere theory, abstract clone, monad, comonad.

1 Introduction

There have been two main category theoretic formulations of universal algebra.
The earlier was by Bill Lawvere in 1963 [16]. Nowadays, his central construct is
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usually called a Lawvere theory, more prosaically a single-sorted finite product
theory [1,2].

Lawvere made a careful distinction between the notions of Lawvere theory
and equational theory. Equational theories are a form of presentation for
Lawvere theories: every equational theory determines a Lawvere theory and
every Lawvere theory is determined by an infinite class of equational theories.
Choosing good presentations for a Lawvere theory and deriving an invariant
description of the theory from a presentation are important, but the semantics
of a Lawvere theory can be considered independently of that [16]. We give the
definitions and outline the situation in Section 2.

Universal algebraists have had the same concerns about the lack of invari-
ance of presentations as category theorists have had. They have long used the
notion of clone, of which Lawvere was aware, and they have gradually moved
towards that of abstract clone [4]. Subject to a caveat about nullary opera-
tions, the notion of abstract clone is equivalent to that of Lawvere theory. So,
subject to the caveat, universal algebraists readily recognise the definition of
Lawvere theory and accept its significance for universal algebra. We give the
definitions and constructions in Section 3.

The second category-theoretic formulation of universal algebra, which was
in terms of monads, has a more complicated history and is much less accepted
by universal algebraists. Monads typically arise from adjoint pairs of functors.
The notion of monad (or triple or standard construction) arose in algebraic
topology for reasons distinct from universal algebra, see for instance [6]. In
1965, Eilenberg and Moore noted that in case T is the free group monad, their
category of T -algebras is the category of groups [5].

In 1966, Linton made the general connection between monads and Lawvere
theories: every Lawvere theory gives rise to a monad on Set whose category
of algebras is equivalent to the category of models of the Lawvere theory, and,
subject to a generalisation in the definition of Lawvere theory, every monad
arises thus, uniquely up to coherent isomorphism [17]. So Linton focused on a
generalisation of the notion of a Lawvere theory, one that corresponds exactly
to the notion of monad. We give the details in Section 4.

Monads have been the more common category theoretic formulation of
universal algebra, see for example [19]. But Lawvere theories relate more
closely to universal algebra; they arose directly from universal algebra; and
they allow natural constructions that arise in universal algebra, such as the
sum or tensor of theories, while monads do not [9]. So it seems little wonder
that, although many universal algebraists are aware of monads, they seem
generally not to have found them, or an equivalent notion, very helpful. Much
of the relevant historical development has been summarised in [9].

Over the past decade or so, category theorists, computer scientists and
universal algebraists have all become interested in the dual of this situation,
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for a variety of reasons [7,10,14,24,26,29].

A leading example for the interest by computer scientists arises from transi-
tion systems, which play a fundamental role in, for example, concurrency [21].
A finitely branching transition system is given by a set S together with a
function t : S −→ Pf (S), where Pf (S) is the set of finite subsets of S. The
functor Pf on Set generates a cofree comonad G(Pf ), and t corresponds to
the G(Pf )-coalgebra that sends an element σ of S to the set of all possible
streams of transitions generated by t with source σ. We would like to develop
a body of theory that is dual to universal algebra and includes this example,
but it is not easy. We outline some of the issues in Section 5.

One approach to dualising the theory of Lawvere theories is by defining
a comodel of a Lawvere theory L in Set to be a model of L in Setop. That
line of thought has proved to be valuable for category theorists, for computer
scientists, and for universal algebraists [14,24,26]. The category of comodels
induces a comonad and is the category of coalgebras for the induced comonad
on Set. But this approach does not include transition systems.

Alternatively, one can dualise definitions associated with presentations,
carefully dualising the structure of [13,27]. That line of thought has value
too [7]. But the fact that Set is a locally finitely presentable category while
Setop is not, leads to less elegant results than one would wish [7], and one
loses the presentation independence that is central to the notions of Lawvere
theory and abstract clone.

Linton’s generalised notion of Lawvere theory, corresponding exactly to the
notion of monad on Set, suggests a third approach: Linton did not require size
conditions [17,18], so dualising his definition is immediate, yielding a definition
that is equivalent to that of comonad on Set, thus including transition systems.
But sums of monads need not exist, so products of comonads need not exist
either; similarly for tensors.

So the question is open, hence the question mark in the title of this paper.
We outline the above three proposals in Section 6, and we propose a tentative
definition of a dual Lawvere theory in Section 7, leaving its development for
further work.

2 Lawvere theories

In his 1963 PhD thesis, Lawvere gave a category theoretic formulation of
universal algebra along the following lines.

Definition 2.1 Let ℵ0 denote a skeleton of the category of finite sets and
all functions between them, considered as a category with strictly associative
coproducts.

Since ℵ0 is equipped with strictly associative finite coproducts given by
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the ordinal sum of natural numbers, the opposite category ℵop0 is equipped
with strictly associative finite products. It is equivalent to the free category
with finite products on 1 as ℵ0 is equivalent to the free category with finite
coproducts on 1.

Definition 2.2 A Lawvere theory consists of a small category L with (neces-
sarily strictly associative) finite products and a strict finite-product preserving
identity-on-objects functor I : ℵop0 −→ L. A map of Lawvere theories from
L to L′ is a (necessarily strict finite-product preserving) functor from L to L′

that commutes with the functors I and I ′.

Thus the objects of any Lawvere theory L are exactly the objects of ℵ0, and
every function between such objects yields a map in L. Note that the functor
I need not be an inclusion. One often refers to the maps of a Lawvere theory
as operations. The notion of map between Lawvere theories encapsulates the
idea of an interpretation of one theory in another.

The definitions of Lawvere theory and map between them yield a category
Law, with composition given by ordinary composition of functors. The cat-
egory Law is complete and cocomplete, indeed a locally finitely presentable
category.

Given an equational theory, one generates a Lawvere theory by putting
L(n, 1) = Fn, the free algebra on n generators. This determines L(n,m) for
any m as L(n,m) must be the product of m copies of L(n, 1). The composition
of L is fully determined by the family of maps

(Fp)n × Fn −→ Fp

determined by substitution of n terms of p variables into a term of n variables.

For most mathematical purposes, one understands a Lawvere theory by
study of its models.

Definition 2.3 A model of a Lawvere theory L in a category C with finite
products is a finite-product preserving functor M : L −→ C.

Note that one has preservation of finite products here, not strict preserva-
tion. Preservation rather than strict preservation of finite products is funda-
mental: if one demanded strict preservation, the category of models for the
Lawvere theory for a monoid would be empty, rather than being the category
of monoids as one wants. The reason is that, with the usual set-theoretic
definitions, finite products in Set are not strictly associative, whereas they
are strictly associative in any Lawvere theory. Preservation rather than strict
preservation also allows a smooth account of change of base category along a
finite product preserving functor H : C −→ C ′.

The requirement that M preserves projections, which is part of what
preservation of products means, determines the behaviour of M on all op-
erations of the form If : projections in L amount to coprojections in ℵ0, and
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every function f is given by a family of coprojections. So what determines a
model is the interpretation of the other operations.

There is a mild difference here between universal algebra and category the-
ory traditions. Some universal algebraists only admit non-empty models [3].
So, for example, a category theorist would regard the empty set as a carrier
for the structure of a semigroup, whereas some universal algebraists would
not. For a category theorist, the empty semigroup is important as it is the
initial object in the category of semigroups.

Definition 2.4 For any Lawvere theory L and any category C with finite
products, the category Mod(L,C) is defined to have objects given by all mod-
els of L in C, with maps given by all natural transformations between them.

The definition of map in Mod(L,C) is subtle. One can readily prove that
any natural transformation between models respects finite products: for any
natural transformation α between models M and N , and for any n in ℵ0,
the map αn : Mn −→ Nn is given by the product of n copies of the map
α1 : M1 −→ N1. Thus the maps in Mod(L,C) could equally be defined to
be those natural transformations that respect the product structure of L.

The semantic category C of primary interest is Set. Consider a model M
of a Lawvere theory L in Set. The set M1 determines Mn up to coherent iso-
morphism for every n in L: for M preserves finite products of L, equivalently
of ℵop0 ; these are finite coproducts of ℵ0, which are given by finite sums; and so
Mn must be a product of n copies of M1. Thus to give a model M is equiva-
lent to giving a set X = M1 together with, a function from Xm to X for each
map of the form f : m −→ 1 in the category L, subject to the equations given
by the composition and product structure of L; and Mod(L, Set) is equivalent
to the evident category of such structures. This analysis routinely extends to
any category C with finite products.

The category Mod(L, Set) is always complete and cocomplete, with the
initial object given by the empty set if L has no nullary operations.

Unlike equational theories, Lawvere theories are semantically invariant.
The precise sense in which that is so is as follows. With each Lawvere theory
L, we associate the underlying set functor

ev1 : Mod(L, Set) −→ Set

given by evaluation at 1. This is the semantics functor of Lawvere [16]. We say
that the categories Mod(L, Set) and Mod(L′, Set) of models are coherently
equivalent if there is an equivalence of categories between them that respects
the underlying set functor.

Proposition 2.5 [16] Given Lawvere theories L and L′, if the categories
Mod(L, Set) and Mod(L′, Set) are coherently equivalent, then the Lawvere
theories L and L′ are isomorphic in the category Law.
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3 Abstract clones

Let C be an arbitrary category and let X be an object of C for which all finite
powers of X also exist in C.

Definition 3.1 Setting OX =
∐

n>0C(Xn, X), a subset Cl ⊆ OX is
called a clone of operations over the object X if it contains all projections
πi : Xn −→ X and is closed under composition, i.e., writing Cln for those
elements of Cl that lie in C(Xn, X), given f εCln and f1, . . . , fn ε Clk, the
composite f(f1, . . . , fn) is in Clk.

This seems the most straightforward possible generalisation of a clone to
abstract categories [14]. It is almost verbatim the definition in universal al-
gebra [4] except that the composition under which the clones must be closed
is written with the help of tuplings. In particular, putting C = Set, this is
exactly the notion of a clone as studied in universal algebra [25,28,15].

Note that nullary operations are excluded from the definition, i.e.,
C(X0, X) 6⊆ OX . This follows a convention in universal algebra, which has
its advantages but also disadvantages. The notion is naturally connected with
that of models of Lawvere theories, although it would be even more natu-
ral if one would allow nullary operations, which are less often encountered in
universal algebraic literature, e.g., in [20].

Proposition 3.2 [14] A subset Cl ⊆ OX is a clone of operations over X if
and only if there exists a model M : L −→ C of a Lawvere theory L in C such
that M(1) = X and Cl =

∐
n>0{M(f) | fεL(n, 1)}.

The notion of clone is standard within universal algebra and has been so
for many years. What is less standard is the abstraction from a base set X to
a notion corresponding exactly to that of a Lawvere theory, modulo the above
caveat about nullary operations. In order to state a precise equivalence result,
in the following, we shall allow abstract clones to have nullary operations.

Definition 3.3 cite [4,14] An abstract clone consists of

• for each n ≥ 0, a set Cln, the elements of which are called n-ary operations

• for 1 ≤ i ≤ n, an n-ary operation πi (allowing overloading of notation as,
strictly speaking, we have a πi for each n)

• for each n-ary operation g and m-ary operations f1, . . . , fn, an m-ary oper-
ation g(f1, . . . , fn)

such that, subject to the composites being defined,

• (h(g1, . . . , gn))(f1, . . . , fm) = h(g1(f1, . . . , fm), . . . , gn(f1, . . . , fm))

• πi(f1, . . . , fn) = fi for all ≤ i ≤ n

• f(π1, . . . , πn) = f .
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Proposition 3.4 To give an abstract clone is equivalent to giving a Lawvere
theory.

Proof. Given an abstract clone Cl, put LCl(n,m) = Clmn , with composition
determined by the composition of operations in Cl, and with the identity
on n given by (π1, . . . , πn). Observe that LCl forms a category with strictly
associative finite products given by ordinal sum of natural numbers together
with tuples of the πi’s, and use the fact that ℵop0 is the free category with finite
products on 1 to generate the functor I : ℵop0 −→ LCl. Thus LCl is a Lawvere
theory.

For the converse, given a Lawvere theory L, put (ClL)n = L(n, 1), define
the πi’s using projections of L, and define composition of operations by the
composition of L together with the universal property of finite products. This
data readily satisfies the axioms for an abstract clone.

The two constructions are routinely checked to be mutually inverse. 2

4 Monads

Soon after Lawvere theories were defined, Linton showed that every Lawvere
theory yields a monad on Set [17]. The construction extends to a fully faithful
functor from Law to the category Mnd of monads on Set. The functor is not
an equivalence of categories. So in this precise sense, a monad on Set is a
more general notion than that of Lawvere theory.

Linton also gave a partial converse. One can generalise the definition of
Lawvere theory to allow for arities of arbitrary size, with a generalised theory
no longer a small category or fully determined by one. The construction of a
monad from a Lawvere theory then generalises to an equivalence of categories
between the category of generalised Lawvere theories and Mnd. In [18], Lin-
ton accordingly generalised Lawvere’s treatment of semantics and algebraic
structure.

In more detail, for any Lawvere theory L, let UL : Mod(L,C) −→ C
denote evaluation at 1, cf. Proposition 2.5. If UL has a left adjoint FL, as it
does whenever C is locally presentable, it exhibits Mod(L,C) as equivalent to
the category TL-Alg for the induced monad TL on C [1]. Since Set is locally
finitely presentable, every Lawvere theory L induces a monad TL on Set.

Proposition 4.1 The monad TL may be described by the following colimit:

TLX =

nεℵ0∫
L(n, 1)×Xn

This colimit can be constructed by taking the coproduct∐
nεℵ0

L(n, 1)×Xn

7
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then factoring by identifying elements determined by taking projections and
diagonal maps of ℵop0 . So it is the set of all equivalence classes of terms
generated by the operations of L, with variables among the elements of X,
subject to the equalities determined by L.

Proposition 4.2 The construction sending a Lawvere theory L to the monad
TL extends to a fully faithful functor from Law to Mnd. Moreover, the com-
parison functor exhibits an equivalence between Mod(L, Set) and TL-Alg.

One can readily check that TL is always finitary. When the base category
is Set, finitariness characterises the image of the construction, but that was
an observation of a later time [12].

For a converse, observe that for any monad T on Set, the Kleisli category
Kl(T ) has all small coproducts and the canonical functor I : Set −→ Kl(T )
preserves them: the canonical functor I has a right adjoint and is identity-on-
objects. Restricting I to the full subcategory ℵ0, we obtain (the opposite of)
a Lawvere theory as in the diagram.

LopT
- Kl(T )

ℵ0

6

- Set

6

It is straightforward to show the following.

Proposition 4.3 The construction sending a monad T on Set to the category
Kl(T )opℵ0 determined by restricting Kl(T ) to the objects of ℵ0 extends to a
functor L− : Mnd −→ Law.

Given a Lawvere theory L, one can readily prove that L(TL) is isomorphic
to L, but the converse is false: the only monads of the form TL are the finitary
ones. Thus we have the following.

Theorem 4.4 The constructions sending L to TL and that sending T to LT
exhibit Law as a full coreflective subcategory of Mnd, the category of monads
on Set.

Because this is not an equivalence of categories, Linton generalised the
definition of Lawvere theory to consider a locally small category L with all
small products, together with a strict product preserving identity-on-objects
functor from the opposite of a skeleton of Set to L. With this generalised
notion of Lawvere theory, Linton showed that the construction of Proposi-
tion 4.2 extends, and in the corresponding version of Theorem 4.4, one has an
equivalence of categories [17].
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The different range of generality of the ideas of monads and Lawvere the-
ories extends to the connection between (generalised) Lawvere theories and
monads. One can consider monads on any category, while Lawvere theories
correspond to (finitary) monads on Set. On the other hand, a monad on
a category C has algebras, i.e., models, only in C, while a Lawvere theory
naturally has models in any category with products. So while monad maps
between monads on Set (see [1] for this notion of monad map) correspond
directly to maps of Lawvere theories, there is nothing in the world of monads
(at least nothing to which one has immediate access) corresponding to the
functoriality of Mod(L,C) in C.

5 Comonads and transition systems

The notions of monad and algebra dualise to those of comonad and coalgebra:
that is easy.

Definition 5.1 A comonad on a category C is a monad on Cop. Given a
comonad G on C, a G-coalgebra is a G-algebra for G qua monad on Cop.

So the body of abstract theory initiated by Eilenberg and Moore for algebra
immediately yields a body of abstract theory for coalgebra [5], and that has
proved to be of considerable importance for computer science over the past
twenty years or so [10]. A leading example is as follows.

Definition 5.2 Given a set A, a finitely branching A-labelled transition sys-
tem is a pair (S, t) consisting of a set S and a function t : S −→ Pf (A × S),
where Pf (X) is the set of finite subsets of a set X.

The transition function t tells you, given a machine in state σ, to what
states it might pass in one A-labelled move. The notion is fundamental to the
theory of concurrency, for instance, playing a central role in CCS [21].

The axiomatic situation is that in a category C such as Set, one considers
a pair (X, x) consisting of an object X of C and a map x : X −→ H(X),
where H is an endofunctor on C. Such a pair is called an H-coalgebra [10].
In such axiomatic terms, a finitely branching A-labelled transition system is
precisely a Pf (A×−)-coalgebra.

The structure of the category of Pf (A × −)-coalgebras can be used to
characterise the critical notion of bisimulation in concurrency [21]. In fact, the
body of theory of bisimulation can be defined and developed axiomatically in
terms of H-coalgebras for an arbitrary endofunctor H satisfying axiomatically
defined conditions [10].

The most fundamental construct one makes in coalgebra is the construction
of the cofree comonad G(H) on H if it exists. To give an H-coalgebra is
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equivalent to giving a G(H)-coalgebra, where the term coalgebra is overloaded,
as H is treated as an endofunctor while G(H) is treated as a comonad.

Theorem 5.3 [7] For any finitary endofunctor H on any locally finitely pre-
sentable category C, a cofree comonad G(H) on H exists.

Although the statement of this theorem is dual to the statement of a
theorem about algebras [11], the proof is different, not dual to the proof of
the corresponding theorem for algebras. The reason for the difference is that
Set is a locally finitely presentable category, while Setop is not. Much of
the category-theoretic effort involved with coalgebra revolves around handling
that fact.

Although a cofree comonad on a finitary endofunctor on a locally finitely
presentable category necessarily exists, it typically is not finitary.

Example 5.4 [7] Given a set A, consider the endofunctor H = A × − on
Set. The cofree comonad G(H) sends a set X to the set of infinite streams
of elements of A×X. So, for any countably infinite set X, the set G(H)(X)
contains a stream involving infinitely many different elements of X. Such a
stream cannot be given by a finite subset of X, and so although G(H) has a
rank, that rank is necessarily greater than ℵ0.

This phenomenon has been studied extensively and generalised by Wor-
rell [29]. The key consequence of these issues for us is that dualising notions
such as that of Lawvere theory is subtle, and we cannot expect to obtain as
neat a relationship as that between Lawvere theories and monads.

6 Dualising Lawvere theories

One approach to dualising the body of theory of Lawvere theories is as follows.

Definition 6.1 A comodel of a Lawvere theory L in a category with finite
coproducts C is a model of L in Cop.

Comodels in C generate a category Comod(L,C), with maps given by nat-
ural transformations, and a forgetful functor UL : Comod(L,C) −→ C given
by evaluation at 1, just as for models as in Section 2. Moreover, albeit with a
different proof to that for models, we have the following, cf. Proposition 4.3.

Theorem 6.2 [26] For any Lawvere theory L and locally finitely presentable
category C, the forgetful functor UL has a right adjoint, generating a comonad
GL on C, whereupon Comod(L,C) is coherently equivalent to GL-Coalg.

This dual of the theory of Lawvere theories appeared in [26], where it was
used to model arrays. If LS be the (countable) Lawvere theory for global
state, as described in [23,8], the category Comod(LS, Set) is equivalent to the
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category of arrays [26]. Lawvere theories and their comodels have also been
used, extending [23], to model operational semantics [24]. And they have
been used, in terms of coclones, in [14]. But this dualisation of the theory of
Lawvere theories does not include transition systems [10].

A second approach to dualising algebra is to start not with the notion
of Lawvere theory but rather with that of equational theory, dualise it to a
notion of co-equational theory, then look for an invariant, allowing us to mimic
Proposition 2.5. There is an axiomatic account of the notions of operations,
equations, algebras and monads in [13,27] that has been dualised in [7]. The
idea is as follows.

Example 6.3 Consider three binary operations and no equations. This may
be seen as a single binary operation with codomain 3, cf. the way in which
one generates a Lawvere theory from an equational theory [13,27]. A model
is a set X together with a function of the form X2 −→ X3. Dualise this to
consider a function of the form 2X −→ 3X .

Axiomatically, in [7], one retained the natural numbers as arities, defined
the notions of co-operation, co-equation and coalgebra in the spirit of Exam-
ple 6.3, and proved that any family of co-operations and co-equations generates
a comonad G on Set such that the category of G-coalgebras is isomorphic to
the category of coalgebras for the co-operations and co-equations. Finitely
branching A-labelled transition systems provided a leading example.

A third approach to a dual notion of Lawvere theory is generated by Lin-
ton’s work [17,18], as his generalised notion of Lawvere theory as discussed in
Section 4 does not depend upon Set being locally finitely presentable, and so
generates a dual just as the notion of monad does. As for algebra, this has the
drawback of not allowing duals of basic universal algebraic constructs such as
sum.

These three approaches, together with a recent characterisation of Lawvere
theories in [22], collectively suggest a tentative definition of dual Lawvere
theory, which we give in Section 7.

7 Further Work: a proposal for dualising

There are several different but equivalent formulations of the notions of Law-
vere theory and model. Starting with the usual definition of Lawvere theory
as in Definition 2.2, to give a model of L in Set (Definition 2.3) is equivalent
to giving a functor M : L −→ Set such that the composite MI is of the
form Set(J−, X), where J is the inclusion of ℵ0 in Set: it follows from this
definition that M preserves finite products; the converse is given by putting
X = M1.

With considerably more effort, one can prove that to give a Lawvere theory
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is equivalent to giving a small category L together with an identity-on-objects
functor I : ℵop0 −→ L such that I preserves all finite limits in ℵop0 : this does
not imply that L has all finite limits, although it does follow that L has all
finite products [22].

So one possible notion of dual to investigate is as follows: a dual Law-
vere theory is a small category L together with an identity-on-objects functor
I : ℵ −→ L that preserves all finite limits in ℵ. Note the dropping of (−)op.
A comodel in Set is a functor C : L −→ Set for which CI is of the form
Set(X, J−).

This seems to bear comparison with the definitions in [7] and seems to
restrict Linton’s abstract work [17,18], which does not require size. It is not
clear yet how it relates to comodels of Lawvere theories qua finite coproduct
preserving functors. We propose this as further work.
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