-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by University of Bath Research Portal

Citation for published version:

Fitch, JP 1992, Providing REDUCE more easily. in VG Ganzha, VM Rudenko & EV Vorozhtsov (eds),
Proceedings of Computer Algebra and Its Applications to Mechanics 1990 (CAAM'90). Nova Science
Publishers, New York, pp. Chapter 21, 1-13, Computer Algebra and Its Applications to Mechanics, 1/01/92.

Publication date:
1992

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019


https://core.ac.uk/display/161910566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/providing-reduce-more-easily(1df95d22-88a5-4cdc-88e9-b8f07c5dd96d).html

Providing REDUCE More Easily

John Fitch
School of Mathematical Sciences
University of Bath
Bath BA2 7TAY
United Kingdom

Abstract

REDUCE is a widely used algebraic system, largely because of its small
size, and ready availability. As new versions of REDUCE become available
and with it new facilities the advantage of smallness is being lost. At the
same time there are new types of computers appearing, and there is a need
for rapid implementation of REDUCE to deliver applications to users.
This paper considers one approach to both these problems, namely writing
entirely in C.

1 Introduction

For many years the algebra system REDUCE [10] has been a major tool for
physics and applied mathematics [1, 4, 3]. However there are two problems
which have been growing in significance. The first of these is that REDUCE is
getting larger, as there is an increase in the network library; that is collections of
additional modules which are of importance to some users. This has meant that
it is increasingly hard for REDUCE to fit onto a personal machine. Of course
technology is developing, and this has led to increased memory and speed on
personal machines, but for many people in the world this has not kept pace with
the perceived need.

The other problem is created by the fast-moving technology. New computing
systems are reaching the market at increasing frequency. This creates a problem
for software suppliers as they need to implement their system on a wide variety
of systems fast. This is of course a standard problem of all software, but in the
case of computer algebra the number of programmers working on the subject
is small. Especially in the case of REDUCE the software effort comes mainly
from academics and researchers who are principally involved in other things.



The REDUCE system is written (almost entirely) in Standard LISP [15] and
so the process of porting REDUCE to a new system has been mainly the task
of getting a sufficient subset of Standard LISP to work. For example when
porting REDUCE to small Motorola 68000-based machines the actual REDUCE
implementation was minimal [2]. The Portable Standard LISP system [8] was
designed especially to make this porting easy, but unfortunately the resulting
system is rather too large for many of the smaller machines which are available;
for example on Intel 80386 processors it requires about 4 megabytes of main
memory. Also the work involved in a port is not short.

The work described in this paper is one possible approach to these problems,
and the second in particular. We consider a system for the delivery of REDUCE
as a fixed application, and are willing to dispense with the usual system devel-
oper tools and system debugging. I will describe such a delivery system, and
indicate to what extent it has been a success. A paper covering similar material
in a shorter way is published elsewhere [5].

2 Requirements for an Ideal System

The main requirements for the proposed REDUCE Delivery system are that it
should run in under a megabyte, and be such that it can be implemented on a
new machine within a few days. In order to do this it is necessary to decide on
a programming language to act as the base.

REDUCE is written in LISP, and so there is a pull towards using LISP as
the basic language of the implementation. This is what PSL did, and the story
has not been a great success. In terms of small and efficient system Cambridge
LISP [7] and UOLISP [13] are outstanding. These systems are written in BCPL
and assembler respectively. The second of these does not provide a rapid porting
strategy, while the first relies on a language which is no longer in common use.
However the language C [20] which is a descendent of BCPL is widely used, and
is available for a large number of systems. For these reasons this was taken as
the implementation language. It does also have a small hidden advantage for
me, as I have access to a portable implementation of ANSI C [18]. It is assumed
that the C compiler is of sufficient quality that it can compile large program
segments.



3 Design

The first and most important decision which has to me made in the design of
a delivery system is whether to rewrite all of REDUCE in our base language,
or whether to write a LISP system. In making a choice it is important to bare
in mind the large amount of code there is in REDUCE. A complete rewrite
is unacceptable, and would cause significant troubles when the next version of
REDUCE is released. Experiments have been made with treating the RLISP
source as a specification which is translated automatically into acceptable C
[16], but there are a number of difficulties which have not been solved. The
design adopted in the current work is to create a compiler which compiles the
REDUCE sources into a C syntax, but with no attempt that this C should be
read by humans. Rather it is treated as a universal assembler.

Before describing the details of this compiler it is worth mentioning that Nor-
man has also been working on a full Lisp system written entirely in C [17], which
provides the rapid portability we require, but this system is still incomplete.

For ease of implementation a number of assumptions have been had made,
not all advisably. It is assumed that the word length is 32 bits, and that 24
bits are sufficient to address all the heap space that REDUCE requires. This
allows the use of an 8 bit tag, with the accompanying simplification. It may be
noticed that this structure is similar to Cambridge LISP [7] which has allowed
me to take and modify some code.

In order to support the assembler-style C there also needs to be some base
code providing space administration, arithmetic and some functions. In the
design it has been assumed that the REDUCE system is a valid LISP program,
and so the type of checking which is important in a real LISP system — the
numbers of arguments, taking the CAR of atoms and the like — are not necessary.
We will assume that every function exists, that there is no redefinition of the
REDUCE system, and we will not provide support of code development nor
system debugging. This makes the needs simpler and faster to run.

3.1 Compiler

At the heart of the delivery system is the compiler. The Hearn-Griss compiler
[9] which is used in PSL, Cambridge LISP and UOLISP, in differing versions,
was again used. This compiler is divided into two major sections; the first
translates LISP into an intermediate virtual machine code, and the second part
macro-expands these into the target code. We are assuming that we have ac-



cess to a modern optimising compiler, so there is no need for optimisation in
our translation of the macros into C. Some functions are expanded inline for
efficiency, but that is the extent of cleverness. In particular we do not have to
implement register allocation schemes, as the C compiler will do that for us.

In order to make it possible to arrange garbage collection, it was decided
to pass all arguments on a stack, and each function has as its only argument
a pointer to the base of an argument frame. As the Hearn-Griss compiler does
not preserve values in “registers” over function calls, it saves all values on the
stack. Thus for example the small fragment of REDUCE

symbolic procedure smemq(u,v);
%true if id U is a member of V at any level (excluding
%quoted expressions);
if atom v then u eq v
else if car v eq ’quote then nil
else smemq(u,car v) or smemq(u,cdr v);

will get translated by the RLISP system into the LISP

(de smemq (u v)
(cond
((atom v) (eq u v))
((eq (car v) ’quote) nil)
(t (or (smemq u (car v)) (smemq u (cdr v)))) ))

which in turn gets compiled to the cmacros

(':alloc 2)

(1:1b1 g1)
(!':jumpnatom g2 2)
(':load 1 1)

(!:jumpn g3 2)

(':load 1 (quote t))
(!:jump g4)

(1:1b1 g2)

(!:load 1 (car 2))
(!:jumpn g5 (quote quote))

(1:1b1 g3)
(':load 1 (quote nil))
(':jump g4)



(1:1b1 g5)

(':1load 2 (car 2))
(':1load 1 1)
(':1link smemq 2)
(!':jumpt g4)
(!:load 2 (cdr 2))
(':1load 1 1)
(':store 1 1)
(!':store 2 2)
(':jump g1)

(1:1p1 g4)
(':dealloc 2))

These macros are expanded one at a time to the following C

int _smemq(int *sp)

{

g166:

gl67:

g168:

gl70:

register int d1,d2,d3,d4;
int d5,d6,d7,d8,d9,qv,fv;

if ((unsigned)nil < (unsigned) (*(sp+1))) goto gl67;
dl = *(sp+0);

if (d1 !'= (*(sp+1))) goto gl68;

dl = lisptrue;

goto gl69;

dl = CAR(x(sp+1));
qv = quotes[16];
if (d1 !'= qv) goto gl70;

dl = nil;
goto gl69;

d2 = CAR(*(sp+1));
dl = *(sp+0);

*(sp+0+2)=d1;
*(sp+1+2)=42;

dl = _smemq(sp+2);

if (d1 !'= nil) goto g169;
d2 = CDR(*(sp+1));

dl = *(sp+0);
*x(spt+0) = di;
*x(sp+l) = d2;



goto gl66;
gl169:
return di;

}

Looking at this code it is apparent that there is lot of loading and storing which
hand compilation would not require. Modern compilers tidy up all this code.
For example, the corresponding assembler (for an Intergraph Clipper) is given
below, so it can be seen that the register allocation of the C compiler has sorted
out most of the oddities in the code.

__smemq:
savewll
subq $4,sp
movw r0,rl4
loada _nil,ri2
movw ri4,r13
addq $8,r13
loada _quotes,ril
L2F4:

loadw 4(r14),r0
loadw (r12),r2
cmpw r2,r0
brgtu  L2F7
loadw (r14),r1

cmpw rl,r0
brne L2F10
loada _lisptrue,rO

loadw (r0),r0
addq $4,sp

restwll
ret sp
L2F7:
andi $16777215,r0
loadw (x0),x0
movw r0,r3
loadw 64(ri1),r1
cmpw rl,r3
brne L2F14
L2F10:
movw r2,r0
addq $4,sp
restwll



ret sp

L2F14:
loadw (r14),r1
storw r1,8(ri14)
storw r0,12(r14)

movw rl13,r0
call Sp,__smemq
loadw (r12),r1
cmpw rl,r0

brne L2F20

loadw 4(r14),r0
andi $16777215,r0
loadw  4(x0),r0
storw r0,4(r14)

b L2F4

This mechanism of passing arguments is less efficient than direct passing. When
we know that the called function cannot make any call on the space routines, and
the function is in the base, then the arguments are passed in the conventional
C fashion. There are still possibilities for further optimisations in this compiler,
but the gains are not very large.

3.2 Base Code

While much of Standard LISP can be written in LISP [14], and with compilation
this is a large section, there still remains functions which need to be hand
written. Included amongst these are the input and output functions, functions
for creating identifiers and gensyms, and communication with the operating
system. These are not very difficult functions. The only significant part is the
design of the object list. The structure used is a hash table, and as part of
the limitations of a delivery system there is no provision for what happens on a
table overflow.

As well as these necessary functions, it was convenient to write a number
of functions in the base, either for speed, or because they were needed in the
base. Including in this set are lengthc, nconc, memq, reversip, flagp, get
and equal.

The remaining parts of the base code are for memory management and for
arithmetic. These are described in separate sections.



3.3 Storage Management

There are two types of space requirement. The simplest is cons space, where
each item is of equal size. More complex are vectors and strings, which are of
arbitrary size. The space administration mechanism chosen is to have separate
system for these two types. The cons space is allocated in hunks, and within
these hunks there is a free chain. When space is exhausted a new hunk is added.
The vectors and strings are also allocated from a hunk scheme, but with a first
fit and amalgamation system, following that of the TRIPOS operating system
[11].

Garbage collection is invoked whenever there is insufficient space from the
free space. A simple mark and sweep algorithm is used, following head pointers
from the argument stack and the oblist. There is no attempt at store com-
paction. This means that store can never be returned, but the amalgamation
strategy for vectors does keep some control over fragmentation. As in usual in
UNIX system, the use of malloc is to be avoided to allocate hunks, and instead
a direct use of sbrk is used. For pure ANSI C use however there is a variation
in the code which uses malloc.

As explained above the object list is a hash table. Identifiers are added to
it by a linear hashing algorithm. As following a garbage collection an identifier
may be removed from the table there has to be a distinction made between slots
which are currently empty and those which have never been used. This is of
particular significance during initialisation, as described below.

The space system has been seen to work in a satisfactory way. It has been
adapted from one which is in use for the Bath implementation of EuLISP, FEEL
[6].

3.4 Arithmetic

An algebra system must provide bignums as well as small integers and floating
point. Implementing these operations is a significant proportion of the work
involved in this project.

As the delivery REDUCE uses the same tagging structure as Cambridge
LISP, the BCPL code of the latter can be translated into C to provide arbitrary
precision arithmetic. This code is of a certain antiquity, as it was earlier the
arithmetic for CAMAL. The algorithms are the simple ones found in Knuth
[12].



This part of the system is not yet complete, but some elementary polymor-
phic arithmetic is available now. Small numbers are 25 bit signed integers.
Bignums are represented as binary vectors with radix 10°, and floating point
numbers are simple vectors for double precision. If floating point were heavily
used it would be possible to allocate them in their our hunk system.

4 Realisation

The system whose design is considered in the previous section has been under
development for about two years. It exists in two distinct versions, based either
on PSL on on Cambridge LISP. The examples given above have been taken from
the second of these, running on an HLH Orion 1/05, as have all the dimensions
given below. It has also been run on various other computing systems, including
an Intel 80386 and Acorn ARM.

In order to create the system the first stage is to run the compiler described
above to generate the C code. This takes about 40 minutes, and generates
115,569 lines of C, or 1.8 megabytes, as well as 1650 lines of header information.
In order to make the C compiler happy this is divided automatically into eight
sections. Even so the compilation is lengthy, and some C compilers have refused
to accept so large programs. In addition to this code there are the fixed base
code sections of a further four thousand lines, and the initialisation code. The
problems of initialisation are sufficiently large that a sub section is dedicated to
exploring this issue below.

The other two problems which had to be faced are the linkage between
compiled code and LISP data structures, and the need for an evaluator. These
are also considered below.

4.1 Linking Compiled Code to LISP

Compiled code has on occasion to refer to LISP data structures and identifiers.
In our non-dynamic system this does not include names of functions to call which
we are assuming are immutable, but there are still quoted lists and identifiers.
The problem is to ensure that these do not get lost on garbage collection. As
structures never move in the store scheme it would be possible to provide direct
pointers to the structures, and have an additional list collecting them against
garbage collection. This would in fact be hard to arrange within C, so the quote
cell mechanism of Cambridge LISP is used. There is a static C vector which
contains the pointers, and compiled code accesses them by indexed indirection.



An example of this can be seen in the example given above for the function
smemg which needs access to the identifier quote.

This system does however leave an additional problem, of initialising the
quotes vector.

4.2 Initialisation

There are two aspects of initialisation. As was mentioned at the end of the
previous subsection it is necessary to initialise the quotes. The quotes are largely
identifiers and short lists. It would be possible to lay the latter down as a
separate hunk, but in the present version code is generated to call cons to create
the structures. This generates much code, about 200Kbytes. The creation of
the lists is not as simple as one might hope as most C compilers are limited
in how deeply function calls can be nested. The lists have to be unwrapped to
some extent.

The other part of the initialisation is all the various calls to put and similar in
the REDUCE sources. These are collected into a large list, and then compiled at
the end of the compilation process with a progn wrapped around it. Again the
restrictions of C compilers has meant that it is advantageous to divide this into
a number of sub-functions, but the amount of code involved is only 27Kbytes.

Not only is the code involved with initialisation large, almost 25% of the
system, but it takes time to be obeyed. This leads to a slow start-up of the
system. In order to reduce the store requirements and to make the system
startup acceptable to the casual it is necessary to provide a check-point, or
dump and restart facility. This involve walking over the store and converting
each address into a pair of hunk number and offset, and writing the data to a
file. The reloading is very similar. This system is still not finished, but there is
sufficient evidence to see that this scheme is a winning idea.

4.3 Evaluator

As the system was to be a delivery one, it was initially assumed that an eval-
uator would not be required, as everything would be compiled. Of course this
is not correct, as REDUCE calls eval frequently; not least of these calls is the
interpretation of the user’s input. Thus there is need for both eval and apply,
but they do not need to be elaborate versions. There is no environment manip-
ulation in REDUCE, and there is no need for tracing and debugging, which in
Cambridge LISP form the largest part of the evaluator. The implementation of

10



eval is fairly simple, needing only 80 lines of LISP which is compiled. On the
other hand apply is complex, and the current implementation is not in strict
ANSI C. As there is no checking for argument number or for the existence of the
target binary program, the code is fairly short. Once control reaches compiled
LISP then it cannot return to the interpreter except via eval or apply.

5 Comparisons

the intention in writing this REDUCE delivery system was to provide a small
and reasonable efficient system which was easy to move to new architectures.
Inevitably the outcome is not entirely as planned. In this section the actual
system is looked at in comparison to alternative REDUCE systems.

In the development environment which was used there are three alternative
REDUCE systems available; Cambridge LISP, PSL and KCL. This provides a
suitable basis for comparison, but there may be biases due to the features of
that machine, which is a 32 bit UNIX RISC machine.

Rather than build all of REDUCE a subset was chosen, consisting of the
main algebraic routines, integration, factorisation, matrix operations, the solve
package and the line editor. This is sufficient to run the test program except for
high energy physics. Because of the incomplete nature of the infinite precision
arithmetic the test program was slightly modifier to remove the need for them.
For these reasons the measurements must be seen as preliminary. In particular
while most of the infinite precision routines have been included, they are not
debugged, and may grow.

5.1 Sizes

The version of REDUCE which is run as the service on this machine is based
on Cambridge LISP. The concept of measuring the size of Cambridge LISP is a
little difficult, as it works by loading modules on demand, and unloading them
if deemed necessary. The base code is about 300Kbytes, with an initial data
area of about the same again. To this should be added the loadable segments
which total a further 1.8Mbytes including the LISP compiler; and the system
runs happily in 1.5 Mbytes.

The Standard LISP system which is available on this workstation is based on

CPSL, the version of PSL with stack groups and the Padget binding model[19],
which is a larger that normal PSL. Nevertheless, the main code size is also one

11



megabyte, but the runtime need is a 5 Mbyte partition minimum.

Kyoto Common LISP supports the third REDUCE, and this is considerably
larger. The saved core is over 4 Mbytes, most of which is recorded as data.
Running it needs about 5 Mbytes.

The system described in this paper, including the initialisation code which
will be removed by the checkpoint system, is 1.2Mbytes, and it runs in 1.3Mbytes.
This is with the Norcroft ANSI C compiler. With the checkpoint facility it seems
as if the target of 1 Mbyte is within reach.

So, the new system is similar in size to Cambridge LISP, and a considerable
improvement on the other two. More work is needed in the size aspects of the
delivery system.

5.2 Speed

Again working on the Orion 1/05 workstation, and using the test program which
is largely the same as the standard REDUCE test without high energy physics or
big numbers, the four systems were timed. Cambridge LISP takes 21s plus 4.5s
garbage collection and code loading for this test. The larger CPSL takes 24.16s
with no garbage collection (as it is running in a large store). The Common LISP
implementation shows the costs of the C data structures, taking 46.4s seconds.
It is with pleasure that I can report that the delivery system takes only 15.2s
plus 2.5s of garbage collection. Thus yet again the attempt to produce a small
system has given a fast one.

The lack of runtime checking must be responsible for much of this gain, as
well as the direct function calls. The passing of arguments on an auxiliary stack
must explain why the gain is not as large as one might wish.

5.3 Porting to Other Machines

The C-based delivery system has been run on some other systems, including
SUN3 and SUN4, HP Workstations, Acorn ARM and Intel 80386. The experi-
ence of all these ports has been similar. The C code generated is large, 134,000
lines constituting 2.2Mbytes, divided into 10 files. Some C compilers have raised
objections to some of the C, and there has been considerable effort spent in gen-
erating sufficiently simple code. The size is reflected in long compilation times.
Those machines with a true modern ANSI C have been easier.

12



For example on the Acorn Archimedes A440 the delivery REDUCE has an
image of 1.1Mbytes (which is held in a compressed form on disk of under half
this), and runs the same test as above in 20.3s with 4.8s garbage collection.
This compares with the time of 27.7s plus 1.6s garbage collection for the normal
REDUCE, which is another Cambridge LISP based. This is in line with figures
above; it should however be noted that both machines are RISC machines.

The system has also run on the i386 under UNIX, but as yet not under
MSDOS.

6 Discussion and Conclusions

The system has been described by looking at various detailed parts, but it is of
value to look at the object as a whole. It could be thought that this is another
LISP system written in C, a small KCL for example. This is not the case, and it
is not intended to be so. We are interested in only one application program, and
the support needs to be sufficient for it, but no more. In particular this means
that the arithmetic support is well developed (at least in the design), providing
efficient infinite precision arithmetic for example, but there is no debugging
or tracing facilities, and no provision for users to write functions which are
compiled. There is no intention to provide symbolic mode support for REDUCE;,
only a small interactive algebraic system, although at present there is some
support for symbolic mode. The current state of development has given a system
which is a little too big, but the whole project is aimed at delivery on small
machines, not a development environment. There are optimistic signs that we
can achieve our original goal.

This paper has presented an experimental system to deliver REDUCE, or
any similar LISP application, on a computer which provides only C. It has been
shown to give a very fast porting strategy for the machines tried. While there
is still some work to do, particularly on initialisation and optimisation, it does
give a firm basis from which to develop.

I would like to acknowledge the encouragement and assistance of Tony Hearn
and Arthur Norman, as well as the computing facilities provided by Codemist
Ltd. T also appreciate the suggestions of Audrey Fitch and Arthur Norman who
read earlier drafts of this paper and made many useful suggestions, and to Jules
Gilbert for noting the power of the code-name by which this system is known,
Automath-2.

13



References

1]

J. P. Fitch. The application of algebraic manipulation to physics, A case of
creeping flow? In W. Ng, editor, Proceedings of EUROSAM 79, volume 72
of LNCS, pages 30—41. Springer-Verlag, 1979.

J. P. Fitch. Implementing REDUCE on a Microprocessor. In Proceedings
of EUROCAL 1983, pages 128-136. Springer-Verlag LNCS 162, 1984.

J. P. Fitch. Applying computer algebra. In International Conference on
Computer Algebra and its Application in Theory, pages 262—275, 1985.

J. P. Fitch. Solving algebraic problems with REDUCE. J. of Symbolic
Computation, 1(2):211-227, June 1985.

J. P. Fitch. A Delivery System for REDUCE. In Proceedings of 1SSACI0.
ACM, New York, Addison Wesley, 1990.

J. P. Fitch, R. J. Bradford, and K. J. Playford. The Free and Eventually
European LISP — FEEL. Technical report, The EuLISP Committee, CEC
Brussels, 1989.

J. P. Fitch and A. C. Norman. A High Level Implementation of LISP.
Software — Practice and Ezxperience, 7:713-725, 1977.

M. L. Griss, E. Bensen, and G. Q. Maguire Jnr. PSL: A Portable LISP
System. In Proc. ACM Sym. Lisp and Functional Programming, pages
88-97, 1982.

Martin L. Griss and Anthony C. Hearn. Portable LISP Compiler. Software
- Practice and Fxperience, 11:541-605, 1979.

Anthony C. Hearn. The REDUCE Program for Computer Algebra. In Proc.
of the Third Colloquium on Advanced Computing Methods in Theoretical
Physics, CNRS, Marseilles, 1973.

T. J. King. TRIPOS Technical Manual. Technical report, University of
Bath, 1982.

D. E. Knuth. The Art of Computer Programming, Volume 2 — Seminumer-
ical Algorithms. Addison-Wesley, 1981.

J. B. Marti. UOLISP. CALCODE Systems, Venice, CA, 1989.

J. B. Marti and J. P. Fitch. SLISP: A Standard LISP implemented in a
high level language. REDUCE Newsletter 2, University of Utah, 1978.

J. B. Marti, A. C. Hearn, M. L. Griss, and C. Griss. Standard Lisp Report.
SIGPLAN Notices, ACM, 14(10):48-68, 1979.

14



[16] A. C. Norman. Private communication. Description of Experiments with
RLISP to C, 1988.

[17] A. C. Norman. Internal technical note of Codemist Ltd. Cambridge Com-
mon LISP, 1990.

[18] A. C. Norman and A. Mycroft. Norcroft C Compiler. Technical report,
Codemist Ltd, Bath, England, 1988.

[19] J. A. Padget and J. P. Fitch. Closurize and Concentrate. In Proceedings of
POPL 85, New Orleans, ACM, pages 255—265, 1985.

[20] Committee X3J13. The Programming Language C. ANSI Draft Standard,
1989.

15



